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Abstract

A method is presented and applied for evaluating an air quality model’s changes in
pollutant concentrations stemming from changes in emissions while explicitly accounting for the
uncertainties in the base emission inventory. Specifically, the Community Multiscale Air
Quality (CMAQ) model is evaluated for its ability to simulate the change in ozone (Os;) levels in
response to significant reductions in nitric oxide (NOy = NO + NO;) emissions from the NOy
State Implementation Plan (SIP) Call and vehicle fleet turnover between the years of 2002 and
2005. The dynamic model evaluation (i.e. the evaluation of a model’s ability to predict changes
in pollutant levels given changes in emissions) differs from previous approaches by explicitly
accounting for known uncertainties in the NO, emissions inventories. Uncertainty in three
sectors of NOy emissions is considered — area sources, mobile sources, and point sources — and is
propagated using sensitivity coefficients calculated by the decoupled direct method in three

dimensions (DDM-3D). The change in O3 levels between 2002 and 2005 is estimated based on
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differences in the empirical distributions of the modeled and observed data during the two years.
Results indicate that the CMAQ model is able to reproduce the observed change in daily
maximum 8-hr average O; levels at more than two-thirds of Air Quality System (AQS)
monitoring locations when a relatively moderate amount of uncertainty (50%) is assumed in area
and mobile emissions of NOy to gcthef with a low amount of uncertainty (3%) in the utility sector
(elevated point sources) emissions. The impact of other sources of uncertainty in the model is

also briefly explored.

Key words: dynamic model evaluation; CMAQ; direct decoupled method; DDM; air quality

modeling; ozone; uncertainty; sensitivity
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1. Introduction

Regional air quality models (RAQMs) are an integral part of air quality management.
Their applications include developing national strategies for improving air quality (Moran,
2005), assessing the regional-scale transport of pollutants (Rao et al., 2008), and informing
international treaties on the hemispheric transport of air pollutants (Holloway et al., 2003).
When applied for these tasks, RAQMs typically employ “current” and “future” emission
scenarios, with the commonly examined metric of interest being the change in the concentration

or deposition of air pollutants attributable to the change in emissions.
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The integrity of an RAQM is ascertained through comprehensive model evaluation by
comparing model outputs with observations (Dennis et al., 2010). In the context of air quality
management, where the model’s response to varying inputs is of concern, it is essential to
evaluate the model’s ability to accurately predict changes in pollutant concentrations (i.e., model
response) due to changes in emission inputs or meteorology. Evaluating the model’s response is
referred to here as dynamic model evaluation. In contrast to the operational evaluation, in which
model outputs are usually paired in space and time with available observations, dynamic
evaluation is more difficult to perform, because a fully controlled dynamic air quality scenario is
nearly impossible to observe and quantify in nature. Rather, the model’s ability to correctly
respond to different input conditions can be evaluated by examining modeling periods separated
by substantial and quantifiable differences in the input variables of interest, namely, emissions
and/or meteorological conditions.

One frequently evaluated scenario satisfying the above prerequisites is the period
between 2002 and 2005 in the eastern United States when substantial reductions of nitrogen
oxide (NOx = NO + NO,) emissions were achieved through the U.S. Environmental Protection
Agency’s (US-EPA) NOj State Implementation Plan (SIP) Call (US-EPA, 2005). Additionally,
reductions in mobile emissions due to vehicle fleet turnover and introduction of lower emitting
automobiles also occurred during this period. Several previous dynamic evaluation studies that
focused on this period (Gilliland et al., 2008; Godowitch et al., 2010; Pierce et al., 2010) found a
smaller change in model predictions of peak surface ozone (O3) concentrations compared to the
observed change. These studies reported that the model predicts around 40-80% of the observed
change in the daily maximum 8-hr average O;, and hypothesized that a lower magnitude

response in the model predictions may be attributable to errors in NO, emission inputs used in



.69
70
73!
72
73
74
75

76

T

78
79
80
81
82
83
84
85
86
87
88
89
90

91

the simulations. However, potential uncertainties in the NOx emission inventories were not
explicitly accounted for in these dynamic evaluation studies.

