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ABSTRACT  43 

Atmospheric dispersion of particles from mine waste is potentially an important route of 44 

human exposure to metals in communities close to active and abandoned mining areas. In 45 

this study, we assessed sources of mass and metal concentrations in two size fractions of 46 

respirable particles using positive matrix factorization (EPA PMF 3.0). Weekly integrated 47 

samples of PM10 and PM2.5 were collected at three monitoring sites, varying distances 48 

(0.5-20 km) from mine waste piles, for 58 consecutive weeks in a former lead (Pb) and 49 

zinc (Zn) mining region.  Mean mass concentrations varied significantly across sites for 50 

coarse (PM10-PM2.5) but not fine (PM2.5) particles. Concentrations of Pb and Zn 51 

significantly decreased with increasing distance from the mine waste piles in both coarse 52 

(p<0.0001) and fine (p<0.0005) fractions. Source apportionment analyses deduced five 53 

sources contributing to PM2.5 (mobile source combustion, secondary sulfates, mine waste, 54 

crustal/soil, and a source rich in Ca) and three sources for the coarse fraction (mine 55 

waste, crustal/soil, and a Ca-rich source). In the fine fraction, mine waste contributed 1-56 

6% of the overall mass, 40% of Pb, and 63% of Zn. Mine waste impacts were more 57 

apparent in the coarse fraction, and contributed 4-39% of total mass, 88% of Pb and 97% 58 

of Zn.  Percent contribution of mine waste varied significantly across sites (p<0.0001) for 59 

both size fractions, with highest contributions in the site closest to the mine waste piles. 60 

Seasonality, wind direction, and concentrations of the Ca-rich source were also 61 

associated with levels of ambient aerosols from the mine waste source. Scanning electron 62 

microscopy results indicated that the PMF-identified mine waste source is mainly 63 

composed of Zn-Pb agglomerates on crustal particles in the coarse fraction. In 64 

conclusion, the differential impacts of mine waste on respirable particles by size fraction 65 

and location should be considered in future exposure evaluations.  66 
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IMPLICATIONS 67 

This is the first study to use source apportionment modeling along with scanning electron 68 

microscopy to quantify the impact of mine waste on respirable particles in residential 69 

areas surrounding an abandoned mining site. Fugitive dust emissions from mine waste 70 

were found predominantly in the coarse fraction. Impacts were most substantial in Picher, 71 

the source-dominated site, and decreased with increasing distance from the mine waste 72 

piles suggesting that populations living nearest to these piles may be more highly 73 

exposed. These results will enable more accurate assessments of human exposure and 74 

health effects in communities adjacent to active and abandoned mining areas. 75 

Keywords: Air pollution; Chat; Metals; Mining; Positive Matrix Factorization (PMF); 76 

Source apportionment; Tar Creek Superfund Site 77 
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INTRODUCTION 78 

The U.S. EPA estimates there are over 200,000 inactive and abandoned hardrock mines 79 

in the United States.
1
 Active and abandoned mines have the potential to cause damage to 80 

aquatic biota, terrestrial vegetation and wildlife, air quality, and cultural resources. 81 

Seventy-two mining sites have been designated to the National Priority List (NPL) under 82 

the U.S. EPA Superfund program. These sites pose an imminent threat to human or 83 

ecological health and warrant federal intervention.
2
  Both coal and hardrock mining 84 

continue globally, regularly creating more abandoned mines.  85 

 In metal mining, less than 1% of processed material is recovered as useful metal.
3
  86 

Mine tailings and other metal-enriched by-products of the mining process are often stored 87 

in large piles that can become sources of contamination to surrounding ecosystems and 88 

residential areas through wind-borne dispersal of particles. Suspended airborne particles 89 

can travel offsite and infiltrate indoors where they can be inhaled directly; or deposit onto 90 

soil or house dust by settling, impaction, or washout.  91 

 Mine waste piles represents a dispersed source of metal contamination and are 92 

particularly abundant at the Tar Creek Superfund Site, a former lead and zinc mining area 93 

located in rural Oklahoma. Mine waste, locally known as “chat”, is largely composed of 94 

chert (SiO2), dolomite (CaMg(CO3)2), and sulfide minerals including galena (PbS), 95 

sphalerite (ZnS), and pyrite (FeS2).
4
  There are approximately 30 major chat piles in the 96 

Tar Creek area 
5
, which contain elevated concentrations of zinc (Zn), lead (Pb), and 97 

cadmium (Cd).
6, 7

  Recent research suggests metal concentrations in chat particles 98 

increase with decreasing particle size, and ultrafine particles (< 1µm) contain Zn, Pb, and 99 

Cd at concentrations up to 20 times higher than the bulk material.
7
  Chat particles may be 100 

transported into the broader environment through various mechanisms such as wind 101 

erosion. Chat may also be deposited on roads, either through atmospheric settling or 102 

when used as a gravel material, and then become re-suspended and dispersed with traffic.  103 

In addition, local reprocessing of chat for asphalt and other transportation construction 104 

projects 
6-8

 may lead to increased aerosol mobilization. Variable weather conditions 105 

including sporadic events such as wind storms, along with human disturbances, may lead 106 

to spatial and temporal heterogeneity in airborne contaminants. 107 
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 A large body of evidence has shown that exposure to particulate matter is harmful 108 

to human health.  Particle size not only determines the site and efficiency of pulmonary 109 

deposition but also may be an indication of particle source and composition.  Fine 110 

particles (PM2.5), largely generated from combustion processes, have been associated 111 

with a range of adverse respiratory and cardiovascular health effects including mortality. 112 

