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Abstract: Air quality management relies on photochemical models to predict the responses
of pollutant concentrations to changes in emissions. Such modeling is especially important
for secondary pollutants such as ozone and fine particulate matter which vary nonlinearly
with changes in emissions. Numerous techniques for probing pollutant-emission
relationships within photochemical models have been developed and deployed for a variety
of decision support applications. However, atmospheric response modeling remains
complicated by the challenge of validating sensitivity results against observable data. This
manuscript reviews the state of the science of atmospheric response modeling as well as
efforts to characterize the accuracy and uncertainty of sensitivity results.

Keywords: sensitivity analysis; source apportionment; instrumented models; air quality
modeling; review '

1. Introduction

At their essence, photochemical models are tools for estimating the pollutant concentrations that
would result from given emissions, meteorology, and other specified conditions. Those simulated
concentrations are critical to forecasting future pollution events, evaluating scientific understanding of
emission inventories and atmospheric processes, assessing relationships between source emissions and
receptor concentrations, and reconstructing atmospheric conditions beyond the limits of available
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observations. The accuracy of simulated concentrations relative to ambient observations is a primary
measure of a photochemical model’s performance [1].

However, for policy applications, it is often the responses of concentrations to emission changes,
rather than the concentrations themselves, that most critically inform decision making. For example,
modeling to demonstrate future attainment of U.S. ambient air quality standards typically compares
concentrations under base and proposed future emissions to determine the sufficiency of an attainment
plan [2]. Component measures for such plans can be prioritized based on sensitivity modeling of
pollutant responsiveness to various emitters [3]. Other applications seek to apportion the origin of
pollutant concentrations among precursor sources (source apportionment), or to quantify the benefits
of a control policy. In each case, some form of atmospheric response modeling must be used to
characterize the responsiveness of concentrations to emissions.

Atmospheric response modeling is especially important for secondary pollutants which form from
nonlinear interactions of precursor compounds. Secondary pollutants such as tropospheric ozone and
(secondary) particulate matter (PM) have been among the leading targets of air pollution control

cfforts in recent decades due to their impacts on human health and the natural environment [4, 5]. The

nonlinear formation of these pollutants [6] necessitates considering spatially and temporally variable
meteorological and chemical conditions, typically via three-dimensional photochemical model
simulations, to predict concentration responses to emission changes [7]. Other forcings on ambient
pollutant concentrations may also be of interest in policy applications, such as responses due to climate
change and changes in land use.

A major challenge in atmospheric response modeling is evaluating the accuracy. of sensitivity
results. While simulated concentrations can be evaluated agamnst observations from satellites, aircraft,
and ground-based monitors, the sensitivities of concentrations to emissions are not directly observed.
Dynamic evaluation seeks to evaluate concentration-emission relationships within air quality models
by considering periods' of substantial emission changes [1]. For example, studies may compare
simulated and observed changes in pollutant concentrations between weekdays and weekends [8, 9], or
across multiple years in which substantial emission changes have been documented [10, 11]. Still,
evaluation of simulated sensitivities is less direct than for concentrations, and is complicated by
uncertainties in simulated emissions changes and meteorologieal variability. : *

Here, various techniques that have been developed to probe the responses of pollutant
concentrations to emissions perturbations in photochemical models, and their use to inform policy
applications such as control strategy development and source apportionment are reviewed. Efforts to

characterize the accuracy and uncertainty of concentration-emission sensitivity estimates are also
reviewed.

2. Response Modeling Methods

A wide array of response modeling techniques has been applied to probe relationships between-
concentrations and emissions in photochemical models. Several of the most widely used methods are
described here: brute-force, decoupled direct method; adjoint, and source apportionment.

2.1. Brute-force Method
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The simplest and most widely used method for characterizing concentration response to emissions
in a photochemical model is simply to rerun it with alternate emission rates. This “brute-force” (finite
difference) method computes differences between concentrations in simulations with base and
perturbed rates of emissions or other parameters, typically with other conditions held fixed unless
interactions with climate change are being investigated. A key appeal of brute-force is its ready
application in any photochemical model, without the substantial programming required to implement
the other response modeling techniques.

In some brute-force applications, modelers may construct alternate emission inventories to represent
specific scenarios of interest to policy development or scientific investigation. For example, scenarios
may represent emission levels under control strategies [12], or under projected climate change [13, 14].
Other studies consider hypothetical percentage changes in emissions by species, source sector, or
source region [15]. In those cases, it is typically assumed that the rate of concentration change per
emission change can be linearly interpolated or extrapolated to predict the impacts of emission changes
smaller or larger than the level explicitly modeled. More formally, suppose concentrations C;(x,?) are
simulated under both base (Ew (%,t)) and perturbed (E;¢(x,t)) levels of the emission component of
interest, where E; differs from E, by fraction Af

E = & Af)E, (1)
Co = c(go) )
Cr = C(Ey) €)

Notations for species (i=1,...,N), place (x=(x,y,z)), and time (¢) are dropped for convenience. The
brute-force method would then approximate concentrations C, under any other emission level E, by
linearly scaling the difference in concentrations between the perturbed and base simulations:

E. = (1 + A€)E, 4)

C. = Co +52(Cr — Co) )

For pollutants with a nonlinear response to emission rates, the accuracy of Eq. 5 will tend to
degrade as the fractional perturbation of interest, Ag, differs more sharply from the explicitly modeled
perturbation. Specifically, if concentrations exhibit a saturating (concave down) response to precursor
emissions as is typically observed for ozone, Eq. 5 will tend to overestimate the benefit of emission
reductions smaller than f and underestimate the benefit of larger emission reductions, assuming an
emission reduction (Af < 0) was simulated in the perturbation case. However, the accuracy of Eq. 5 is
rarely examined explicitly. Selection of perturbation levels relevant to the policy or scientific questions
at hand will tend to enhance the accuracy and usefulness of brute-force results. The accuracy of brute-
force sensitivities can also be improved by applying the central difference method shown in Eq. 6:

C. ~C, +§T€f(cf 1€ (6)
where C_ are the concentrations under emission level E_;. However, this approach doubles the
needed number of perturbation simulations, and does not address inaccuracies arising from
extrapolations to input perturbations substantially larger than Af. Furthermore, the brute-force method
has been shown to be susceptible to numerical instability due to model discontinuities and roundoff
errors [16-18].

Another complication of nonlinear concentration-emission response is that the impacts of
perturbations in multiple emission components will not be strictly additive. One approach to represent
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the joint impacts of simultaneous emission perturbations is response surface modeling [19, 20]. Brute
force modeling is conducted for a matrix of perturbation scenarios, each representing different levels
of perturbations in the emission components. Statistical analysis of the results is then applied to create
a response surface that estimates concentrations for any combination of perturbations in the emission
components [19, 20]. Response surface modeling was recently applied to characterize the nonlinear
response of ozone to precursor emissions in China [21]. Response surfaces also have been validated to
be highly accurate in “metamodeling” PM concentrations in an underlying model [20]. However, as is
true for brute-force methods generally, response surfaces require a computationally burdensome
number of model simulations when many input perturbations are of interest.