The objective of the work presented here is to perform a dynamic evaluation of the
Community Multiscale Air Quality (CMAQ) modeling system (Byun and Schere, 2006)
covering the NOy SIP Call period while accounting for uncertainties in NOy emission inputs.
Specifically, the change in the modeled daily maximum 8-hr average O3 concentrations between
the summers of 2002 and 2005 in the eastern United States is evaluated against the change seen
in the observations. The proposed approach is used to investigate the extent to which the
previously noted model’s insufficient response to changes in NOy emissions is attributable to
uncertainties in these model inputs.

Various methods have been developed to propagate uncertainty in input parameters
through RAQMs. These typically include some variation of the “brute force” Monte Carlo
simulations, iﬁ which the model is rerun many times with varying inputs (Hanna et al., 2001;
Boynard et al., 2011), as well as studies where a reduced form of the model is developed based
on calculated sensitivity coefficients (Digar and Cohan, 2010; Tian et al., 2010), which are then
coupled with randomly sampled distributions of uncertainties. Each method culminates in an
ensemble of model predictions from which inferences on the impact of input uncertainty can be
ascertained. To dynamically evaluate CMAQ in light of uncertainties in NOy emissions inputs,
the sensitivity-based approach to propagate uncertainty is used here as it is significantly more
computationally efficient (Pinder et al., 2009), because the random sampling calculations are
much less computationally demanding than running a regional photochemical simulation model
many times. Thus, the sensitivity-based approach allows for the development of large member

ensembles for two summer periods with a lower computational burden. Furthermore, the method
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presented here extends previous work by combining the sensitivity-based uncertainty analysis

with a dynamic evaluation.

2. Method

2.1. Modeling System and Observations

Model simulations were conducted with a 12 km horizontal grid covering the eastern
United States nested within a 36 km grid over the entire continental United States, including
parts of Canada and Mexico. The modeled period spanned the period from 1 June to 31 August
in both 2002 and 2005. CMAQ version 4.7.1 , with decoupled direct method in three dimensions
(DDM-3D) (Napelenok et al., 2008), was used to calculate O3 concentrations and sensitivities of
O; to three emission sectors (area sources, mobile sources, and point sources) of NO,.
Atmospheric chemistry was simulated with the latest available version of the carbon bond
mechanism (CBO05) (Sarwar et al., 2008). Meteorological inputs were supplied by MMS version
3.6.3 (Grell et al., 1994) configured with the standard physics options (see Godowitch et al.,
2010). Boundary conditions for the larger domain were specified based on outputs of the global
model GEOS-Chem (Bey et al., 2001). Emissions were developed using the Sparse Matrix
Operator Kernel Emissions (SMOKE) processor (http://www.smoke-model.org) version 2.4
based on temporally and spatially resolved wildfire, electricity generating units, and mobile
sources. Domain-wide NO, emissions reflected reductions from the SIP Call as well as
reductions in the mobile sector. On average, point source emissions of NO, were reduced by

22% and mobile source emissions were reduced by 18% between the summer of 2002 and the
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summer 2005 in the modeling domain; area sources, which included biogenic NO emissions,
remained relatively unchanged over these two years (0.2% reduction).

The observed O; concentrations for this study were obtained from the EPA’s Air Quality
System (AQS, http://www.epa.gov/air/data/agsdb.html). Data from over 700 monitoring stations
were available within the 12 km modeling domain during the two modeling periods. AQS O3
data was processed to calculate daily maximum 8-hour average mixing ratios according to

standard regulatory procedures (Office of the Federal Register, 1997). Monitoring sites with less

than 80 complete days of observations out of a total possible of 92 were excluded from the

analysis.