9, 10
 Coarse particles (PM10-PM2.5), generated primarily from mechanical processes, are 113 

more commonly associated with respiratory and cardiovascular morbidity 
11

 such as 114 

inflammatory lung injury.
12

 Additionally, experimental and epidemiologic evidence 115 

suggests that metal constituents in particulate matter, such as V, Zn, Fe, and Ni, play an 116 

important role in inflammatory and cardiovascular health effects.
12-15

 Inhalation of metals 117 

may be particularly toxic since metals such as Mn, Cd, Zn, and Ni can be transported 118 

directly to the brain via olfactory pathways.
16-18

 119 

 Since there is a potential for inhalation exposure to metal-enriched particulate 120 

matter in abandoned mining areas like the Tar Creek Superfund Site, it is important to 121 

quantify the impact of mine waste piles on ambient air quality. While previous studies 122 

have used multivariate statistical receptor models to identify the contribution of active 123 

mining operations, such as smelting, to respirable particles,
19, 20

  few studies have used 124 

these techniques to quantify the impact of mine waste, a more indirect and persistent 125 

source of respirable particles, in residential areas surrounding abandoned mining sites. 126 

This study is part of an on-going effort to understand children’s exposure to mining-127 

related metal mixtures and subsequent health effects. The goal of this study was to 128 

examine the impact of chat-related sources on ambient particle concentrations at the Tar 129 

Creek Superfund Site. Specifically, sources of fine and coarse particles were identified, 130 

and their contributions to mass and metal concentrations were estimated using positive 131 

matrix factorization. Predictors of source contributions were identified using regression 132 

analysis. Lastly, the presence of unique, local sources was qualitatively confirmed using 133 

scanning electron microscopy techniques.  134 

 135 

 136 
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EXPERIMENTAL METHODS 137 

Study Design 138 

Ottawa County, OK is a predominantly rural area with high humidity and abundant 139 

rainfall between the months of May and November. The predominant wind direction is 140 

from the south with an average wind speed of 11 Km hr
-1

.
21

  Three stationary air 141 

monitoring sites were established in the area to capture spatial variability and represent 142 

potentially different human exposure scenarios. Weekly integrated samples were 143 

collected at each site for 58 weeks from July 2005 to September 2006.  144 

 Figure 1 shows the locations of the three sites in relation to the chat piles. Sites 145 

were chosen through consultation with our community partners in the area. Site 1, the 146 

source-dominated site, was located in a residential yard in the town of Picher, surrounded 147 

by chat piles on two sides and within a kilometer of several other piles. Site 2 was located 148 

in the town of Quapaw, approximately 5 km from the bulk of the chat piles, but close to a 149 

well-used county road and several dirt roads that are thought to be lined with chat 150 

material.
22

  Site 3 was located in a suburban neighborhood within Miami, the largest town 151 

in Ottawa County, and approximately 18 kilometers upwind of the Picher site with no 152 

chat piles in the nearby vicinity.   153 

Analytical Methods 154 

Separate filter samples of PM2.5 particles and  PM10 particles were collected on Teflon 155 

filters (2-µm pore size, 37 mm in diameter) using Harvard Impactors 
23

 attached to 156 

MEDO air pumps (Medo, Hanover Park, IL)  at 4 liters min
-1

. Filters were exposed for 157 

seven days (24 hr a day) and changed once a week. Airflow was measured and calibrated 158 

at the beginning and end of every filter exposure using calibrated flow meters (Matheson 159 

Tri-gas Model 603(E500)).  160 

 Teflon filters were weighed in a temperature- and humidity-controlled room (18 –161 

24°C, 40 ± 5% relative humidity). All filters were left to equilibrate for 24 hr prior to pre-162 

sampling weighing and 48 hr prior to post-sampling weighing. The elemental content of 163 

the ambient aerosol was quantified by energy-dispersive X-ray fluorescence (EDXRF) 164 

analysis, a non-destructive and moderately sensitive analytical method for determining 165 

elemental concentrations of aluminum (Al) through lead (Pb).
 24, 25

 Analyses were 166 

performed at the U.S. EPA’s National Exposure Research Laboratory (NERL) in 167 



 

8 

Research Triangle Park, NC, using an EDXRF spectrometer custom-built for the U.S. 168 

EPA by Lawrence Berkeley Laboratory. Black carbon concentrations were estimated in 169 

the PM2.5 fraction using reflectance analysis on the particle filters, a method that provides 170 

measurements that are highly correlated with concentrations measured using 171 

thermaloptical methods.
26

  Sample absorbance values were obtained using an Optical 172 

Transmissometer Data Acquisition System (Magee Scientific, Berkeley, CA). UV and IR 173 

absorbance values for each sample were collected at 370nm and 880nm wavelengths, 174 

respectively. A mass absorption coefficient of 16.6 was used to convert the transmittance 175 

to mass concentration units.
27

 Computer-Controlled Scanning Electron Microscopy 176 

(CCSEM) 
28

 coupled with energy-dispersive X-ray analysis (EDX) (R.J. Lee Instruments, 177 

Ltd., now Aspex Corporation) was conducted on specific filters to help interpret sources 178 

identified from the statistical receptor models. The metals and reflectance analyses of 179 

particle filters and CCSEM/EDX analyses were conducted according to standard 180 

operating procedures at the U.S. EPA National Exposure Research Laboratory (Research 181 

