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Abstract 47 
 48 

Background: Biomonitoring is used in exposure and risk assessments to reduce uncertainties 49 

along the source-to-outcome continuum. Specifically, biomarkers can help identify exposure 50 

sources, routes, and distributions, and reflect kinetic and dynamic processes following exposure 51 

events.  A variety of computational models now utilize biomarkers to better understand 52 

exposures at the population, individual, and sub-individual (target) levels.  However, guidance is 53 

needed to clarify biomonitoring use given available measurements and models. 54 

 55 

Objective: This article presents a biomonitoring research framework designed to improve 56 

biomarker use and interpretation in support of exposure and risk assessments. 57 

 58 

Discussion: The biomonitoring research framework is based on a modified source-to-outcome 59 

continuum.  Five tiers of biomonitoring analyses are included in the framework, beginning with 60 

simple cross-sectional and longitudinal analyses, and ending with complex analyses using 61 

various empirical and mechanistic models.  Measurements and model requirements of each tier 62 

are given, as well as considerations to enhance analyses.  Simple theoretical examples are also 63 

given to demonstrate applications of the framework for observational exposure studies.   64 

 65 

Conclusion: This biomonitoring framework can be used as a guide for interpreting existing 66 

biomarker data, designing new studies to answer specific exposure- and risk-based questions, 67 

and integrating knowledge across scientific disciplines to better address human health risks. 68 

 69 

 70 
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1.0  Introduction  93 

 94 

 The U.S. Environmental Protection Agency (USEPA) and other organizations use risk 95 

assessments to determine whether actions should be taken to protect public health (USEPA, 96 

2009).  Risk assessments are based on the concept that: 97 

      Risk  =  Hazard × Exposure  98 

For a given chemical, toxicity testing is used to identify a hazard and to establish a quantitative 99 

relationship between administered dose and the incidence of health effects.  This dose-response 100 

relationship is then used to develop an acceptable human exposure level (e.g., a reference dose 101 

[RfD]).  Next, exposure assessments identify the source(s), route(s), and magnitude of human 102 

exposure.  The risk of an adverse outcome is then determined by comparing observed or 103 

estimated exposures to the acceptable level.  Finally, information on sources and routes of 104 

exposure are used to identify effective mitigation strategies.  105 

In the past, blunt tools have generally been used for risk assessments – that is, high-dose 106 

animal toxicity tests and screening-level exposure assessments.  With these tools, the links 107 

between exposure and health outcome are highly uncertain.  Biomonitoring, because it is close to 108 

the center of the source-to-outcome continuum, should better inform these linkages and reduce 109 

the associated uncertainties.  However, applications of biomonitoring in exposure and risk 110 

assessments are limited by a lack of guidance on data use and interpretation. 111 

This article presents a modified source-to-outcome continuum that provides a framework 112 

for biomonitoring to support exposure and risk assessments.  The framework includes five tiers 113 

that can be used to answer specific exposure- and risk-based questions.  The overall intent is to 114 

provide guidance for interpreting existing biomarker data, designing new biomonitoring studies 115 
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to efficiently answer targeted research questions, and synthesizing relevant information across 116 

scientific disciplines to address human health risks. 117 

 118 

2.0  Discussion 119 

 120 

2.1 A modified source-to-outcome continuum  121 

 122 

Figure 1 illustrates a modified source-to-outcome continuum that highlights traditional 123 

components of exposure science and contemporary components of health effects science.  124 

Biomarker measurements are central to the continuum, and therefore link the exposure and 125 

health effects components.   126 

 127 

Definitions of components within the modified source-to-outcome continuum (shown in Fig. 1) 128 

include the following: 129 

 130 

 Environmental measurements are observed concentrations of stressors in environmental 131 

media. While stressors can be biological, physical, or even psychosocial, this article 132 

focuses on chemical stressors.   133 

 Exposure models mathematically combine environmental measurements with human 134 

activities and other exposure factors to generate exposure estimates.   135 

 Exposure estimates are route specific (e.g., inhalation, ingestion, or dermal exposure) 136 

and quantify the mass of a chemical that comes into contact with a human over time.   137 
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 Kinetic models mathematically describe the movement of a chemical through the body; 138 

that is, its movement into the body (absorption) following exposure, distribution to 139 

various tissues, metabolism by various processes, and ultimate elimination from the body 140 