2.2 Uncertainty Propagation

Calculated DDM-3D sensitivity coefficients were used to estimate the O; response to
perturbations in the uncertain inputs of the three NO, emissions categories (area, mobile, point)
through Taylor series expansion (Morgan and Henrion, 1990; Hakami et al., 2003). Generally,
pollutant concentration as a function of any one perturbatioh can be reconstructed using the

following:
C,(x,t)z C, (;, t)+ Ag S (;,t)+lAg?S(.2?(1_(,t)+ hot. 1)
J i 2 J o JsJ 2
whereC, (;E, r) is the concentration due to a specific perturbation j at time  and location x;
C, x,t) is base, unperturbed concentration; As, is the fractional perturbation of the parameter j;

S_fr”(;,t) and s (;,t) are the first and second order sensitivity coefficients, and A.0.t. are higher

order terms with little impact on the approximation.



136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

To account for uncertainty in several parameters at once — area, mobile and point

emissions — and dropping the higher order terms, the Taylor Series was expanded as follows:

a4-m+p(

€ )= fid)

a " a.a

e, S Lasist )

+Ag, S (;, t)+ %Agz 5 (;, r)

m*~ m,m

P p.p

+As, S0 (x,)+ %Aé‘zS ® (k1) )
+Ag,Az, 52 (x,)

m= am

+Ag, Ag SP (;,t)

p - mp

+Ag ,Ag S(z’(;,r)

a®p.a
where the subscripts a, m, and p, represent area, mobile, and point NOy emissions
respectively.
The formulation in Equation 2 allows for efficient recalculation of Os predictions based
on perturbations in the three uncertain input parameters. An ensemble of model predictions was
developed for the two modeling periods (summers of 2002 and 2005) by randomly sampling

(with replacement) from a continous uniform distribution for each perturbation parameter, A¢,,
Ae,,and Ag,. Uniform distribution was chosen to not precsribe the shape of the distribution
and specify only the lower and upper bounds (Cullen and Frey, 1999). One hundred such
samples were found to be sufficient; higher sample sizes did not have an impact on the
interpretation of results.

The uncertainty ranges used to sample Ae, were: £ 3% in point sources; £50% in mobile

sources; and + 50% in area sources. The low uncertainty in the emissions from point sources is

due to the prevalence of the continous emission monitoring systems (CEMS) on the majority of
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these sources. Uncertainty in the other twol sectors was based on the previous efforts that have
attempted to quantify emissions uncertainty. For example, Hanna et al. (2001) suggested
uncertainty ranges of approximately 20-50% for major point sources and 35-100% for other
categories. Comparisons of different methods of calculating mobile emissions have shown a
variability of approximately 35-47% (Parrish, 2006; Dallmann and Harley, 2010). NOy
inventories constructed from inverse modeling studies based on satellite and ground-based
observations coupled with regional chemical transport models also show a wide range of
variability when compared to a priori estimates (Konovalov et al., 2006; Deguillaume et al.,
2007; Napelenok et al., 2008). The Taylor Series approach (Equation 2) allowed for flexibility
in selecting uncertainty ranges due to the trivial computational costs associated with the
sampling. The sensitivity of the final results to the choice of these uncertainty ranges is

discussed in more detail below.

2.3 Dynamic evaluation metrics

The model output data generated in this experiment consisted of two 100-member
ensembles of daily maximum 8-hr average ozone concentrations: one for the 2002 summer
season and one for the 2005 summer season, each with 100 Monte Carlo samples of the
uncertainty ranges .for the three NO, emission sectors (Figure 1). As noted before, a sample size
of 100 was found to be sufficient in the ensemble analysis. These ensembles are compared to
base model simulations and observational values. Observational data consisted of June through
August time series data for each monitoring site and each year. All data were first processed to
calculate the daily maximum 8-hr average O values. Since the two modeling seasons were

separated by differing meteorology and mismatched temporal emission patterns (in addition to
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different emission magnitudes), the dynamic signal should not be discerned by pairing model and

observational data in time. Instead, the data were paired in space only (at each observational

site.)
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Figure 1. Base model, observations, and model ensemble empirical cumulative distributions of daily
maximum 8-hr average ozone concentrations for 2002 and 2005 at two AQS sites: a) Terre Haute, IN
(AQS#181670024); and b) Detroit, MI (AQS#261630019). All ensembles were constructed based on +50%
uncertainty in emissions of area and mobile NO, and +3% uncertainty in emissions of point NO,. The wide
spread of the ensemble at the Terre Haute site indicates greater sensitivity to NO, emissions in comparison to
the site in Detroit.