Triangle Park, NC).  182 

Quality Control and Quality Assurance 183 

Seven percent of the total samples collected were voided because they failed to meet 184 

established flow or sampling time criteria. Field blanks were transported and handled like 185 

regular samples, but the filters were not attached to the air pumps. Field blanks comprised 186 

10% of the total samples collected and were used to determine background 187 

contamination. The method limit of detection (LOD) for each species was calculated as 188 

three times the average uncertainty of 23 laboratory teflon blanks divided by the median 189 

volume for all samples (40 m
3
). If the mean field blank concentration was greater than the 190 

mean plus three times the standard deviation of the lab blanks, then blank correction was 191 

applied. Sample concentrations of Ca and Fe in one batch of PM2.5 samples were blank 192 

corrected by subtracting the mean field blank concentration from the sample 193 

concentrations in this batch. Precision of the method was determined by duplicate 194 

samples (10% of total samples collected). Black carbon concentrations were imputed for 195 

two samples using the median concentration of the sampling location. Samples collected 196 

during the week of 6/30/2006 were eliminated from all analyses since these samples were 197 

impacted by fireworks and had high levels of K, Cu, and Sr. 198 
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Meteorological Data 199 

Meteorological data including daily measures of temperature, average and maximum 200 

wind speed, wind direction, and precipitation was obtained from the National 201 

Oceanographic and Atmospheric Administration (Washington, DC) weather station for 202 

Tulsa International Airport, approximately 145 kilometers south of the study area. 203 

Weekly averages for these variables were calculated and used in regression analyses. 204 

Since wind direction data was originally provided in degrees, a dummy variable was 205 

constructed to correspond to 90 degree directional increments (e.g. South, West, etc.). 206 

Similarly, a dummy variable was constructed to correspond to the four calendar seasons. 207 

Summary Statistics  208 

After QA/QC criteria were implemented, a total of 156 PM10 and 155 PM2.5 samples were 209 

available for data analysis. Coarse fraction concentrations were not directly measured, 210 

but were calculated as the difference between PM10 and PM2.5 concentrations for the 150 211 

samples where both PM10 and PM2.5 measurements were available. To generate summary 212 

statistics and compare concentrations across sites, a balanced dataset was created that 213 

included only those samples where corresponding data was available at all three sites for 214 

both size fractions (N=123). For data that fell below the method limit of detection, 215 

estimated metal concentrations provided by XRF analyses were used in calculation of 216 

summary statistics and statistical models. Correlations were assessed using Spearman 217 

rank correlations. Statistically significant differences in metal concentrations across sites 218 

were determined using the ANOVA test for differences and Scheffe’s test for multiple 219 

comparisons. Prior to the ANOVA analysis, the Levene’s test for homogeneity of 220 

variance was implemented. If the assumption of homogenous variance was not upheld, 221 

the Welch’s ANOVA test, which accounts for unequal group variances, was used instead. 222 

Receptor Modeling: EPA PMF 3.0 223 

A receptor modeling approach employing EPA Positive Matrix Factorization (PMF) 3.0 224 

was used to quantify sources in both fine and coarse particulate matter.  PMF uses a 225 

constrained, weighted, least squares regression via the Multilinear Engine (ME-2) to 226 

generate source profiles and source contributions. Further details on the algorithm can be 227 

found in the PMF 3.0 user guide.
29

  Input data includes sample concentration and 228 

uncertainty estimates.  229 
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 Calculation of uncertainty estimates varied according to chemical species and size 230 

fraction. For elemental concentrations determined by XRF, sample and element specific 231 

concentration uncertainties were provided that equaled one standard deviation of error 232 

estimates based on analytical precision. Since sample specific uncertainty estimates were 233 

not provided for particle mass or black carbon concentrations, these uncertainty estimates 234 

were defined as 10% and 20% of the measured concentration, respectively.
30

 Uncertainty 235 

estimates for coarse fraction measurements were calculated as the following: 236 

      237 

   coarse σi,j =        
2

)()( 2

,5.2

2

,10 jiji PMPM σσ +
  (1) 238 

where uncertainty σ is the jth species uncertainty estimated for the ith sample. 239 

 The model was run in default robust mode to minimize the effects of outliers and 240 

included samples from all three sites since it was assumed that source profiles would not 241 

vary across sites. All models were normalized to PM mass concentrations. Thirty base 242 

runs were executed for each specific model, and model goodness-of-fit was evaluated by 243 

examining Q (robust) values. The solution with the lowest Q value was chosen, and 100 244 

bootstrap simulations were performed to estimate the stability and uncertainty of that 245 

solution which involved each of the bootstrapped factors being mapped to exactly one of 246 

the base case factors. The number of factors in the final solution was decided using a 247 

priori knowledge about local sources and by maximizing agreement between base run 248 

and bootstrapped results.  249 

 The source apportionment model for PM2.5 included concentration and 250 

uncertainty data from 155 samples. Fourteen possible elements and two carbon fractions 251 

were considered for inclusion in the PMF model. Species were evaluated based on their 252 

detection frequency, signal-to-noise ratio, and usefulness as source tracers. The following 253 

analytes were included in the PM2.5 source apportionment analysis: Al, Si, S, K, Ca, Ti, 254 