2.2. Decoupled Direct Method

Various approaches have attempted to avert the need for differencing numerous brute-force
simulations by computing pollutant sensitivities directly within the photochemical model. Several
approaches, including the coupled direct method and Green’s function method have been found to be
unstable or impractical for use in comprehensive photochemical models (see Yang et al. [22] and
references therein). However, the decoupled direct method (DDM) [23] and adjoint sensitivity analysis
[24] have been shown to stably and efficiently compute sensitivity relationships and thus have been
more widely implemented in three-dimensional models [16, 17, 22, 25-28].

DDM operates by tracking sensitivity coefficients of all concentrations to specified model inputs or
parameters, utilizing equations derived from those representing concentrations in the underlying model
to evolve sensitivities. The atmospheric diffusion equation (ADE) representing the transport and
reactions of chemical compounds in photochemical models can be written in simplified form as:

ac

5. = ~V(uC) + V(KVC) + R+ E + - @)

where u(x,?) is the wind field, K(x,/) is the turbulent diffusivity tensor, Ri(x,f) are the net rates of
chemical production, E(x,?) are the emission rates, and the ellipsis denote other processes represented
by the model. The ADE is solved by operator splitting and is subject to initial and boundary conditions
described elsewhere [29].

Suppose that we are interested in how concentrations vary with perturbations in targeted model
inputs or parameters pj(x,t), which may be perturbed from their unperturbed values P; by scaling
factors €;, analogously to Eq. 4:

p; = €iP; = (1 + A¢))P; (8)
Since our interest here is in sensitivities to emissions, note that each parameter p; is equivalent to an
emission component E in the notation of the previous section.

Semi-normalized sensitivity coefficients S; ,J,-(”(x,t) of concentration response to p; are developed by
scaling non-normalized local sensitivity coefficients (0C/0p;) by the unperturbed value P; of the
parameter:

ac ac ac

) — plE. B SR
SJ' _Piapj F}a(sfpj) d¢€; ®)

This semi-normalization simplifies calculations by placing sensitivity coefficients into the same units
as concentrations. For the case of sensitivity to emission rates, DDM computes the evolution of " by
substituting Eq. 9 into Eq. 7, yielding the equation below [22, 27]:



154
155
156

157

158
159
160
161
162
163
164
165
166
167
168
169

170

171
172
173
174
175
176
177

178

179

180
181
182
183
184
185
186

187
188

189
190

191

Atmosphere 2011, 2 5

(1)
asa—i = —v(usj“)) +V(kvS(V) + FS® + Ej + - (10)
where F is the Jacobian matrix (Fy, = dR;/9C;) and Ej 1s the base level of the emissions inventory
component represented by sensitivity parameter p;. Alternate terms for representing sensitivities to
parameters other than emissions, as well as initial and boundary conditions for Eq. 10, are described in
other references [22, 26]. DDM is a decoupled approach in that for each process sensitivities are
updated separately from, and after, concentrations.

Slightly different approaches have been taken to implement Eq. 10 in air quality models. The
original DDM formulation of Dunker [23, 30] applies the same algorithms and internal time steps for
chemistry in Egs. 6 and 9, whereas the “DDM-3D” variation of Yang et al. [22] factorizes the Jacobian
only once per advection time step. The former approach maximizes the accuracy and consistency of
sensitivity results, whereas the latter enhances computational efficiency. Nevertheless, successful
implementations of both DDM [26, 31] and DDM-3D [18, 22, 25, 27, 31, 32] in state-of-the-science
photochemical models have been validated to yield computational savings and consistent results
relative to brute force. '

A key distinction between DDM and brute force is that DDM predicts local sensitivity coefficients,

ac : . e . .
5o fepresenting responsiveness to infinitesimal changes in a parameter, whereas brute force predicts
j

. AC .
responses to finite changes, = Just as the accuracy of brute-force results may degrade as interpolated

or extrapolated beyond the explicitly modeled perturbation level, linear scaling of local first-order
DDM sensitivities may poorly represent the nonlinear impacts of large perturbations. Thus, for highly
nonlinear relationships, first-order DDM results can be applied reliably only to characterize local
responsiveness or the impacts of small perturbations.

Hakami et al. [27, 33] showed that the applicability of DDM can be greatly expanded by
incorporating second-order sensitivity coefficients. Their High-order Decoupled Direct Method

(HDDM) extended the DDM-3D algorithms to compute second-order or even higher-order sensitivity
(2) _ 9%¢C

coefficients. Second-order self-sensitivity coefficients S;"" = >z represent the curvature of
", Ef
: ; Sl : (2) a*c
concentration response to a single parameter, whereas cross-sensitivity coefficients S;;” =

Jk T ge j0€k
characterize how sensitivity of concentrations to one parameter changes as a second parameter is
varied.

Validation tests confirmed the consistency of HDDM and brute-force finite differencing in
estimating second-order local sensitivities [27, 33]. More significantly, Hakami et al. showed that
Taylor series expansions incorporating first- and second-order HDDM coefficients via the equation
below can reliably predict ozone response to simultaneous large percentage (e.g., 50%) changes in

multiple parameters [27, 33]:
As2 2
Cejer = Co + Ag Sjm + A€y SrErl) ® % SJ'(Z) ki % S:(cz) + Aejﬂeksj-(i) (11)

where C,, ¢, denotes concentrations when parameters p; and py are perturbed by fractions Ae; and Aey
respectively. Cohan et al. [25] showed that Eq. 11 could even be extended with reasonable accuracy to
predict the ozone impacts of zeroing-out individual emission sources (i.c., A¢; = —1), providing

results closer to source apportionment. While studies applying Eq. 11 with HDDM for ozone have
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proliferated (e.g., [34-36]), no published study has yet extended DDM to second-order for PM,
although such an extension was recently described in a conference presentation [37].

The majority of DDM applications have focused on the response of pollutant concentrations to
emission changes. These include quantifications and optimizations of emission control strategy
impacts, in some cases linked with consideration of control costs [38], health effects [39], or climate
change [40]. Hakami et al. showed that HDDM coefficients could be applied to generate isopleths of
ozone response to simultaneous changes in VOC and NOy emissions [33]. DDM-computed
sensitivities to emissions have also been applied through a variety of approaches to conduct inverse
modeling of emission inventories [41-43]. Sensitivities to reaction rate constants have been applied to
assess key reactions and uncertainties in the chemical mechanisms that drive air quality models [44,
45]. All of these applications, though achievable using brute-force methods, benefitted from the ability
of DDM to efficiently compute sensitivities to numerous input parameters.