(these kinetic processes are collectively called “ADME”).   141 

 Dose estimates are based on exposure estimates and kinetic processes, and quantify the 142 

integrated (over time) mass of a chemical inside the body.   143 

 Biomarker measurements are observations of chemicals, chemical metabolites, and 144 

target molecules (e.g., chemical adducts) in biological media (e.g., blood, breath, and 145 

urine) that, for the purposes of this paper, reflect exposure events and dose.   146 

 Biologically-relevant (BR) dose estimates are based on dose estimates and kinetic 147 

processes, and quantify the amount of the dose at a specific target (inside a human) that is 148 

associated with key events in a disease process (e.g., the amount of a neurotoxin in the 149 

brain, or the amount of a genotoxic metabolite that interacts with genetic material).  (This 150 

definition follows from that of “biologically relevant exposures” given by Birnbaum 151 

(2010)). 152 

 Dynamic models mathematically describe the impacts of the BR dose on biological 153 

systems (e.g., enzyme inhibition from a neurotoxin, or DNA damage from a genotoxic 154 

metabolite) and are used to predict BR biomarker levels.   155 

 BR biomarker measurements are observations of chemicals/molecules in biological 156 

media that reflect (directly or indirectly) the BR dose (e.g., blood enzyme levels to reflect 157 

the BR dose of a neurotoxin).     158 

 Statistical models compare observations of random variables for hypothesis testing.  For 159 

example, statistical models can evaluate associations between environmental and 160 



 

6 

 

biomarker measurements, and biomarker and BR biomarker measurements, as well as the 161 

effects of covariates (e.g., age, gender, and human activities) on these associations. 162 

 163 

Figure 1 shows that components of the modified source-to-outcome continuum align along two 164 

planes: (1) measured values (i.e., environmental, biomarker, and BR biomarker measurements) 165 

shown with blue boxes; and (2) estimated values (i.e., exposure, dose, and BR dose estimates) 166 

shown with red triangles.  While measured values are subject to uncertainty based on assay 167 

precision, estimated values depend on measurements, observations, and model parameters, and 168 

are therefore subject to greater uncertainty.  Biomarker measurements, which are at the center of 169 

the continuum, can help reduce uncertainties in estimated values as described in the following 170 

sections. 171 

 172 

Our proposed biomonitoring framework has five tiers that describe different uses for 173 

biomarkers with different levels of complexity.  Tier 1 considers only biomarker measurements, 174 

and subsequent tiers consider additional measurements, models, and estimated values.  Simple 175 

theoretical examples are given for each tier to demonstrate how biomarker data can be used to 176 

answer important exposure- and risk-based questions.  Theoretical examples are given, rather 177 

than results from published studies, to allow continuity from one tier to the next, and to simplify 178 

the interpretation and discussion.  Example biomarkers for each tier are assumed to be 179 

measurable using reliable sampling and analytical methods, and to reflect exposure to 180 

environmental chemicals.  The specific criteria for biomarker selection and use are not the focus 181 

of this article and can be found elsewhere (Metcalf and Orloff, 2004; NRC, 1987; NRC, 1991; 182 

NRC, 2006; Sobus et al., 2010a).   183 
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2.2 Biomonitoring framework tiers 184 

 185 

2.2.1 Tier 1: Biomonitoring for exposure surveillance 186 

 187 

Tier 1 analyses of biomarker data aim to answer one or more of the following questions for 188 

exposure surveillance: 189 

 190 

 Who is exposed? 191 

 What are the exposure trends? 192 

 Which chemicals should be prioritized for higher-tier analyses? 193 

 194 

As shown in Figure 2, biomarker measurements are the only requirement for a Tier 1 analysis.  195 