Mn, Fe, Zn, Se, Br, Pb, and black carbon (BC).   255 

 Since coarse fraction metal concentrations were not directly measured, a more 256 

conservative approach was used when conducting the coarse fraction PMF analysis. To 257 

be included in the PMF analysis, elements were assessed on the following two criteria: 1) 258 

well detected (>70%) in the coarse fraction and 2) had reasonably higher concentrations 259 
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in PM10 as compared to PM2.5. Based on these criteria, nine elements and 150 samples 260 

were included in the coarse PMF model.  This list was similar to that of the fine fraction 261 

model but omitted S, Se, Br, and BC. 262 

Regression Analysis 263 

Source-specific mass concentration estimates were extracted for each sample from the 264 

PMF output. Univariate and bivariate summary statistics and distributional plots were 265 

examined for all variables. Mine waste estimates were positively skewed and log 266 

transformed prior to regression analysis. Multiple linear regression models were used to 267 

describe the relationships between PMF-estimated mine waste concentrations and 268 

predictor variables of interest which included season, wind direction, wind speed, 269 

precipitation, site location, and estimated mass concentration data of the other PMF 270 

sources.  To obtain the final model, backward elimination was used with a threshold 271 

p<0.05 for retaining the variable in the model. Regression analyses were conducted in 272 

SAS version 9.1.   273 

RESULTS  274 

Summary Statistics 275 

Mean (± SD) PM10 mass concentrations in Picher (23 ± 6.4 µg/m
3
) and Quapaw (24 ± 7.6 276 

µg/m
3
) were significantly higher (p=0.01) than concentrations in Miami (20 ± 5.1 µg/m

3
).  277 

Similar to PM10, coarse (PM10-PM2.5) particle mass concentrations in Picher (12 ± 4.4 278 

µg/m
3
) and Quapaw (13 ± 6.1 µg/m

3
) were higher than Miami (9.0 ± 2.9 µg/m

3
) 279 

suggesting a difference in local sources between these areas (Table 1). Fine (PM2.5) 280 

particle mass concentrations did not differ by site and approximated 11 µg/m
3
 at all three 281 

sites. PM10 was more strongly correlated with coarse particles than with PM2.5 in both 282 

Picher (r=0.81) and Quapaw (r=0.85). By contrast, in the more commercially developed 283 

town of Miami, PM10 concentrations were more strongly correlation with PM2.5 (r=0.82).  284 

Seasonal variability was present in both PM2.5 and PM10 with highest concentrations in 285 

the summer and lowest concentrations in the winter (data not shown). 286 

 Mass and selected metal concentrations for coarse and fine particulates by 287 

location are presented in Table 1.  There was a significant spatial trend in Pb and Zn 288 

concentrations, with both elemental concentrations decreasing with increasing distance 289 
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from the chat piles.  In the more locally influenced coarse fraction, mean Pb 290 

concentrations were significantly different at all three sites ((Picher: 7.9 ± 4.6) vs. 291 

(Quapaw: 3.0 ± 2.4) vs. (Miami: 1.1 ± 0.75) ng/m
3
, p<0.0001). Similarly, Zn 292 

concentrations in coarse particles varied significantly at all three sites, with a 10-fold 293 

difference between Picher (120 ± 69 ng/m
3
) and Miami (11 ± 5.6 ng/m

3
). Elements 294 

associated with crustal sources such as Al, Si, Ca, and Fe were generally higher in 295 

Quapaw and Picher compared to Miami.  296 

 As expected, there were fewer differences in metal concentrations across sites in 297 

the fine fraction, likely due to the impact of regional pollution sources and the slower 298 

deposition rate of small particles.
  
Pb and Zn concentrations showed a similar but less 299 

pronounced spatial gradient compared to the coarse fraction.  Pb concentrations at Picher 300 

(3.5 ± 2.6 ng/m
3
) were elevated relative to Miami (1.9 ±1.4 ng/m

3
) by a factor of two. A 301 

similar trend was also observed for Zn in the fine fraction.  302 

Characterization of Sources 303 

When EPA PMF was applied to PM2.5 data, the model converged yielding a five factor 304 

solution. There was good agreement between the predicted and measured PM2.5 mass 305 

(R
2
=0.75). The R

2  
values for the elements ranged from 0.50-0.99.