The ability of the CMAQ model to correctly predict the change in daily maximum 8-hr
average O; values was evaluated by estimating the difference between the empirical distributions
of ozone model predictions in the two years. The difference was quantified using two measures:
the root mean square deviation (RMSD) and mean deviation (MD) calculations. The RMSD was

calculated as follows:



P

Z (XA' 2002 U’) _ 2005 (p))2

191 RMSD(2002,2005) = || £ v ) 3)

192 where N is the cardinality of {p,.,..., p,} and X’ (p) is the p™ sample quantile of the
193  data set. For example, X2 (0) equals the minimum value of the 2002 ozone predictions,

194 X(50) equals the median, X *°(100) equals the maximum value, etc.

195 The RMSD measures the a;feragc distance between two distributions, but it does not
196  indicate whether the difference tends to be positive or negative. Since the model simulation
197  needs to capture the magnitude and direction of a change in ozone values due to changes in

198  emissions, the mean deviation between the two distributions was also calculated:

i (A';zooz (p)— s (p))

199 MD(2002,2005) = 22 & “

200 RMSD and MD were calculated for two cases: one where p; = 0% and p, = 100% to

201  quantify the difference in the full range of O3 concentrations; and one where p;= 95% and p, =
202 100% to quantify the difference in the more policy-relevant higher ozone values.

203 These metrics were calculated for the difference between the observational data sets in
204 2002 and 2005, and for the difference between the base modeled data sets in the same years.

205  Additionally, an ensemble of differences between modeled O3 values for 2002 and 2005 was

206  calculated by randomly sampling model ensemble members from each simulation year and then
207  calculating the RMSD and MD for each simulation pair. The 95% confidence intervals based on
208  the ensemble distributions for these metrics were then used to establish criteria for acceptable
209  model performance. The model is said to have succeésfully captured the observed change in O3

210  at any one site if the observed RMSD and MD metrics both fell within these estimated
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confidence intervals. For example, at the AQS site near Terre Haute, IN the observed change
was estimated by RMSD=10.0 ppb and MD = 9.5 ppb (using p; =0%, p, = 100%) (Figure 2a, b).
The 95% confidence interval based on the ensemble of model résults was (3.34, 13.5) ppb for the
RMSD and (-0.6, 12.6)ppb for the MD. Thus, the model was able to capture the observed
change in the ozone distribution across these years, considering +50% uncertainty in the inputs
of mobile and area sources, and +£3% uncertainty in point sources of NOx emissions. Use of both
the RMSD and the MD provides a stringent test for the model since each metric highlights a
different attribute of the difference between the two empirical distributions. This is illustrated by
an AQS site outside of Detroit, MI (Figure2c, d). At this site, the observed RMSD of 6.6 ppb
was within the model range of (4.5, 6.8) ppb, but the observed MD of -3.3 pbb was well outside
the model range of (-0.7, 3.4) ppb. The behavior in MD at Detroit was caused by the fact that at
the lower part of the distributions of both modeled and observed values (10%-60% range), the O3
values were higher in 2005, and at the higher end of the distribution (60-100% range), the Os
values were higher in 2002 (Figure 1b). At the same time, the model underestimated the
difference at the low end of the distribution and overestimated the difference at the high end,