Specifically, cross-sectional biomarker measurements are used to evaluate exposures across 196 

populations, and longitudinal biomarker measurements are used to evaluate exposure trends 197 

within a population.  To demonstrate these uses, two theoretical examples are given in Figure 2.   198 

In Example 1, the two distributions represent biomarker measurements that have been 199 

separated into groups for hypothesis testing; example groups could include those separated by 200 

gender, geographical area, age (e.g., < 18 years old vs. ≥ 18 years old), or product use.  All other 201 

things being equal, observed differences between grouped measurements indicate an effect of the 202 

grouping variable on biomarker levels, and suggest exposure differences between the groups.   203 

In Example 2, longitudinal biomarker measurements for a population decrease over time, 204 

suggesting a decrease in exposure levels.  Trends over time can indicate a change in the exposure 205 

source (e.g., de-registration of a consumer product), or a change in human activities through 206 
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which contact occurs (e.g., product use patterns).  However, higher-tier analyses of the 207 

biomarker data are generally needed to pinpoint the cause of a trend.  For examples of Tier 1 208 

analyses, see Barr et al. (2010),  Naeher et al. (2010), Calafat et al. (2010), Pirkle et al. (2006), 209 

and Sobus et al. (2009b; 2009c). 210 

 211 

2.2.2 Tier 2: Biomonitoring to support exposure assessment 212 

 213 

Tier 2 analyses of biomarker data can answer the following questions to support exposure 214 

assessments: 215 

 216 

 What are the likely exposure sources?  217 

 What are the likely exposure routes?  218 

 219 

As shown in Figure 3, Tier 2 analyses consider paired environmental and biomarker 220 

measurements at the subject level, and focus on statistical comparisons of these data.  A graph in 221 

Figure 3 shows a regression of “spot” biomarker measurements (one observation per subject) on 222 

corresponding environmental measurements.  A positive linear trend is shown in this example 223 

with a R
2
 value of 0.3.  This indicates that biomarker levels increased with increasing 224 

environmental levels, and that 30% of the biomarker measurement variance was explained by 225 

corresponding environmental measurements.   226 

If, for example, environmental measurements in this example were concentrations of a 227 

chemical in food, and biomarker measurements were corresponding blood levels of the same 228 

chemical, then the results of the regression analysis would point to dietary ingestion as a likely 229 
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exposure route.  Potentially, the results could point to food or a specific food item as an exposure 230 

source.   231 

Considerable unexplained variance in the biomarker data (i.e., 70%), however, would 232 

suggest additional exposure routes, and/or considerable covariate effects (e.g., timing of 233 

sampling events, gender, age, and ethnicity) on biomarker levels.  Therefore, additional data 234 

would be necessary to better explain the observed biomarker variance and to further support the 235 

exposure assessment.  These data could be part of a more complex Tier 2 analysis (e.g., 236 

including environmental measurements of different media to identify additional exposure 237 

routes), or of a higher-tier analysis.  For examples of Tier 2 analyses, see Egeghy et al. (2005), 238 

Thomas et al. (2010a; 2010b), and Sobus et al. (2009a)  239 

 240 

2.2.3 Tier 3: Biomonitoring to support risk assessment 241 

 242 

Tier 3 analyses of biomarker data can be used to support risk assessments since they can answer 243 

the following questions: 244 

 245 

 What are the important exposure factors? 246 

 What are the likely exposure levels? 247 

 248 

The requirements of a Tier 3 analysis of biomarker data are shown in Figure 4, and build on the 249 