 
Over 87 bootstraps out 306 

of 100 were mapped to the original base factor.  307 

 A three factor solution was extracted from the coarse fraction data. The PMF 308 

solution for the coarse data exhibited a better goodness-of-fit compared to the solution for 309 

the fine fraction data. The correlation between predicted and measured PM mass yielded 310 

an R
2
=0.89, and the R

2
 for the elements ranged from 0.85-0.99. All 100 bootstraps were 311 

mapped to the original base factor. 312 

 The source profiles deduced from the PMF models for both the fine and coarse 313 

fraction are presented in Figure 2. Consistent with the composition of mine waste, there 314 

was a factor present in both size fractions whose source profile was dominated by Zn and 315 

Pb with modest contributions of crustal elements (Al, Si, and Ca) (Figure 2).  The 316 

average Zn to Pb ratios in this source profile were 9 and 16 in the fine and coarse 317 

fractions, respectively, which is in agreement with the ratio found in “parent” chat 318 

particles <37µm collected in the Tar Creek area (Zn/Pb ratio =15; unpublished data). The 319 

percent mass of Zn and Pb in the PMF-deduced source profile in both fine and coarse 320 
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fractions were also similar to that of the “parent” chat. Zn was found in the 1-10% range 321 

and Pb was found in <1% of the total mass.
7
  322 

The source profile of soil and crustal materials was characterized by the 323 

component loaded on Al, Si, Ti, Mn, Fe, and K.  These elements have commonly been 324 

used to identify crustal sources.
31, 32

 In both coarse and fine fractions, there was a source 325 

rich in Ca. This factor also showed contributions from Si, Al, and BC (fine fraction only) 326 

and likely incorporates the impact of unpaved and paved road dust. In both size fractions, 327 

the Al/Ca ratio was approximately 0.1 in the Ca-rich factor which is similar to unpaved 328 

road dust as characterized by Chow et al. 
31

 Also, consistent with the unpaved road dust 329 

source profile 
31

,  the percent mass of Ca in the PMF-deduced Ca-rich profile was 15% in 330 

the coarse fraction. The last two factors were only found in the fine particles. These were 331 

mobile source combustion and secondary sulfates from coal combustion, and were 332 

readily identified by comparison with previously reported profiles.
31-33

   333 

Mass and Elemental Apportionments 334 

Fine Fraction.  Average contributions of each source to PM2.5 are summarized in Table 2. 335 

The majority of PM2.5  mass was apportioned to secondary sulfates and mobile sources 336 

with less than 5% attributed to the mine waste factor. Elemental apportionment found that 337 

approximately 40% of Pb and 63% of Zn were apportioned to mine waste.  Variations in 338 

mass apportionments were observed across sites. Average mine waste contributions 339 

ranged from 1% in Miami to 6% in Picher (Figure 3a). Contributions of the Ca-rich 340 

source were highest in Quapaw and mobile source contributions were highest in Miami.  341 

Secondary sulfates estimates were similar at all sites. Variation was not only observed 342 

across locations, but also within locations. At Picher, the source-dominated site, there 343 

was a 10-fold difference between minimum and maximum estimated concentrations of 344 

mine waste (0.11-1.4 µg/m
3
). 345 

 346 

Coarse Fraction. Average contributions of each source to coarse mass concentrations are 347 

also summarized in Table 2. Mean contributions of mine waste, crustal, and Ca-rich 348 

across sites were 20%, 42%, and 38%, respectively. Elemental apportionments found that 349 

88% of Pb and 97% of Zn were associated with mine waste. Not only were mass and 350 

percent contributions of mine waste greater in the coarse fraction relative to the fine 351 



 

14 

fraction, but spatial differences were also more substantial with 39%, 11%, and 4% 352 

percent contributions in Picher, Quapaw, and Miami, respectively (Figure 3b). Mine 353 

waste was the largest contributor to coarse mass in Picher (Figure 3b), and in both Picher 354 

and Quapaw, mine waste concentrations ranged two orders of magnitude - from 0.1 355 

µg/m
3 

to 10 µg/m
3
.  The percent contributions of crustal and Ca-rich sources were similar 356 

between Quapaw and Miami; however, the concentrations apportioned to these sources 357 

were greater in Quapaw.  358 

Predictors of Mine Waste Source Contribution 359 

Predictors of mine waste attributable mass were examined using the estimated 360 

concentrations (µg/m
3
) from PMF source apportionment models in correlation and linear 361 

regression analysis. Mine waste estimates in fine and coarse fractions were strongly 362 

correlated (r=0.76, p<0.0001), but fine fraction mine waste was not significantly 363 

correlated with any of the other PM2.5 sources. Predictors of fine fraction mine waste in 364 

multivariate models included sampling site, season, wind direction, and coarse fraction 365 

mine waste concentrations (Table 3). These factors collectively accounted for 64% of the 366 

variability in fine fraction mine waste estimates. Mine waste concentrations were highest 367 

in Picher and lowest in Miami. Concentrations were highest in the fall and lowest in the 368 

winter. Elevated mine waste concentrations were also associated with easterly winds. 369 

Wind speed, precipitation, temperature were not associated with PM2.5 mine waste.   370 

  Coarse fraction mine waste was positively correlated with coarse Ca-rich (r=0.26, 371 

p=0.001) and negatively correlated with coarse crustal (r=-0.16, p=0.05). In univariate 372 

analysis, precipitation was inversely associated with coarse mine waste concentrations, 373 

and sampling site was a significant predictor. The final multivariate model included 374 

sampling site, season, and coarse Ca-rich concentrations (Table 3). Coarse mine waste 375 

concentrations were highest in Picher and lowest in Miami. Coarse mine waste levels 376 

increased with increasing temperature with highest levels in the summer and lowest 377 

levels in the winter. Coarse Ca-rich concentrations remained a significant predictor after 378 

accounting for the other variables while precipitation was no longer significant in the 379 

multivariate model. In addition, a statistically significant interaction (p<0.0001) was 380 

observed between sampling site and Ca-rich concentrations suggesting a differential 381 

relationship between Ca-rich and mine waste by location. Figure 4 shows the graphical 382 
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interpretation of this statistical interaction term. Coarse fraction mine waste increased 383 

linearly with coarse fraction Ca-rich estimates in both Quapaw and Miami. Conversely, 384 

no relationship was observed between the mine waste and Ca-rich source in Picher.  385 