2.3 Adjoint

Brute force and DDM each compute the sensitivities of all model outputs throughout the domain to
specified model inputs and parameters. Thus, they are well-suited for characterizing how
concentrations or deposition amounts everywhere are impacted by a limited number of changes in
emissions or other parameters of interest. However, for some applications, it may be desired to probe
how specific model outputs are influenced by a numerous model parameters. For example, one may
seek to probe how pollutant concentrations or deposition rates at a single monitor are influenced by
many model parameters, or how a spatially aggregated metric of pollutant conditions is influenced by
numerous emitters. As the number of emitters or input parameters of interest grows, it would quickly
become cumbersome to compute forward sensitivities to each parameter. _

For cases such as these, an adjoint of a model provides an efficient method for calculating
sensitivity of a few model outputs to numerous model parameters. Adjoints have been implemented to
some extent in several modern regional and global photochemical models including CMAQ [16],
CHIMERE [46], STEM [47], GEOS-Chem [17], and others. Adjoints of atmospheric models have
been used in a variety of applications including attainment studies of ozone in specific airsheds as well
as for ozone and PM, 5 on continental scales [28, 48, 49]; inverse modeling of black carbon based on
ground and ship measurements [50]; long-range transport of O;[51] and black carbon [52]; and data
assimilation of ozone and NO, measurements [47].

Mathematical description of an adjoint is simplified by introducing the forward tangent linear
model (TLM), which is analogous to the formulation of DDM (Eq. 10). Both DDM and TLM refer to
the
forward method for calculating sensitivity because the perturbation is carried forward through the
various model processes and in time.

The ADE in operator form would be:

C = M(p), (12)
where the model output vector C is a function of the model input parameter vector p, and M is the
operator matrix representing the combination of all processes in the model.

Analogously, TLM (Eq. 12) in operator form can be written as:
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8C = L(8p), (13)
where L is the Jacobian of the model operator. Furthermore, specific adjoint applications require the
definition of a scalar function, J, based on model outputs as:

] =J(©), (14)

In a simple application of calculating a sensitivity field of species i, J = ¢;, whereas in a more
complex scenario of inverse modeling, J can be a cost function dependent on the difference between
modeled and observed values, the difference between initial and perturbed parameters, the observation
error covariance matrix, and possibly other terms [17]. The goal of the adjoint would then be to
efficiently determine 0.J/0p, or Oci/0p in the simplest case).

Similar to DDM sensitivities (Eq. 9), it is possible to define the adjoint variable 4; as:

=45 (15)

ap;
Then the adjoint can be defined by applying Lagrange multipliers to Eq. 10 and integrating by parts by
taking into account its initial and boundary conditions [47] as:

5= —V(uk) — V(KVA,) — FTA— ¢, (16)
where ¢; is the forcing term dependent on specific application and the definition of J.

In practice, adjoint functions are applied to each model process in sequence, including advection,
diffusion, chemistry, and aerosol processes. Two methods exist for adjoint implementation. If the
underlying functions describing a particular process are differentiable and can be used directly, then a
continuous adjoint for that process is possible. A continuous adjoint for a particular process is
constructed by differentiating the underlying mathematical equations first and then discretizing the
adjoint equations of solution. On the other hand, if such calculations are too cumbersome or impossible
due to the complexity of the process, then the process can be numerically discretized first and later
differentiated to obtain a discrete adjoint. The advantage of the continuous adjoint is that it obtains an
exact solution that may be more useful in interpreting the results, because it represents a physical time-
dependent sensitivity behavior and explicitly assures numerical stability [53]. In contrast, a discrete
adjoint may exhibit instability and yield a solution inconsistent with the forward model [54]. However,
the attraction of a discrete adjoint is that it can often be derived using automatic differentiation tools
that process the forward model code directly. Furthermore, discrete adjoint results may be more easily
validated, because the resulting gradients do not differ from the actual gradient of the numerical cost
function as can be the case with continuous adjoints [17]. In practice, both approaches are frequently
used for an adjoint implementation within a particular forward model that is solved using operator
splitting, where one method may be used for transport processes and another for chemistry.

Hakami et al. [48] demonstrate a potential regulatory application of adjoint modeling to calculate
sensitivities of a nationwide U.S. ozone national ambient air quality standard (NAAQS) to precursor
emissions of NO, and VOCs. The sensitivities are presented varying in space and time to provide a
fully resolved source/receptor relationship for modeled ozone nonattainment. Source categories and
locations with the greatest impact are quickly identified as potential targets of control strategies.

2.4 Source Apportionment
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Source apportionment seeks to quantify the contributions of various emission sources from specific
geographic areas or emissions sources to pollutant levels at particular locations. While source
apportionment in photochemical models may be conducted by a brute force method zeroing out
sources one by one, this may become computationally prohibitive if many emitters are of interest.
Thus, a host of tools has been implemented to enable more efficient probing of source apportionment
relationships in air quality models. Here, we focus solely on model-based source apportionment
techniques, not on the wide array of observation-based source apportionment techniques such as
chemical mass balance and positive matrix factorization [55] that characterize source contributions
based on ambient data.

Apportioned fractions of species are typically tracked separately from base concentrations with the
specific intent to not alter base model predictions. Source apportionment methods are typically less
computationally costly than zero-out brute force simulations, but can be limiting in that they only track
a subset of all possible source and species combinations. Typically, end-point pollutants include either
ozone or various chemical components of particulate matter, but rarely in the same model. These
methods consider secondary formation from precursor emissions of nitrogen oxides (NO,=NO and
NO), volatile organic compounds (VOCs), sulfur dioxide (SO,), and ammonia (NH3), in addition to
primary emissions of the tracked species. Usually, boundary and initial conditions are also tracked
separately.

Various approaches have been taken in recent years to develop source apportionment methods.
These methods are generally designed to provide information of pollutant formation from predefined
geographic regions and/or chemical precursors. One approach for resolving emissions source
attribution for PM species is to model the particles as an explicit external mixture while preserving
source information [56]. In this method, particulate matter precursors from each source are injected
mto the model separately and their identity is preserved as they undergo the various physical and
chemical transformations. Modifications to the underlying chemical mechanism and the accompanying
solver are required to accommodate precursor species duplication. A similar approach has been
demonstrated for resolving ozone formation from tagged VOC sources [57]. Again, modifications to
the chemistry module are required, but in this case, tracking contributions of different emissions
sources to concentrations of various VOCs, alkoxy radical (RO), peroxy radical (RO,), and
hydroperoxyl radical (HO;) is considered. These species dictate the conversion rate of NO to NO»,
which in turn is used as the indicator for ozone formation.

Source apportionment implementation for PM and ozone is complicated by the interaction of
second-generation products from explicitly tagged precursors with one another. Such cases are
typically handled on a reaction by reaction basis and the products are attributed to sources according to
the linkage established through their molecular structure.

Source oriented methods are computationally demanding, because they greatly increase not only the
number of species transported by the model, but also the computational burden involved in solving a
larger number of potentially stiff differential equations governing gas and aerosol chemical
interactions. However, preserving emissions information through the model helps to overcome one of
the main challenges of source apportionment, which is accounting for the highly nonlinear and time
variant nature of secondary pollutant formation. Computationally lighter versions of this method track
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only a subset of species. For example, the carbon apportionment model has been used as a diagnostic
tool to track sources of chemically inert particulate organic and elemental carbon [58, 59].