Tier 2 parameters by adding considerations for exposure.  Here, exposure is directly linked to 250 

environmental measurements via exposure models, and indirectly linked to biomarker 251 

measurements via statistical models (e.g., multiple regression models) that consider 252 
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environmental measurements, human activities, and other exposure factors.  Statistical models 253 

are used to identify important predictors of exposure and can therefore inform exposure 254 

calculations.  Since exposure estimates are comparable to acceptable levels based on animal 255 

studies, Tier 3 analyses can place biomarkers into a risk context. 256 

In our Tier 2 regression example (Figure 3), we showed how measurements of a chemical 257 

in food explained 30% of the observed biomarker variance.  This result suggests that exposure 258 

estimates based on dietary ingestion would be appropriate (but not necessarily accurate) and 259 

comparable to acceptable levels for risk evaluation.  However, given added information (such as 260 

human activities data), it would be possible to explain more biomarker variance, thus increasing 261 

the accuracy of the exposure estimates. The graph in Figure 4 shows a regression of biomarker 262 

levels on covariate-adjusted environmental levels.  Here, the adjusted environmental levels 263 

reflect for each individual the combined effects of food concentration, food consumption (total 264 

mass), and other covariates.  A regression R
2
 value of 0.6 in this example suggests that the 265 

combined effects of food concentration and covariates could explain 30% more biomarker 266 

variance than food concentration alone.  Thus, the significant covariates identified through 267 

statistical analyses could be considered, along with the food measurements, to improve exposure 268 

estimates.  For examples of Tier 3 analyses, see Morgan et al. (2007; 2005; 2008), Wilson et al. 269 

(2007), and Tulve et al. (2010). 270 

  271 

2.2.4 Special considerations for biomarker variance components 272 

  273 

The frequency and duration of exposure, timing of sampling, and rates of kinetic processes (i.e., 274 

ADME) can impact biomarker interpretation with respect to exposure and dose.  Regression 275 
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slopes and R
2 

values in Tier 2 and Tier 3 analyses can reflect the magnitude of these impacts.  276 

However, it is difficult to quantify these effects without measuring biomarker concentrations 277 

over time.  Longitudinal studies (with repeated measurements) can partition biomarker variance 278 

into that which is observed between subjects and that which is observed for a given subject over 279 

time.  The respective magnitudes of these variance components can inform the importance of 280 

timed events and kinetic processes in biomonitoring studies, as demonstrated below. 281 

Figures 5A and B show repeated biomarker measurements of individuals from two 282 

theoretical groups.  Both figures show 10 consecutive measurements of 50 subjects, with the first 283 

measurements made at 6:00 am and the final measurements at midnight (12:00 am) on the same 284 

day.  In Figure 5A, biomarker measurements vary slightly over time (small within-person 285 

variance) and are distinguishable between individuals (large between-person variance).  These 286 

observations suggest that individuals have different exposure/dose levels and that kinetic 287 

processes occur slowly.  Figure 5B shows large within-person variance in biomarker levels and 288 

considerable overlap across individuals (small between-person variance), suggesting similar 289 

exposure/dose levels between individuals and rapid chemical uptake and elimination.   290 

Three example regressions of dose estimates on biomarker levels are given in both 291 

Figures 5A and B; here dose is approximated for each individual as their average biomarker level 292 

across all 10 measurements.  In Example 1, dose is regressed on randomly selected spot 293 

biomarker levels; this simulates studies where one random biomarker measurement is made for 294 

each subject.  Example 2 shows a regression of dose on end-of-day biomarker levels; this 295 

simulates studies where one biomarker measurement is made for each subject at a specific time 296 

point.  In Example 3, dose is regressed on the average of three randomly selected measurements; 297 
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this simulates studies where repeated measurements are made for each subject, and the 298 

measurements (or the biological samples themselves) are pooled (averaged) prior to analysis.        299 

All three examples in Figure 5A show very similar slopes (ranging from 0.92 to 1.0) and 300 

R
2
 values (ranging from 0.93 to 0.99).  These results indicate that sampling strategy has little 301 

impact on biomarker interpretation when the between-person variance is large compared to the 302 

within-person variance.  Specifically, these results suggest that the biomarker measurements 303 

from each of the three sampling examples could be used to accurately and precisely estimate 304 

dose levels (given the approximation of “dose” using average biomarker levels). 305 