Collectively, these factors accounted for 79% of the variability in PMF-estimated coarse 386 

mine waste concentrations. Coarse mine waste was not associated with either wind speed 387 

or direction. 388 

Scanning Electron Microscopy  389 

CCSEM was used to characterize Zn- and Pb-bearing particles in a PM10 sample from the 390 

Picher site that had a high factor score for the mine waste source in the coarse size 391 

fraction. Several hundred individual particles larger than 0.4 µm with detectable 392 

concentrations of Zn or Pb were sized and analyzed for elemental composition by EDX. 393 

Consistent with source apportionment modeling results, CCSEM found that these 394 

particles were predominantly in the coarse fraction (mass median aerodynamic diameter 395 

= 6.8 µm). Although EDX analysis does not definitively identify specific minerals, the 396 

analysis showed that Zn- and Pb-rich particles were observed in two major varieties. The 397 

first major type consisted of heterogeneous particles in which Zn- and Pb-rich particles 398 

were co-present with sulfur, consistent with metal sulfide minerals which have been 399 

identified in mine waste.
4, 6, 7

  Isolated particles of ZnS or PbS were rarely observed. 400 

Rather, these particles were frequently attached to coarse silicate or aluminosilicate 401 

particles. Figure 5 shows SEM micrographs of a typical particle of this type. The 402 

secondary electron image (5a) highlights surface morphology while the backscattered 403 

electron (BSE) image (5b) reveals chemical heterogeneity within the particle. Bright 404 

areas in the BSE image are features associated with high average atomic number and 405 

were consistent with the mineral ZnS, as seen in the upper EDX spectrum (5c).  These 406 

ZnS features appear to be adsorbed onto or aggregated with an aluminosilicate matrix 407 

(5d) whose EDX spectrum is largely consistent with the PMF-deduced crustal/soil factor. 408 

The second type of frequently occurring particle were Zn- or Pb-rich silicate particles, 409 

which may be indicative of hemimorphite, a primary and secondary mineral that forms in 410 

oxic, Zn-rich conditions and has been identified in chat particles less than 37 µm.
7
   411 
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DISCUSSION 412 

To our knowledge, this study is the first to use source apportionment techniques to 413 

quantify the impact of mine waste on airborne respirable particulates in residential areas 414 

close to an abandoned mining site. PMF results for both fine and coarse particulates 415 

isolated a unique factor whose chemical profile was similar to that of particles from chat 416 

piles. With a composition similar to that of chat, the PMF-deduced mine waste factor was 417 

dominated by Pb and Zn and included traces of crustal elements (e.g. Al, Si, and Ca). The 418 

percent mass contribution of Zn and Pb, and the Zn/Pb ratio, were also in good agreement 419 

with measurements made on “parent” chat.
7
  Additionally, scanning electron microscopy 420 

analysis of a filter with a high PMF-estimated mine waste concentration qualitatively 421 

confirmed that the PMF-identified mine waste source corresponded to particles of mine 422 

waste origin.  423 

Source apportionment analysis revealed that the mine waste source predominantly 424 

impacted particles in the coarse fraction. Pb and Zn concentrations as well as estimated 425 

mine waste concentrations were all higher in coarse particles in comparison to PM2.5. 426 

Mine waste source contributions were most substantial in Picher, where mine waste was 427 

the largest source of coarse mass, contributing an average of 4.5 µg/m
3
 (approximately 428 

40% of total mass). Coarse fraction impacts were also observed at sites further away from 429 

the chat piles particularly in Quapaw where average contributions exceeded 10%. 430 

Particles of crustal origin and a source rich in Ca were major contributors of coarse mass 431 

in Miami and Quapaw. 432 

 While a mine waste source was identified in the PMF solution for PM2.5, its 433 

contributions to PM2.5 mass were modest even in the source-dominated site of Picher. Our 434 

results are consistent with a previous study in South Africa which found small and 435 

geographically limited impacts of mine tailings on atmospheric lead.
34

 Pb concentrations 436 

in our PM2.5 samples were generally low and below the National Ambient Air Quality 437 

Standard (0.15 µg/m
3
). Zinc concentrations were higher than those typically found in 438 

rural areas and similar to urban areas 
35

 where respiratory effects, such as asthma, have 439 

been associated with Zn PM2.5 levels.
36

 Concentrations of Cd, also elevated in mine 440 

waste, were all below the limit of detection in our samples. In contrast, a recent study 441 

found increasing metals concentrations with decreasing particle size down to 1µm in 442 
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“parent” chat from the Tar Creek site. 
7
 Our results suggest that while fine chat particles 443 

(<2.5 µm) may be highly enriched in metals, they are low in abundance or less likely to 444 

be windborne due to the presence of larger particles on the surface of the chat piles.  445 