Other source apportionment techniques rely on simplifying assumptions to reduce the size of the
numerical problem. For example, the ozone source apportionment technology (OSAT) [60]
implemented within the Comprehensive Air quality Model with extensions (CAMXx) [61] groups
emissions of NO, and VOCs from each tracked source together with the corresponding ozone formed
as the result of these emissions into families, and tracks these families through the various processes in
the air quality model. OSAT adds the flexibility of apportioning ozone to NOy emissions in addition to
VOCs, and does so by determining NO,- or VOC-limiting ozone formation regimes on the basis of the
ratio of the production of peroxide (H>O,) to the production of nitric acid (HNOs3) [62]. At ratios above
0.35, the ozone formed is assigned to emissions of NOj, and at ratios below 0.35 the ozone formed is
assigned to emissions of VOCs. This method still accounts for different VOC reactivity as do the
explicit tracking methods, but may have some limitations during instances where ozone is titrated
through reaction with NO near large emissions sources of NOy, since instantaneous negative
apportionment is not possible. '

As a variation on OSAT, the anthropogenic precursor culpability assessment (APCA) [61] has been
implemented in the CAMx model. APCA functions similarly to OSAT, but reallocates the ozone
production that was attributed to non-controllable sources to the controllable precursor that
participated in its formation. For example, in a situation where OSAT would attribute ozone
production to biogenic emissions of VOCs, APCA would reassign the attribution to anthropogenic
NO, even under VOC-limiting conditions. As such, this method biases towards assigning more ozone
formation to NO, emissions, in order not to assign culpability to presumably non-controllable
biogenics. _

Also stemming from the development of OSAT in CAMx is the particulate matter source
apportionment technology (PSAT) and its complement, online particulate source apportionment
(OPSA) [63]. Both of these methods track primary and secondary PM components by making the
simplifying assumption that each secondary component links directly to one specific precursor. For
example, NOy emissions lead directly to formation of particulate nitrate. Secondary effects, such as the
nonlinear chemical and thermodynamic interactions between species are considered through the
behavior of the bulk, non-apportioned species based only on the equilibrium assumption. Both PSAT
and OPSA start with the gas-phase OSAT implementation to which PM relevant reactions are added.
PSAT differs from OPSA in that it apportions the transport of the tagged species based on fluxes of the
bulk in an offline way, instead of transporting the tagged species themselves as in OPSA. This
introduces some error to the system, since the PSAT attributes the fluxes linearly to save on
computational time spent on transport routines.

The CMAQ model also has implemented methodology for particulate source apportionment in the
way of tagged species source apportionment (TSSA), which tracks precursors to aerosol sulfate,
nitrate, ammonium, elemental carbon, secondary organic aerosol, and other aerosol species [64].
Similar to the PSAT implementation in CAMx [63], this method also applies information from bulk
species for most model transformations to the tagged species. However, gaseous chemistry is described
more explicitly by modifying the underlying chemical mechanism and adding chemical tracers
relevant for aerosol formation. TSSA also employs mass normalization routines that ensure mass
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conservation, as do OSAT, APCA, and PSAT. This is done by introducing an “other” source category
automatically as a tracer in addition to user specified geographical and chemical precursor sources.

An important consideration for interpreting results of any air quality source apportionment method
is that there is no unique true answer to attributing pollutant concentrations to precursor sources. The
contributions of various sources may not be strictly additive, since photochemical regime and pollutant
responsiveness may change as emission rates vary. The emission source assigned the greatest zero-out
source contribution may not necessarily yield the most benefit from its incremental control, and its
contribution may vary as other sources are controlled. However, source apportionment results still
provide a wealth of information for the purpose of control strategy development or culpability
assessment.

Other drawbacks of source apportionment techniques come from the fact that these methods try to
strike a balance between computational efficiency and explicit treatment of all science processes done
by the base model. Ozone source apportionment techniques frequently make use of various
assumptions to calculate whether or not the ozone producing regime is either NO,- or VOC-limited.
Apportionment of inorganic particulate species is frequently done by ignoring or simplifying
thermodynamic interactions between PM species. Most of the described apportionment techniques
assume that secondary PM components are linked directly to one precursor species. For example,
secondary sulfate is traced back only to SO, emissions. Therefore, these methods are unable to capture
indirect effects such as the replacement of ammonium sulfate with ammonium nitrate that sometimes
accompanies reductions of SO, emissions [65], or the influences of atmospheric oxidants and their
precursors on secondary organic aerosol formation [66]. Similar to the other response models
discussed, source apportionment techniques aim to generate additional information about one or more
modeling episodes that could be used to test changes to the forcings behind the model resolved state of
air quality without the need for additional simulation. One such application is detailed by Baker and
Foley [67]. In their approach, the CAMx model with PSAT is used to estimate annual sulfate and
nitrate formation from emissions of precursors from 99 power plants in the eastern United States.
Emissions from these plants were manually perturbed, and the apportionment model repeated to arrive
at brute-force sensitivity of source apportionment. Finally, a nonlinear regression model was used to
describe the relationship of downwind particulate matter concentrations to emissions strength and
distance from source. This hybrid formulation of two response techniques (brute force and PSAT)
together with a statistical model allows for quick approximation for impacts of varying emissions at
particular facilities or siting a new facility in the modeling domain.

3. Accuracy and Uncertainty of Atmospheric Response Estimates

Given the critical role of atmospheric response modeling in informing air quality decision-making,
the accuracy and uncertainty of response estimates are important to examine. All of the instrumented
modeling techniques above can be validated against the forward model response to ensure that they
faithfully represent pollutant-emission response within the underlying model. Most validations of
DDM have shown it to be highly accurate in capturing pollutant response to small-scale emission
changes. The extent local sensitivity coefficients can predict large-scale response depends on the
nonlinearity of pollutant formation under the conditions at hand; in some situations, first-order
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sensitivities may be sufficient to predict response for up to +/- 30% changes in emissions [31, 68],
whereas Taylor expansions including second-order HDDM coefficients can allow accurate
representation of ozone response to domain-wide emission reduction of at least 50% [25, 33].

Such validations assess whether a response modeling technique is reliably capturing relationships
within the underlying model, but do not address the accuracy of the model itself in representing actual
atmospheric response to emission changes. Simulated pollutant concentrations are routinely evaluated
against observations [1], but pollutant-emission sensitivities are not directly measured. While
consistency of simulated and observed concentrations lends confidence to model performance, it does
not guarantee the accuracy of sensitivity and source apportionment results. Different models or
alternate settings of a single model can achieve similar performance for pollutant concentrations
despite yielding markedly different predictions of pollutant-emission response [44, 69, 70]. Thus, there
is growing interest in the use of observational data to infer pollutant responsiveness to emission
changes and thereby ground truth modeled sensitivity results. The approaches described in the
following three paragraphs—dynamic evaluation, observational indicator ratios, and receptor-based
source apportionment—provide informative though imperfect gauges of response modeling accuracy,
as each of these methods entails its own set of assumptions and simplifications.