leading to a range of MDs much greater than the MD of observations (Figure 2d).
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Figure 2. Root mean square deviation (RMSD) and mean deviation (MD) at two AQS sites: a,b) Terre Haute,
IN (AQS#181670024); and c,d) Detroit, MI (AQS#261630019) for modeled and observed values indicated by
solid and dotted vertical lines respectively, as well as the distribution of the two metrics for the ensemble of
model simulations. Both the observation-based RMSD and MD fall within the 95% confidence interval of the
ensemble distribution at Terre Haute (indicated by green shading), but the observation-based MD for Detroit
is much lower than the model ensemble distribution. The model ensemble was developed based on +£50%
uncertainty in area and mobile emissions of NO, and £3% uncertainty in point emissions of NO,.

3. Results

12



238 3.1 Base model performance

239 Before examining the model’s response to changes in emissions between 2002 and 2005,
240  model performance for the base case simulations for the two years was asséssed (Table 1). In
241 2002, normalized mean error (NME) was 16.6%, and normalized mean bias (NMB) was 0.8%.
242 The results for 2005 showed NME of 17.6% and NMB of 2.6%. These results are similar to the
243 model performance metrics reported in other studies for this domain (Eder and Yu, 2006; Appel
244  etal., 2007).

245  Table 1. Operational model evaluation for daily maximum 8-hr average ozone concentrations in 2002 and
246 2005. Green and red site designation corresponds to the designation shown in Figure 3, and shows the subset
247  of the sites that fall within the 95% confidence interval of the model ensemble distribution based on a +50%
248  uncertainty in area and mobile source emissions of NO, and +3% point source emissions of NO, (green), and
249  those that did not (red).

RMSE NME MB NMB

N Meato, Mealmoid  (oob) (%)  @pb) (%) "
2002 All 61379 54.6 55.1 11.9 16.6 0.4 0.8. 0.80
Green sites 39634 54.8 552 11.2 15.8 0.4 0.7 0.81
Red sites 21745 54 .4 54.9 13.1 18.3 0.5 0.9 0.77
2005 All 61126 49.9 52.5 114 17.6 2.6 5.2 0.75
Green sites 39456 49.9 52.4 10.9 16.8 2:5 4.9 0.77
Red sites 21670 50.0 52.9 12.4 19.0 2.9 5.8 0.72

250

251 3.2 Spatial Distribution of the Dynamic Signal in the Presence of NOx Emissions Uncertainty
252 Under a moderate amount of emission uncertainty (+50% in area and mobile sources of
253  NOy and £3% in point sources of NO,), the model ensemble was able to capture the observed
254  change in the ozone distribution at a majority of AQS sites (Figure 3). The results were

255  consistent when the RMSD and MD were calculated across all percentiles, p = 0 — 100%, and
256  when using only the upper end of the distribution, p = 95 - 100%. This similarity suggests that

257  the model performs equally well in predicting both high ozone values and overall O; when

13
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accounting for uncertainties in NO, emissions inputs. No discernable pattern was found in the
spatial distribution of sites for which the model ensemble did not encompass the observed
change in the Os distribution. Therefore, it is likely that several factors contributed to the poor
performance at these sites that are not related to errors in the NOy emissions. For example, the
model has been shown to have errors associated with the transport of Oz and its precursors in the
area of the 1-95 corridor in the Northeast (Godowitch et al., 2010). Some of the sites where
model performance was poor also included various urban areas where Os is frequently less
sensitive to NOy emissions. In fact, the base model performance was relatively poor at the sites
where the observed change was not captured by the model ensemble (Table 1).