 Similar to other source apportionment studies, secondary sulfates from coal 446 

combustion and mobile sources were the largest contributors to PM2.5 mass.
33

  Model 447 

diagnostics suggest that the factors resolved in the PM2.5 data were less stable and more 448 

uncertain than those characterized in the coarse data. PM2.5 source apportionment results 449 

may have overestimated contributions for mobile source combustion and omitted other 450 

minor sources such as vegetative burning. The analysis of additional carbon fractions and 451 

metals ions could have assisted in the further identification of sources and improved the 452 

model fit.  453 

While we were able to isolate mine waste impacts using EPA PMF source 454 

apportionment, it was difficult to determine the relative importance of various sources 455 

and transport mechanisms due to the dispersed, heterogeneous nature of contemporary 456 

mine waste. Wind erosion of dust particles from chat piles, mechanically generated chat-457 

laden dust from paved and unpaved roads, and the ongoing removal and processing of 458 

chat for construction projects may all contribute to the mine waste particles observed in 459 

our air samples. For example, CCSEM/EDX analyses documented two different types of 460 

particles which appeared to be of mine waste origin.   461 

 Additionally, linear regression results which included a statistically significant 462 

interaction term between sampling site and Ca-rich concentrations in the coarse fraction 463 

may suggest differential transport mechanisms by location. Mine waste estimates 464 

increased linearly with Ca-rich source estimates in both Quapaw and Miami, but not in 465 

Picher. One possible interpretation of this interaction is that fugitive dust from the chat 466 

piles may be the predominant source of airborne mine waste in Picher. Conversely, re-467 

suspension of chat, previously deposited on paved and unpaved roads, may be a more 468 

important transport mechanism at the Quapaw and Miami sites, which are farther away 469 

from the chat piles. Another possible explanation for this observed interaction is that the 470 

Ca-rich source concentrations are a surrogate for some other unmeasured environmental 471 

factor or anthropogenic activity which varies between Picher and the other sites and is 472 

positively associated with mine waste concentrations.  Future studies should compare the 473 
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geochemical properties and particle size distribution profiles of wind blown mine waste 474 

versus mechanically resuspended mine waste at relevant mining sites. 475 

 This study has several important strengths. The unique study design and 476 

collaboration allowed us to evaluate chronic airborne exposures to mining-related metals 477 

in an underserved community. While abandoned hardrock mines and associated solid 478 

mine waste are increasing in a global context, limited data is available on the ambient air 479 

quality at these sites. We also used a variety of methods, including receptor modeling and 480 

scanning electron microscopy, to examine mine waste impacts on ambient particulate 481 

matter. Another major strength of the study is the unique collaboration which included 482 

university, community, and government partners. Most notably, field sampling was 483 

successfully conducted by our community partners from the L.E.A.D. Agency using strict 484 

QA/QC guidelines for over a year. This approach should be a model for other 485 

community-based assessments of air quality. 486 

 There were also some weaknesses to this study. While we observed seasonal 487 

variations in mine waste concentrations using regression analysis, weekly-integrated 488 

samples obscured our ability to assess acute exposures, reconstruct backward trajectories, 489 

and analyze relationships with wind speed. However, the longer sampling time allowed 490 

for increased particle mass deposition and thus improved elemental detection limits.  We 491 

calculated coarse fraction concentrations indirectly by subtracting PM10 and PM2.5 492 

measurements, which may increase measurement error. However, the measurement error 493 

in this approach did not overwhelm the data given the strong model diagnostics for the 494 

PMF coarse fraction results - including excellent replication of the base factors in the 495 

bootstrapping simulations. Lastly, we were only able to use scanning electron microscopy 496 

methods in a qualitative manner. Future air pollution studies should expand the 497 

quantitative use of geochemical techniques in source apportionment studies and compare 498 

source apportionment estimates for mine waste in respirable particles to those from 499 

fugitive dust models. 500 

CONCLUSIONS 501 

This study estimated the contribution of mine waste, an important local pollution source, 502 

to airborne respirable particles using source apportionment techniques. Mass contribution 503 

of mine waste particulates was more apparent in the coarse fraction, with average 504 
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contributions three-fold greater in the coarse particles compared to the fine fraction (20% 505 

vs. 6%). There were also large differences observed in mine waste contribution by 506 

location. Impacts were largest at the source-dominated site and decreased with increasing 507 

distance from the chat piles, suggesting that populations living nearest to the chat piles 508 

may be more highly exposed. In conclusion, this study characterized temporal and spatial 509 

variability of metal concentrations and potential sources in two size fractions of 510 

respirable, ambient particles. Future studies from our center will examine the impact of 511 

mining-related sources in the indoor environment and relationships to biological 512 

measures in children. 513 
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Table 1. Mean (SD) mass (µg/m
3
) and metal (ng/m

3
) concentrations in coarse and fine particles 

by location.  