Dynamic evaluation assesses the ability of models to represent changes in pollutant concentrations
resulting from changes in emissions or other conditions [1]. For example, differences in pollutant
concentrations on weekdays and weekends can be used to assess their responsiveness to weekly
patterns in emission rates [8, 9, 71]. Other dynamic evaluation studies have considered how pollutant
levels have responded to long-term trends in emission rates, such as those resulting from major
emission control policies [10, 11, 72]. In each case, a key challenge is to accurately characterize the
changes in emission rates and meteorological conditions across the periods of interest, so that the
pollutant response can be effectively isolated. However, since characterizations of emission trends and
meteorology are inevitably imperfect, dynamic evaluation cannot definitively determine whether
mispredicted trends in concentrations arise from those imperfections or from errors in a model’s
responsiveness.

Another check on modeled sensitivities is provided by observational indicator ratios, which
consider ambient measurements of various species to infer how ozone or secondary PM was formed.
For example, ratios of species concentrations such as O3/NO, (NO,=NOy and its oxidation products)
and H,O,/HNO; have been found to be effective indicators of whether ozone formed under NOy- or
VOC-limited conditions [62, 73]. More quantitative estimates of ozone responsiveness to NOy
emissions can be obtained from ozone production efficiency metrics, which quantify the number of
ozone molecules produced per molecule of NO, consumed [74]. For PM, the observed ratio between
free ammonia and total nitrate concentrations may indicate whether formation of wintertime nitrate is
limited primarily by NO, or ammonia emissions [75]. Such indicator ratios already have a role in some
source apportionment methods, but could be used further for evaluation purposes.

For source apportionments, various receptor-based methods such as positive matrix factorization
and chemical mass balance have been developed for apportioning PM based on observations of its
constituent compounds [76-78]. Some studies have attempted to compare PM source apportionments
derived from receptor-based and emission-based models [79], or to develop hybrid approaches
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combining the two methods [80]. Whereas source signatures can be inferred from speciated PM data,
such approaches are, of course, inapplicable to ozone and other individual gases.

Apart from comparisons with observational data to gauge accuracy of response modeling, a separate
line of efforts has sought to characterize the uncertainty in response modeling that arises due to
uncertain model inputs and formulations. Parametric uncertainties result from uncertain model input
data and parameters, whereas structural uncertainties result from imperfect numerical formulations of
physical and chemical processes [81]. Most studies conducted numerous brute force runs with Monte
Carlo sampled inputs to characterize changes in pollutant-emission sensitivities resulting from changes
mn uncertain inputs [82-84]. More recent studies have introduced methods utilizing HDDM and
adjoints for more efficient uncertainty characterization [85-88]. In either case, Bayesian approaches
could be applied to use observational data to assess the relative likelihoods of various plausible
simulations and thereby refine uncertainty estimates [89, 90].

4. Discussion

The use of response modeling methods in air quality management has increased over recent years
partly due to significant improvements to the computational capacity of management agencies, and
partly due to the need to find more creative control strategies in response to lower air quality standards.
While new probing tools continue to be introduced and refined, a growing number of publications
apply existing techniques to new air quality challenges.

As applications of response modeling proliferate through a wider community of users, care must be
taken to ensure that the methods are applied and interpreted in an effective manner. The use of brute-
force methods tends to be straightforward. More complex methods such as DDM or adjoint modeling
typically require more extensive validation to ensure that results are consistent with the forward model,
both to protect against possible coding errors as well as to check the method’s performance in a new
photochemical regime. For all methods, proper interpretation of results is crucial. For example,
extrapolations of local sensitivity coefficients or interpolations of large-scale impacts can introduce
error when response is highly nonlinear. There may also be important interactions between responses
not captured by sensitivities to individual parameters. Response surface modeling and high-order
sensitivity coefficients can each provide accurate results across a range of emission perturbations, but
can be more complex to apply than other methods.

The results of multiple response modeling methods can be highly complementary. For example,
source apportionment computes the impacts of entire emission sources, whereas DDM characterizes
sensitivities to incremental perturbations. Nevertheless, most studies apply only a single response
modeling method, despite a handful of studies that have rigorously compared multiple methods [91,
92]. Zhang et al. [92] showed that first-order DDM effectively simulated ozone response to NOy and
VOC emission changes of less than 40%; OSAT was better able to simulate source apportionment (i.c.,
100% emission reductions), but its non-negativity failed to represent VOC-limited regions where
reductions in NOx may lead to increases in ozone concentrations. Koo et al. [91] compared the results
of brute force, PSAT, and DDM characterizations of particulate matter sensitivity and source
apportionment. They found that first-order DDM could simulate responses of inorganic secondary
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aerosols to emissions perturbations of 20% or more, and of organic and primary aerosols to up to
100%. PSAT yielded similar results to zero-out source apportionment in most cases, but did not
account for indirect effects such as when removal of an SO, emitter frees up oxidants to react with SO,
from other sources.

The response modeling methods reviewed here characterize the responses of pollutants to emission
changes, but do not necessarily explain the physical or chemical causes of those responses. Other
techniques such as process analysis [93] characterize the contributions of various physical and
chemical processes to pollutant concentrations and formation and destruction rates. Process analysis
has been applied most frequently to quantify the processes influencing tropospheric ozone [94-96].
Additional insights into the causes of atmospheric response can be gleaned by substituting alternate
mechanisms or parameterizations in air quality models. Ultimately, response probing methods can
perform only as well as the underlying model, so ongoing improvements to the physical and chemical
representations in atmospheric models, and the scientific understanding that underpins them, remain
paramount.

Acknowledgements

The work of D. Cohan was supported by National Science Foundation CAREER Award Grant
087386. Although this manuscript has been reviewed and approved for publication, it does not
necessarily reflect the policy or views of the US Environmental Protection Agency. The authors would
like to thank Kirk Baker for helpful input on the manuscript.

References

1. Dennis, R., T. Fox, M. Fuentes, et al., 4 framework for evaluating regional-scale numerical
photochemical modeling systems. Environmental Fluid Mechanics, 2010. 10(4): p. 471-489.

2. US-EPA, Guidance on the use of models and other analyses for demonstrating attainment of air
quality goals for ozone, PM2.5, and regional haze. 2007.

3. Cohan, D.S., .W. Boylan, A. Marmur, et al., An integrated framework for multipollutant air
quality management and its application in Georgia. Environmental Management, 2007. 40(4): p.
545-554.

4. Brunckreef, B. and S.T. Holgate, 4ir pollution and health. Lancet, 2002. 360(9341): p. 1233-
1242. ‘

5. Fuhrer, J., Ozone impacts on vegetation. Ozone-Science & Engineering, 2002. 24(1): p. 69-74.

6. Lin, X., M. Trainer, and S.C. Liu, On the nonlinearity of the tropospheric ozone production.
Journal of Geophysical Research, 1988. 93(D12).

7. Russell, A.G., Regional photochemical air quality modeling: Model formulations, history, and
state of the science. Annual Review of Energy and the Environment, 1997. 22: p. 537-588.