In contrast, the examples in Figure 5B indicate increased impacts of sampling events on 306 

biomarker interpretation when the within-person variance is large compared to the between-307 

person variance (slope range: 0.23 – 0.82; R
2
 range: 0.22 – 0.76).  Example 3, using the average 308 

of three random measurements, shows the strongest association suggesting that multiple 309 

measurements are needed when longitudinal data are highly varied.  Results also show that spot 310 

biomarker measurements, collected randomly (Example 1) or at a fixed time (Example 2), can 311 

severely underestimate dose levels (slopes << 1) in these instances.  (The importance of slope 312 

attenuation with measurement error, defined as “attenuation bias”, is further described by Lin et 313 

al. (2005), Rappaport and Kupper (2008), and Sobus et al. (2010b)).  Taken together, the 314 

examples in Figures 5A and B demonstrate the need to (1) understand biomarker variance 315 

components via repeated observations, and (2) sample more frequently when the within-person 316 

variance is large compared to the between-person variance; this allows better estimation of the 317 

“true” average biomarker level as an indicator of exposure/dose.  318 

 319 

2.2.5 Tier 4: Biomonitoring for exposure and risk assessments 320 
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 321 

Figure 6 shows that Tier 4 analyses of biomarker data include the components for tier 3 analyses, 322 

as well as kinetic models to link (1) exposure and dose, (2) dose and biomarker levels, and (3) 323 

dose and BR dose.  Linking the external environment to internal dose and biomarker levels is a 324 

primary goal of exposure science (Sheldon and Cohen Hubal, 2009).  Therefore, Tier 4 analyses 325 

represent a general endpoint for exposure science and a starting point for health effects science.  326 

Furthermore, since the BR dose estimate is the final output from a Tier 4 analysis, it can be 327 

considered as the final output from exposure research, as well as a useful input for health effects 328 

research (Pleil and Sheldon, 2010). 329 

Using environmental measurements, exposure factors, and exposure and kinetic models, 330 

Tier 4 analyses can answer the following questions for exposure and risk assessments: 331 

 332 

 What is the importance of each exposure route? 333 

 What are the best estimates of exposure and dose? 334 

 What are the likely BR dose levels? 335 

 336 

In Tier 3, exposure estimates and biomarker measurements were not directly linked.  Rather, 337 

results from statistical models were used as support for exposure estimates.  Risk-based decisions 338 

can be supported by statistical associations, but can be further refined with an understanding of 339 

mass transfer from exposure to dose to biomarker levels; kinetic models are used to describe 340 

these mass transfer processes.  More specifically, they are used to predict biological levels of 341 

chemicals and their metabolites following exposure events.    342 
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Example 1 in Figure 6 shows a theoretical comparison of observed and predicted 343 

biomarker levels over time.  Here the predicted values are estimated blood levels of a chemical 344 

with a short biological half-life following three dietary exposure events (e.g., breakfast, lunch, 345 

and dinner).  Assuming a well-parameterized and calibrated model, good agreement between 346 

predicted and observed values support that diet is the primary exposure source and help validate 347 

exposure estimates.  Overestimation of the observed values would suggest incorrect exposure 348 

estimates, whereas underestimation could suggest additional exposure routes or endogenous 349 

sources of the biomarker.  In these situations, exposure estimates could be reconstructed to be 350 

consistent with observed values.  (For methods and examples of exposure reconstruction, see 351 

Kim et al. (2007), Tan et al. (2006), and Clewell et al. (2008)). 352 

Given the appropriate model structure and parameters, the same kinetic models used to 353 

predict biomarker levels may be used to predict the BR dose.  Example 2 in Figure 6 extends 354 