 % <LOD
a
 Picher Quapaw Miami 

ANOVA 

p-value
b 

Coarse Fraction (PM10 – PM2.5) 

Sample Size  41 41 41  

Mass 0 12 (4.4) 13 (6.1) 9.0 (2.9) <0.0001 

Al 1 350 (140) 360 (130) 300 (130) 0.12
 

Si 0 1700 (610) 1600 (710) 1200 (380) <0.0001 

S 59 20 (120) <LOD <LOD 0.04
 

K 0 110 (52) 110 (44) 96 (33) 0.12 

Ca 0 1200 (560) 1300 (750) 970 (400) 0.02
 

Ti 0 30 (14) 33 (19) 22 (8.9) 0.0003 

Mn 0 7.8 (3.3) 7.7 (3.5) 6.3 (2.1) 0.02 

Fe 0 290 (120) 340 (180) 220 (78) 0.0003
 

Cu 36 0.95 (0.56) 0.83 (0.54) 0.71 (0.55) 0.13
 

Zn 0 120 (69) 39 (31) 11 (5.6) <0.0001
 

As 74 <LOD <LOD <LOD -- 

Se 85 <LOD <LOD <LOD 0.55 

Br 41 0.55 (0.60) 0.48 (0.41) <LOD 0.03
 

Pb 20 7.9 (4.6) 3.0 (2.4) 1.1 (0.75) <0.0001 

Fine Fraction (PM2.5) 

Sample Size  41 41 41  

Mass 0 11 (4.0) 11 (3.9) 11 (3.8) 0.98 

Al 49 62 (75) 67 (77) 57 (84) 0.83 

Si 0 220 (150) 230 (160) 190 (170) 0.44 

S 0 870 (480) 860 (490) 890 (480) 0.96 

K 0 57 (21) 57 (19) 61 (20) 0.52 

Ca 0 97 (44) 91 (45) 77 (33) 0.09 

Ti 6 4.2 (3.7) 4.5 (3.5) 4.5 (4.1) 0.95 

Mn 1 1.4 (0.64) 1.8 (0.84) 1.5 (0.71) 0.04 

Fe 0 58 (38) 70 (41) 54 (43) 0.20 

Cu 37 1.1 (1.2) 0.90 (0.52) 0.80 (0.61) 0.20 

Zn 0 22 (10) 11 (5.0) 7.9 (3.0) <0.0001 

As 41 0.64 (0.48) 0.62 (0.32) 0.56 (0.33) 0.58 

Se 23 0.58 (0.31) 0.57 (0.27) 0.58 (0.30) 0.99 

Br 0 2.6 (1.1) 2.5 (0.84) 2.4 (0.88) 0.73 

Pb 10 3.5 (2.6) 2.2 (1.4) 1.9 (1.4) 0.0003 
a 
LOD = Limit of detection. 

b
 Bolded values indicate significant (p<0.05) differences among sites.  
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Table 2.  Mean (SE) source contributions (µg/m
3
) of coarse and fine particulate from PMF. 

 Coarse  

(n=150) 

Fine 

(n=155) 

Mine waste 2.2 (0.20) 0.31 (0.025) 

Crustal 4.6 (0.25) 1.2 (0.15) 

Ca-rich 4.1 (0.24) 1.7 (0.098) 

Secondary  -- 2.9 (0.22) 

Mobile sources -- 4.4 (0.20) 
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Table 3. Multivariate regression models of fine and coarse mine waste attributable mass (µg/m3).
a 

 Mass attributed to mine waste source 

 Fine Fraction
b
 Coarse Fraction

b
 

 β(SE) P value β(SE) P value 

Coarse mine waste mass (µg/m
3
)
b 

  0.42 (0.07) <0.0001 --- --- 

Coarse Ca-rich mass (µg/m
3
)
b 

--- --- 1.01 (0.14) <0.0001 

Site  <0.0001  <0.0001 

     Miami
c
 0  0  

     Quapaw 0.07 (0.17)  1.30 (0.24)  

     Picher 0.83 (0.22)  3.33 (0.22)  

Season  <0.0001  0.0034 

     Winter
c 

0  0  

      Spring 0.56 (0.18)  0.34 (0.16)  

      Summer 0.13 (0.17)  0.77 (0.15)  

      Fall 0.83 (0.17)  0.17 (0.15)  

Wind direction  0.006 --- --- 

      West
c
 0  --- --- 

      South 0.70 (0.21)  --- --- 

      East 0.90 (0.42)  --- --- 

Coarse Ca-rich mass * Site interaction --- ---  <0.0001 

     Coarse Ca-rich * Miami --- --- 0  

     Coarse Ca-rich * Quapaw --- --- -0.14 (0.16)  

     Coarse Ca-rich * Picher --- --- -0.75 (0.16)  

     

Model R
2
 0.64  0.79  

 
a *

P<0.05; 
b 
log-transformed;  

c 
reference group in parentheses. 
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FIGURE LEGENDS 

 

Figure 1. Location of mine waste (“chat”) piles and ambient air monitors in Ottawa County, 

Oklahoma. 

 

Figure 2. Source profiles for fine and course fraction derived from EPA PMF 3.0 

 

Figure 3. Mass contribution (%) of sources to (a) fine and (b) coarse mass by location. 

 

Figure 4. Scatterplots of PMF estimated coarse mine waste concentrations versus PMF 

estimated coarse Ca-rich concentrations by site location. Regression lines represent the slopes of 

the association for the three sites and are statistically significant for Quapaw (p<0.0001) and 

Miami (p<0.0001) but not Picher (p=0.12).  

 

Figure 5. Results of CCSEM analysis from a PM10 particle filter identified as having a high 

factor score for the mine waste source in PMF models: (a) secondary electron image, (b) 

backscatter electron image, (c) EDX spectrum of ZnS inclusion in top of particle, and (d) EDX 

spectrum of aluminosilicate matrix at bottom of particle.  
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