The spread of the ensemble of predicted RSMD and MD values was evaluated using the
Talagrand diagram (Hamill, 2001). This evaluation shows that the observed RMSD and MD
values tend to fall outside of the range of model predicted values (Figure 4.) The Talagrand
diagrams are characterized by a U-shape, indicating a statistically overconfident model (i.e. the
range of model values is too narrow). In addition, the observed values are often larger than the
largest ensemble member shown by the far right bin of the histogram. This supports the earlier

findings that the model response to the changes in NOy emissions is too low compared to

~observations (Gilliland et al., 2008). This also provides evidence that the uncertainty ranges for

the emission inputs of NOy were too narrow and/or that other sources of model uncertainty (e.g.
boundary conditions, VOC emissions inventory, chemistry, and meteorology), as well as those
associated with capturing the inherent variability in point measurements with grid-average model
predictions, are still present. These sources of uncertainties have been identified in the past and
work has been progressing to address them (McKeen et al., 1991; Hanna et al., 2005; Vautard et

al., 2006).
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Figure 3. Geographical extent of the ability of CMAQ to capture the observed change in daily maximum 8-hr
average ozone between the summers of 2002 and 2005. Green points represent AQS sites that fell within the
95% confidence interval of the model ensemble distributions of RMSD and MD based on +50% uncertainty
in area and mobile source emissions of NO, and +3% point source emissions of NO,. Red points are AQS
sites where the observed change was not captured by the model ensemble.
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Figure 4. Talagrand diagrams for a) root mean square deviations (RVISD) and b) mean deviations (MD) of
the change in daily maximum 8-hr average ozone concentrations between 2002 and 2005. Plots show the
percentile of the observed metric with respect to the ensemble of modeled values based on +£50% uncertainty
in area and mobile source emissions of NO, and +3% point source emissions of NO,. Each bar represents
2.5% and the green bars show the 95% confidence interval.

3.3 Impact of Uncertainty Assumptions

The presented methodology for evaluating a regional air quality model was designed to
allow for flexibility in the assumptions made about the range of uncertainty in the model input
parameters. The results presented above were based on the assumption of relatively moderate
amount of uncertainty in emissions of area and mobile source NOy (£50%) and a low amount of
uncertainty in point source emissions (£3%). As discussed previously, higher levels of
emissions uncertainty have been suggested in the literature. Therefore, the dynamic evaluation
presented in section 3.2 was repeated using a range of different uncertainty estimates (Figure 5).

As expected, accounting for uncertainty in area and mobile sources of emissions of NOy

16
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improved the model’s ability to capture the observed change in daily maximum 8-hr average Os.
At 100% uncertainty in area and mobile NOy emissions, the observed change in the ozone

distribution was captured at more than 90% of the sites.

100
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[ I 1 l
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Figure 5. Ability of the model ensemble to capture the observed change in daily maximum 8-hr average O,
values between the summers of 2002 and 2005 shown as a percentage of all site where the observations fall
within the 95" percentile of the model ensemble (y-axis) as a function of the uncertainty in area and mobile
sources of emissions of NO, (x-axis). The uncertainty in area and mobile sources are assumed equal for
simplicity of presentation. In each case, the uncertainty in point emissions of NO, was assumed to be +3%.
The shaded squared indicates the +50% uncertainty case.

3.3 Sensitivity to VOC Emissions and Boundary Conditions

To investigate possible causes for the narrow range of model predicted values, indicated
by the Talagrand diagram (Figure 4), two additional sources of uncertainty that may have
influenced the model’s ability to accurately predict a change in ozone during this time period
were considered. DDM-3D sensitivity of O3 to emissions of Volatile Organic Compounds

(VOC) and to boundary conditions of all modeled species was calculated for a sample two week
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period in July 2005 (Figure 6). The modeling domain showed several large areas where ozone
sensitivity to VOC emissions was greater than the sensitivity to NOy emissions (Figure 6d)
during this period. Higher VOC sensitivity would suggest a VOC-limited ozone formation
regime where perturbations in NOy emissions would have little impact.