Example 1 and shows predicted levels at a target over time.  In this theoretical example, the 355 

parent chemical is neurotoxic, the target is the brain, and the predicted values are concentrations 356 

of the parent chemical in the brain.  Here, the health risks of the predicted values could be 357 

evaluated using results of health effects studies.  Specifically, the area under the target-level 358 

curve (AUCtarget, which is the time-integrated BR dose), or the maximum concentration at the 359 

target, could be interpreted given some knowledge of the BR dose-response relationship.  For an 360 

example of a Tier 4 analysis, see Hore et al. (2006). 361 

 362 

2.2.6 Tier 5: Biomonitoring to advance exposure and risk assessments 363 

 364 
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As shown in Figure 7, Tier 5 analyses of biomarker data include all components of the source-to-365 

outcome continuum, and predict both biomarker and BR biomarker levels for comparison to 366 

measured values.  These comparisons allow Tier 5 analyses to answer the following research 367 

questions: 368 

 369 

 What are the best estimates of BR dose? 370 

 What are the likely impacts of exposure on health risks? 371 

 What other factors may affect health risks? 372 

 373 

In Tier 4 analyses, BR dose is estimated using kinetic models, and interpreted using knowledge 374 

of the BR dose-response relationship.  Since BR dose estimates are not confirmed with measured 375 

values, there is uncertainty in model predictions.  Tier 5 analyses further utilize kinetic/dynamic 376 

models to predict BR biomarker levels based on the BR dose estimates.  Comparison of the 377 

predicted and observed BR biomarker levels can then reduce uncertainties in the BR dose 378 

estimates. 379 

Example 1 in Figure 7 shows predicted versus observed levels of a BR biomarker.  This 380 

extends the examples in Figure 6 where the brain was a target tissue, and the stressor was a 381 

chemical neurotoxin from food.  In this example, blood enzymes are the BR biomarkers and act 382 

as surrogates for brain enzymes (e.g., cholinesterase).  Combined kinetic and dynamic models 383 

were used to predict blood enzyme levels following three theoretical dietary exposure events.  384 

Predicted and observed levels were then compared to evaluate the BR dose estimate. 385 

 In Example 1, good agreement between predicted and observed values indicates an 386 

accurate estimation of BR dose.  Thus, the BR dose estimate could be used to inform health risks 387 
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from exposure.  However, poor agreement between predicted and observed BR biomarker levels 388 

would suggest an incomplete understanding of kinetic/dynamic processes in vivo.  389 

Overestimation of BR biomarker levels could suggest the omission of important recovery 390 

processes, whereas underestimation could suggest additional exogenous or endogenous sources.  391 

In these instances, clarification would be necessary before placing BR dose estimates into a risk 392 

context. 393 

Statistical comparisons of biomarker and BR biomarker measurements are also used in 394 

Tier 5 analyses to elucidate health risks from exposure.  For example, in vivo dose-response 395 

associations can be informed using regressions of BR biomarker levels (representing response) 396 

on biomarker levels (representing dose).  Modifiers of the in vivo dose-response relationships can 397 

also be observed by studying covariates such as age, gender, personal and family health history, 398 

and genetic information.   399 

Example 2 in Figure 7 shows a regression of BR biomarker levels on covariate-adjusted 400 

biomarker levels.  Continuing from the previous example, this plot suggests that blood enzyme 401 

activities decreased with increasing adjusted biomarker levels.  In other words, biological 402 

function was suppressed given elevated dose levels.  This observation (specifically, the slope of 403 

the regression line), as well as the model results for covariates (coefficients and p-values), could 404 

help inform both exposure and susceptibility effects on BR dose, and by extension, health risks.  405 

For an example of a Tier 5 analysis, see Garabrant et al. (2009). 406 

 407 

3.0 Conclusions 408 

 409 
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Biomonitoring data can be used in many different ways; applications can be as simple as 410 

documenting a population-based change in exposure, or as complex as linking the source-to-411 

outcome progression through empirical data and sophisticated models.  In this article, we created 412 

a biomonitoring framework to demonstrate how measurements, models, and model estimates are 413 

used together to answer specific exposure- and risk-based questions.  In doing so, we presented a 414 

tiered approach that categorizes the uses of biomarker data in the presence or absence of 415 

corresponding information.  (A summary of the uses and requirements of the five biomonitoring 416 

tiers is given in Table 1).  This tiered approach does not imply a hierarchy of biomonitoring 417 

research based on value; that is, it does not rank analyses from “least useful” to “most useful”.  418 