8. Altshuler, S.L., T.D. Arcado, and D.R. Lawson, Weekday vs weekend ambient ozone
concentrations - Discussion and hypotheses with focus on Northern California. Journal of the Air
& Waste Management Association, 1995. 45(12): p. 967-972.



517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
o
558
559
560
561
562
563

564

565

Atmosphere 2011, 2 14

9

10.
11.
12,
13

14,

15.

L7
18.

19:

20.

21.

22,
23.
24.

25.
26.

27.

Pierce, T., C. Hogrefe, S.T. Rao, et al., Dynamic evaluation of a regional air quality model:
Assessing the emissions-induced weekly ozone cycle. Atmospheric Environment, 2010. 44(29): p.
3583-3596.

Gilliland, A.B., C. Hogrefe, R.W. Pinder, et al., Dynamic evaluation of regional air quality
models: Assessing changes in O-3 stemming from changes in emissions and meteorology.
Atmospheric Environment, 2008. 42(20): p. 5110-5123.

Hogrefe, C., K.L. Civerolo, W. Hao, et al., Rethinking the assessment of photochemical modeling
systems in air quality planning applications. Journal of the Air & Waste Management
Association, 2008. 58(8): p. 1086-1099.

Roth, P.M., 8.D. Reynolds, and T.W. Tesche, Air quality modeling and decisions for ozone
reduction strategies. Journal of the Air & Waste Management Association, 2005. 55(10): p. 1558-
1573.

Tagaris, E., K. Manomaiphiboon, K.J. Liao, et al. (2007) Impacts of global climate change and
emissions on regional ozone and fine particulate matter concentrations over the United States.
Journal of Geophysical Research-Atmospheres 112, DOI: 10.1029/2006jd008262.

Tao, ZN., A. Williams, H.C. Huang, et al., Sensitivity of U.S. surface ozone to future emissions
and climate changes. Geophysical Research Letters, 2007. 34(8): p. 5.

Roselle, S.J. and K.L. Schere, Modeled response of photochemical oxidants to systematic
reductions in anthropogenic volatile organic-compound and NO, emissions. Journal of
Geophysical Research-Atmospheres, 1995. 100(D11): p. 22929-22941.

Hakami, A., D.K. Henze, J.H. Seinfeld, et al., The adjoint of CMAQ. Environmental Science &
Technology, 2007. 41(22): p. 7807-7817.

Henze, D.K., A. Hakami, and J.H. Seinfeld, Development of the adjoint of GEOS-Chem.
Atmospheric Chemistry and Physics, 2007. 7(9): p. 2413-2433.

Napelenok, S.L., D.S. Cohan, Y.T. Hu, et al., Decoupled direct 3D sensitivity analysis for
particulate matter (DDM-3D/PM). Atmospheric Environment, 2006. 40(32): p. 6112-6121.

Hill, J., S. Polasky, E. Nelson, et al., Climate change and health costs of air emissions from
biofuels and gasoline. Proceedings of the National Academy of Sciences of the United States of
America, 2009. 106(6): p. 2077-2082.

US-EPA, Technical Support Document for the proposed PM NAAQS Rule - Response Surface
Modeling. 2006.

Xing, J., S.X. Wang, C. Jang, et al., Nonlinear response of ozone to precursor emission changes in
China: a modeling study using response surface methodology. Atmos. Chem. Phys., 2011. 11(10):
p- 5027-5044.

Yang, Y.J., J.G. Wilkinson, and A.G. Russell, Fast, direct sensitivity analysis of multidimensional
photochemical models. Environmental Science and Technology, 1997. 31(10): p. 2859-2868.
Dunker, A.M., The decoupled direct method for calculating sensitivity coefficients in chemical
kinetics. J. Chem. Phys., 1984. 81(5): p. 2385-2393.

Elbern, H., H. Schmidt, and A. Ebel, Variational data assimilation for tropospheric chemistry
modeling. Journal of Geophysical Research-Atmospheres, 1997. 102(D13): p. 15967-15985.
Cohan, D.S., A. Hakami, Y.T. Hu, et al., Nonlinear response of ozone to emissions: Source
apportionment and sensitivity analysis. Environmental Science & Technology, 2005. 39(17): p.
6739-6748.

Dunker, A.M., G. Yarwood, J.P. Ortmann, et al., The decoupled direct method for sensitivity
analysis in a three-dimensional air quality model - Implementation, accuracy, and efficiency.
Environmental Science & Technology, 2002. 36(13): p. 2965-2976.

Hakami, A., M.T. Odman, and A.G. Russell, High-order, direct sensitivity analysis of
multidimensional air quality models. Environmental Science & Technology, 2003. 37(11): p.
2442-2452.



566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

Atmosphere 2011, 2 15

28.

29,

30.

3L

32,

35

34.

35.

36.

37.

38.

30,

40.

41.

42.

43.

44,

45.

Martien, P.T. and R.A. Harley, Adjoint sensitivity analysis for a three-dimensional photochemical
model: Application to Southern California. Environmental Science & Technology, 2006. 40(13):
p. 4200-4210. ;

McRae, G.J., W.R. Goodin, and J.H. Seinfeld, Development of a 2nd-generation mathematical
model for urban air pollution. 1. Model formulation. Atmospheric Environment, 1982. 16(4): p.
679-696.

Dunker, A.M., Efficient calculation of sensitivity coefficients for complex atmospheric models.
Atmospheric Environment - Part A General Topics, 1981. 15(7): p. 1155-1161.

Koo, B., A.M. Dunker, and G. Yarwood, Implementing the decoupled direct method for sensitivity
analysis in a particulate matter air quality model. Environmental Science & Technology, 2007.
41(8): p. 2847-2854.

Napelenok, S.L., D.S. Cohan, M.T. Odman, et al., Extension and evaluation of sensitivity analysis
capabilities in a photochemical model. Environmental Modelling & Software, 2008. 23: p. 994-
999.

Hakami, A., M.T. Odman, and A.G. Russell (2004) Nonlinearity in atmospheric response: A
direct sensitivity analysis approach. Journal of Geophysical Research-Atmospheres 109, DOI:
10.1029/2003JD004502.

Jin, L., S. Tonse, D.S. Cohan, et al., Sensitivity analysis of ozone formation and transport for a
central California air pollution episode. Environmental Science & Technology, 2008. 42(10): p.
3683-3689. :

Kim, S., D.S. Cohan, and D.W. Byun, Contributions of inter- and intra-state emissions to ozone
over Dallas-Fort Worth, Texas. Civil Engineering and Environmental Systems, 2009. 26: p. 103-
116.

Xiao, X., D.S. Cohan, D.W. Byun, et al., Highly nonlinear ozone formation in the Houston region
and implications for emission controls. Journal of Geophysical Research-Atmospheres, 2010. 115.
Zhang, W. and A.G. Russell, The Decoupled Direct Method for Higher-Order Sensitivity Analysis

for Particulate Matter in Multidimensional Air Quality Models, in American Meteorological

Society Annual Meeting. 2010.