Many of the sites with observed RMSD and MD metrics that fell outside the estimated
95% confidence intervals exhibited higher relative sensitivity to these two additional parameters
than to emissions of NO,. For example, at the poor performing site in Detroit, ML, sensitivity to
VOC emissions accounted for a higher contribution to ozone formation than the sensitivity to
NO, émissions (Figure 7) on most days. At the site at Terre Haute, IN, for which the model was
able to capture the observed change in O3 well, the sensitivity to VOC emissions was lower with
one notable exception on July 14™. This day was characterized by low predicted Os
concentrations. At both of these sites, as well as all others in the domain, model results were
also highly sensitive to boundary conditions. These results help explain the narrower range of
the ensemble distributions seen at the Detroit site (Figure 1b), assuming these findings can be
extended to the full summer episodes of the two years. Furthermore, since NO, emissions were
greatly reduced in 2005 from their 2002 levels, it is likely that VOC sensitivity became relatively
more important in 2005, leading to posﬁible O3 formation regime changes and transitioning some
NO,-limited regions to become VOC-limited (e.g. the northeastern urban corridor along the

interstate 95).
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Figure 6. Average sensitivities of daily maximum 8-hr average ozone to a) emissions of NO,, b) emissions of
VOCs, ¢) boundary conditions, and d) the ratio of VOC to NO, sensitivity between 3 — 15, July 2005.
Regions where VOC sensitivity is higher approximate a VOC-limited ozone formation regime.
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Figure 7. Modeled concentration and sensitivities of daily maximum 8-hr average ozone to emissions of NO,,
VOCs, and boundary conditions at two AQS sites: a) Terre Haute, IN (AQS#181670024); and b) Detroit, MI
(AQS#261630019). The Detroit site shows higher sensitivity to VOC emissions resulting in less responsiveness
to the propagation of NO, uncertainty.

4. Summary

An analysis of the change in O3 concentrations due to large reductions in NOy emissions
in the Eastern U.S. between the summers of 2002 and 2005 was performed while accounting for
uncertainty in these emissions. The full distribution of observed and modeled O; concentrations
was analyzed, as well as the more policy-relevant higher end of the distributions. The difference
between the two study years was estimated by comparing modeled and observed Os distributions
at AQS sites without pairing the data in time. This approach was used to account for the fact that
weekly emissions patterns and meteorological drivers are different between the two years. A

model performance criterion was developed based on the model’s ability to capture the observed
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05 change (estimated by the RMSD and MD metrics), while accounting for uncertainties in NOx
emission inputs. Many standard statistical tests exist for testing for differences between two
empirical distributions (e.g. the nonparametric Kolmogorov-Smirnov test). In contrast, the
interest in this application is in testing for the difference of differences between two pairs of
distributions. Specifically, it is important to test not only whether or not the air quality model
can simulate that there is some change in the ozone distribution as a response to changes in
emissions, but whether the model can capture the magnitude and direction of this change. This
complication motivates the novelty of the proposed test metrics.

Assuming +50% uncertainty in NOy emissions from area and mobile sources, and +3%
uncertainty in point sources, the ensemble of model predictions was able to capture the observed
change in O; levels at about two-thirds of AQS sites based on the 95% confidence interval
chosen here. Several factors can explain the poor ensemble performance. The main contributor
was likely the fact that errors in the dynamic evaluation cannot be attributed to NO, emissions
uncertainty alone. Evidence was found for significant presence of VOC-limited regions in the
domain, and VOC emissions are likely to have the same, if not higher, level of uncertainty.
Furthermore, boundary conditions were found to have a substantial impact on O; formation, and,
although untested in this experiment, uncertainty in meteorological inputs was also likely
present. Since uncertainty in the emission inventory is difficult to quantify explicitly, it was
shown that ensemble performance is sensitive to the selection of the uncertainty levels in
emissions of mobile and area sector NOy.

In summary, the methodology presented in this study illustrates the impact of propagating
assumed levels of uncertainty in one set (emissions of NOy) of many uncertain model input

variables. It shows that accounting for even one uncertain parameter influences the
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interpretation of model’s responsiveness to changes in emissions as well as base case model
performance evaluation. Ideally, a more comprehensive analysis of uncertainties in all model

input variables would be extremely useful, and our work is progressing towards this purpose.
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