Rather, it poses a logical structure to what is often a complex web of information.  This structure 419 

will help researchers (1) conceptualize sampling and analysis approaches when designing 420 

targeted studies, and  (2) weigh the costs (personnel, instrumentation, and time) and benefits 421 

(ability to answer specific questions) of proposed studies, with the goal of maximizing public 422 

health benefits.     423 

Simple theoretical examples were given throughout the text to articulate the tiered 424 

biomonitoring approaches.  While we recommend using these examples as a guide for 425 

interpreting existing data sets and for designing new studies, we caution that these examples 426 

were simplified for demonstration purposes.  That is, they did not address some common 427 

challenges of biomonitoring studies, such as the needs to resolve non-specific biomarkers, 428 

overcome analytical detection limitations, and interpret urinary biomarkers that are affected by 429 

host hydration level (Albertini et al., 2006; Angerer et al., 2006; Barr and Angerer, 2006; Clewell 430 

et al., 2008; Needham et al., 2007; NRC, 2006; Sobus et al., 2010a).  Also, the examples were 431 

generally geared towards evaluating short-term biomarkers of non-persistent chemicals, 432 
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particularly those given for Tier 4 and Tier 5 analyses; different approaches can be considered 433 

when evaluating intermediate- and long-term biomarkers (Clewell et al., 2008; Rappaport and 434 

Kupper, 2008).  Finally, the examples assumed that analytical methods, mechanistic models 435 

(e.g., kinetic and dynamic models), and acceptable exposure levels exist for a given chemical of 436 

interest.  Complications arising from any one of these issues can hinder a biomonitoring analysis 437 

and limit the use of individual biomarkers in research studies.   438 

Given the potential limitations of biomonitoring studies, this framework lays a foundation 439 

for identifying the key data and modeling gaps, and prioritizing research needs.  For example, 440 

this framework can help prioritize the needs for (1) empirical evidence to inform kinetic 441 

parameters, (2) well-vetted exposure and kinetic models, (3) improved methods to measure 442 

environmental concentrations, biomarkers, and BR biomarkers, and (4) robust datasets with 443 

which to estimate biomarker variance components and to perform statistical analyses.  In ensuing 444 

articles, we will discuss current and proposed efforts to address these needs while keeping within 445 

the structure of this framework.  The ultimate goal of these efforts is to provide cohesive 446 

guidance that informs future biomonitoring studies, and catalyzes biomarker use in exposure and 447 

human health research. 448 
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Figure captions:  458 

 459 
Figure 1.  A source-to-outcome continuum. 460 

 461 

Figure 2.  Requirements and examples of Tier 1 analyses of biomarker data.  Grey objects are 462 

unavailable in a Tier 1 analysis.  Example 1 demonstrates a cross-sectional analysis where 463 

cumulative percentile distributions of biomarker levels are compared across two groups.  464 

Example 2 demonstrates a longitudinal analysis where biomarker levels for one group are 465 

examined over time.   466 

 467 

Figure 3.  Requirements and an example of a Tier 2 analysis of biomarker data.  Grey objects 468 

are unavailable in a Tier 2 analysis.  The example graph shows a regression of spot biomarker 469 

measurements on corresponding environmental measurements with an R
2
 of 0.3.   470 

 471 

Figure 4.  Requirements and an example of a Tier 3 analysis of biomarker data.  Grey objects 472 

are unavailable in a Tier 3 analysis.  Exposure estimates can be compared to acceptable levels 473 

determined from animal studies.  The example graph shows a regression of spot biomarker 474 

measurements on corresponding covariate-adjusted environmental measurements with an R
2
 of 475 