Cohan, D.S., D. Tian, Y.T. Hu, et al., Control strategy optimization for attainment and exposure
mitigation: Case study for ozone in Macon, Georgia. Environmental Management, 2006. 38(3): p.
451-462.

Tagaris, E., K.J. Liao, A.J. Delucia, et al., Sensitivity of Air Pollution-Induced Premature
Mortality to Precursor Emissions under the Influence of Climate Change. International Journal of
Environmental Research and Public Health, 2010. 7(5): p. 2222-2237.

Liao, K.J., E. Tagaris, K. Manomaiphiboon, et al., Sensitivities of ozone and fine particulate
matter formation to emissions under the impact of potential future climate change. Environmental
Science & Technology, 2007. 41(24): p. 8355-8361.

Hu, Y.T., M.T. Odman, and A.G. Russell, Top-down analysis of the elemental carbon emissions
inventory in the United States by inverse modeling using Community Multiscale Air Quality model
with decoupled direct method (CMAQ-DDM). Journal of Geophysical Research-Atmospheres,
2009. 114.

Mendoza-Dominguez, A. and A.G. Russell, Iterative inverse modeling and direct sensitivity
analysis of a photochemical air quality model. Environmental Science & Technology, 2000.
34(23): p. 4974-4981.

Napelenok, S.L., R.-W. Pinder, A.B. Gilliland, et al., 4 method for evaluating spatially-resolved
NOx emissions using Kalman filter inversion, direct sensitivities, and space-based NO2
observations. Atmospheric Chemistry and Physics, 2008. 8(18): p. 5603-5614.

Cohan, D.S., B. Koo, and G. Yarwood, Influence of uncertain reaction rates on ozone sensitivity
to emissions. Atmospheric Environment, 2010. 44(26): p. 3101-3109.

Gao, D., W.R. Stockwell, and J.B. Milford, Global uncertainty analysis of a regional-scale gas-
phase chemical mechanism. Journal of Geophysical Research, 1996. 101(C4): p. 9107-9119.



617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

Atmosphere 2011, 2 16

46.

47.

48.

49.

50.

51.

52

53;

54,

53.
56.

57.

59.

60.

61.
62.

63.

64.

65.

Menut, L., R. Vautard, M. Beekmann, et al., Sensitivity of photochemical pollution using the
adjoint of a simplified chemistry-transport model. Journal of Geophysical Research-Atmospheres,
2000. 105(D12): p. 15379-15402.

Sandu, A., D.N. Daescu, G.R. Carmichael, et al., Adjoint sensitivity analysis of regional air
quality models. Journal of Computational Physics, 2005. 204(1): p. 222-252.

Hakami, A., J.H. Seinfeld, T.F. Chali, et al., Adjoint sensitivity analysis of ozone nonattainment
over the continental United States. Environmental Science & Technology, 2006. 40(12): p. 3855-
3864.

Henze, D.K., J.H. Seinfeld, and D.T. Shindell, Inverse modeling and mapping US air quality
influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem. Atmos.
Chem. Phys., 2009. 9(16): p. 5877-5903.

Hakami, A., D.K. Henze, J.H. Seinfeld, et al., Adjoint inverse modeling of black carbon during the
Asian Pacific Regional Aerosol Characterization Experiment. Journal of Geophysical Research-
Atmospheres, 2005. 110(D14).

Zhang, L., D.J. Jacob, M. Kopacz, et al., Intercontinental source attribution of ozone pollution at
western US sites using an adjoint method. Geophysical Research Letters, 2009. 36.

Kopacz, M., D.L. Mauzerall, J. Wang, et al., Origin and radiative forcing of black carbon
transported to the Himalayas and Tibetan Plateau. Atmos. Chem. Phys., 2011. 11(6): p. 2837-
2852.

Sirkes, Z. and E. Tziperman, Finite difference of adjoint or adjoint of finite difference? Monthly
Weather Review, 1997. 49: p. 5-40.

Sandu, A. and Z. Liu, On the properties of discrete adjoints of numerical methods for the
advection equation. International Journal for Numerical Methods in Fluids, 2008. 56(7): p. 769-
803.

Hopke, P K., Receptor Modeling in Environmental Chemistry. 1985, New York: John Wiley.
Mysliwiec, M.J. and M.J. Kleeman, Source apportionment of secondary airborne particulate
matter in a polluted atmosphere. Environmental Science and Technology, 2002. 36(24): p. 5376-
5384.

Ying, Q. and A. Krishnan, Source contributions of volatile organic compounds to ozone formation
in southeast Texas. Journal of Geophysical Research-Atmospheres, 2010. 115.

. Bhave, P.V., G.A. Pouliot, and M. Zheng, Diagnostic model evaluation for carbonaceous PM2.5

using organic markers measured in the southeastern US. Environmental Science & Technology,
2007. 41(5): p- 1577-1583.

Samaali, M., V.S. Bouchet, M.D. Moran et al., Application of a tagged-species method to source
apportzonmem of primary PM2.5 components in a regional air quality model. At:mosphenc
Environment. In Press, Accepted Manuscript.

Dunker, A M., G. Yarwood, J.P. Ortmann, et al., Comparison of source apportionment and source
sensitivity of ozone in a three-dimensional air quality model. Environmental Science &
Technology, 2002. 36(13): p. 2953-2964.

ENVIRON, User's Guide - Comprehensive Air Quality Model with Extensions Version 4.50.
2008.

Sillman, S. and D.Y. He, Some theoretical results concerning O-3-NOx-VOC chemistry and NOx-
VOC indicators. Journal of Geophysical Research-Atmospheres, 2002. 107(D22).

Wagstrom, K.M., S.N. Pandis, G. Yarwood, et al., Development and application of a
computationally efficient particulate matter apportionment algorithm in a three-dimensional
chemical transport model. Atmospheric Environment, 2008. 42(22): p. 5650-5659.

Wang, Z.S., C.J. Chien, and G.S. Tonnesen, Development of a tagged species source
apportionment algorithm to characterize three-dimensional transport and transformation of
precursors and secondary pollutants. Journal of Geophysical Research-Atmospheres, 2009. 114.
Dennis, R.L., P.V. Bhave, and R.W. Pinder, Observable indicators of the sensitivity of PM2.5
nitrate to emission reductions—Part II: Sensitivity to errors in total ammonia and total nitrate of



668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

Atmosphere 2011, 2 17

66.

67.

68.

69.

70.

T

72.

73.

74.

75.

76.

T

78.

19:

80.

81.

82.

the CMAQ-predicted non-linear effect of SO2 emission reductions. Atmospheric Environment,
2008. 42(6): p. 1287-1300.

Carlton, A.G., RW. Pinder, P.V. Bhave, et al., To What Extent Can Biogenic SOA be Controlled?
Environmental Science & Technology, 2010. 44(9): p. 3376-3380.

Baker, K.R. and K.M. Foley, 4 nonlinear regression model estimating single source
concentrations of primary and secondarily formed PM2.5. Atmospheric Environment. In Press,
Corrected Proof.