0.6.   476 

 477 

Figure 5.  Impacts of sampling events on biomarker interpretation when between-person 478 

variance is large and within-person variance is small (A), and when within-person variance is 479 

large and between-person variance is small (B).  In both (A) and (B), Example 1 shows dose  480 

regressed on randomly selected spot biomarker measurements, Example 2 shows dose regressed 481 

on end-of-day biomarker levels, and Example 3 shows dose regressed on the average of three 482 

randomly selected measurements.  Here dose is approximated for each individual as their 483 

average biomarker level across all 10 measurements.   484 

 485 

Figure 6.  Requirements and examples of Tier 4 analyses of biomarker data.  Grey objects are 486 

unavailable in a Tier 4 analysis.  Example 1 compares predicted and observed levels of a 487 

chemical biomarker over time.  Example 2 shows predicted target levels over time of the same 488 

chemical from example 1.  Here, the area under the target-level curve (AUCtarget) is the BR dose.   489 

 490 

Figure 7.  Requirements and examples of Tier 5 analyses of biomarker data.  Example 1 491 

compares predicted and observed BR biomarker levels over time.  Example 2 shows a regression 492 

of BR biomarker measurements on covariate-adjusted biomarker levels.   493 

 494 

 495 

 496 

 497 

 498 
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Table 1.  Uses and requirements of the five biomonitoring tiers. 

 

 

 

Tier 

 

Primary  

uses 

Measurements  

needed 

Models  

needed 

Estimated  

values 

 1 Exposure surveillance: 

       Who is exposed?      

       What are the exposure trends? 

       Which chemicals should be prioritized for higher-tier analyses? 

 

1) Biomarker none none 

 2 Supporting exposure assessment: 

       What are the likely exposure sources? 

       What are the likely exposure routes? 

 

1) Environmental   

2) Biomarker 

1) Statistical none 

 3 Supporting risk assessment: 

       What are the important exposure factors? 

       What are the likely exposure levels? 

 

1) Environmental  

2) Biomarker 

1) Statistical 

2) Exposure 

 

1) Exposure  

 

 4 Exposure and risk assessment: 

       What is the importance of each exposure route?        

       What are the best estimates of exposure and dose? 

       What are the likely BR dose levels? 

1) Environmental  

2) Biomarker 

1) Statistical  

2) Exposure 

3) Kinetic 

1) Exposure  

2) Dose 

3) BR dose 

 

 

 5 Advancing exposure and risk assessment: 

       What are the best estimates of BR dose? 

       What are the likely impacts of exposure on health risks? 

       What other factors may affect health risks? 

 

1) Environmental  

2) Biomarker 

3) BR biomarker 

 

 

1) Statistical  

2) Exposure 

3) Kinetic 

4) Dynamic 

 

1) Exposure  

2) Dose 

3) BR dose 
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Symbol Key Parameter Definition 

 

 

Estimated Value 

 

1) Exposure estimate 

2) Dose estimate 

3) BR dose estimate 

 

 

1) Estimated mass of a chemical that comes into contact with a human over time 

2) Estimated mass of a chemical inside a human over time 

3) Estimate amount of the dose at a specific target inside a human 

 

 

Measured value 1) Environmental measurement 

2) Biomarker measurement 

3) BR biomarker measurement 

1) Observation of a stressor in environmental media that reflects a source 

2) Observation of a stressor in biological media that reflects an exposure/dose 

3) Observation of a stressor in biological media that reflects a BR dose 

 

 

Empirical model 

Mechanistic model 

1) Statistical model (blue) 

2) Exposure model (red) 

3) Kinetic model (red) 

4) Dynamic model (red) 

1) Model that evaluates observed variables for hypothesis testing 

2) Model that estimates exposure using environmental measurements and exposure factors 

3) Model that describes how a stressor enters and is removed from a human 

4) Model that describes the effect of a stressor on the human body 
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