Zavala, M., W. Lei, M.J. Molina, et al., Modeled and observed ozone sensitivity to mobile-source
emissions in Mexico City. Atmospheric Chemistry and Physics, 2009. 9(1): p. 39-55.

Wu, S.L., L.J. Mickley, D.J. Jacob, et al., Why are there large differences between models in
global budgets of tropospheric ozone? Journal of Geophysical Research-Atmospheres, 2007.
112(D5).

Thunis, P., L. Rouil, C. Cuvelier, et al., Analysis of model responses to emission-reduction
scenarios within the CityDelta project. Atmospheric Environment, 2007. 41(1): p. 208-220.
Marr, L.C. and R.A. Harley, Modeling the effect of weekday-weekend differences in motor vehicle
emissions on photochemical air pollution in central California. Environmental Science &
Technology, 2002. 36(19): p. 4099-4106.

Napelenok, S.L., K.M. Foley, D.W. Kang, et al., Dynamic evaluation of regional air quality
model's response to emission reductions in the presence of uncertain emission inventories.
Atmospheric Environment, 2011. 45(24): p. 4091-4098.

Sillman, S., The use of NOy, H202, and HNO3 as indicators for ozone-NOx- kydrocarbon
sensitivity in urban locations. Journal of Geophysical Research-Atmospheres, 1995. 100(D7): p.
14175-14188.

Liu, S.C., M. Trainer, F.C. Fehsenfeld, et al., Ozone production in the rural troposphere and the
implications for regional and global ozone distributions. Journal of Geophysical Research-
Atmospheres, 1987. 92(D4): p. 4191-4207.

Pinder, R.W., R.L. Dennis, and P.V. Bhave, Observable indicators of the sensitivity of PM2.5
nitrate to emission reductions - Part I: Derivation of the adjusted gas ratio and applicability at
regulatory-relevant time scales. Atmospheric Environment, 2008. 42(6): p. 1275-1286.

Chow, J.C. and J.G. Watson, Review of PM2.5 and PM10 apportionment for fossil fuel
combustion and other sources by the chemical mass balance receptor model. Energy & Fuels,
2002. 16(2): p- 222-260.

Reff, A., S.I. Eberly, and P.V. Bhave, Receptor modeling of ambient particulate matter data using
positive matrix factorization: Review of existing methods. Journal of the Air & Waste
Management Association, 2007. 57(2): p. 146-154.

Schauer, J.J., W.F. Rogge, L.M. Hildemann, et al., Source apportionment of airborne particulate
matter using organic compounds as tracers. Atmospheric Environment, 1996. 30(22): p. 3837-
3855.

Marmur, A., S.K. Park, J.A. Mulholland, et al., Source apportionment of PM2.5 in the
southeastern United States using receptor and emissions-based models: Conceptual differences
and implications for time-series health studies. Atmospheric Environment, 2006. 40(14): p. 2533-
2551.

Lee, D., S. Balachandran, J. Pachon, et al., Ensemble-Trained PM2.5 Source Apportionment
Approach for Health Studies. Environmental Science & Technology, 2009. 43(18): p. 7023-7031.
Fine, J., L. Vuilleumier, S. Reynolds, et al., Evaluating uncertainties in regional photochemical
air quality modeling. Annual Review of Environment and Resources, 2003. 28: p. 59-106.
Bergin, M.S., G.S. Noblet, K. Petrini, et al., Formal uncertainty analysis of a Lagrangian
photochemical air pollution model. Environmental Science & Technology, 1999. 33: p. 1116-
1126.



Atmosphere 2011, 2 18

717 83. Deguillaume, L., M. Beekman, and C. Derognat, Uncertainty evaluation of ozone production and

718 its sensitivity to emission changes over the lle-de-France region during summer periods. Journal
719 of Geophysical Research, 2008. 113.

720  84. Hanna, S.R., Z. Lu, H.C. Frey, et al., Uncertainties in predicted ozone concentrations due to input
721 uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain.
722 Atmospheric Environment, 2001. 35(5): p. 891-903.

723 85. Digar, A. and D.S. Cohan, Efficient Characterization of Pollutant-Emission Response under

724 Parametric Uncertainty. Environmental Science & Technology, 2010. 44(17): p. 6724-6730.

725  86. Pinder, RW., R.C. Gilliam, K.W. Appel, et al., Efficient Probabilistic Estimates of Surface Ozone
726 Concentration Using an Ensemble of Model Configurations and Direct Sensitivity Calculations.
727 Environmental Science & Technology, 2009. 43(7): p. 2388-2393.

728  87. Tian, D., M.S. Bergin, D.S. Cohan, et al., Uncertainty analysis of ozone formation and response to
729 emission controls using higher-order sensitivities. Journal of the Air & Waste Management

730 Association, 2010. 60: p. 797-804.

731  88. Sandu, A. and L. Zhang, Discrete second order adjoints in atmospheric chemical transport

732 modeling. Journal of Computational Physics, 2008. 227(12): p. 5949-5983.

733 89. Bergin, M.S. and J.B. Milford, Application of Bayesian Monte Carlo analysis to a Lagrangian
734 photochemical air quality model. Atmospheric Environment, 2000. 34(5): p. 781-792.

735  90. Deguillaume, L., M. Beekman, and L. Menut, Bayesian Monte Carlo analysis applied to regional-
736 scale inverse emission modeling for reactive trace gases. Journal of Geophysical Research, 2007.
737 112.

738  91. Koo, B., G.M. Wilson, R.E. Morris, et al., Comparison of Source Apportionment and Sensitivity
739 Analysis in a Particulate Matter Air Quality Model. Environmental Science & Technology, 2009.
740 43(17): p. 6669-6675.

741 92. Zhang, Y., K. Vijayaraghavan, and C. Seigneur, Evaluation of three probing techniques in a

742 three-dimensional air quality model. Journal of Geophysical Research-Atmospheres, 2005.

743 110(D2).

744 93. Jeffries, H.E. and S. Tonnesen, 4 comparison of 2 photochemical-reaction mechanisms using

745 mass-balance and process analysis. Atmospheric Environment, 1994. 28(18): p. 2991-3003.

746 94. Jang, J.C.C., H.E. Jeffries, and S. Tonnesen, Sensitivity of ozone to model grid resolution. 2.

747 Detailed process analysis for ozone chemistry. Atmospheric Environment, 1995. 29(21): p. 3101-
748 3114.

749 95. Jiang, G.F., B. Lamb, and H. Westberg, Using back trajectories and process analysis to

750 investigate photochemical ozone production in the Puget Sound region. Atmospheric

751 Environment, 2003. 37(11): p. 1489-1502.

752 96. Henderson, B.H., H.E. Jeffries, B.U. Kim, et al., The Influence of Model Resolution on Ozone in
753 Industrial Volatile Organic Compound Plumes. Journal of Air and Waste Management

754 Association, 2010. 61(4): p. 357.

755

756 © 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
757  distributed under the terms and conditions of the Creative Commons Attribution license
758  (http://creativecommons.org/licenses/by/3.0/).

759



