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1. INTRODUCTION

Air quality model evaluation can be enhanced with time-scale specific comparisons of
outputs and observations. For example, high-frequency (hours to one day) time scale
information in observed ozone is not well captured by deterministic models and its
incorporation into model performance metrics lead one to devote resources to stochastic
variations in model outputs. In this analysis, observations are compared with model
outputs at seasonal, weekly, diumnal and intra-day time scales. Filters provide frequency
specific information that can be used to compare the strength (amplitude) and timing
(phase) of observations and model estimates.

2. METHODS AND TIME SERIES

2.1 Modeling system

Model outputs were produced by MM5-v3.7.2, CMAQ-v4.5.1, CB4 and aero3 set to
simulate the time period 1988-2005 (Hogrefe et al, 2009). The domain was the
northeastern U.S. at a grid of 12 km x 12 km. Emissions included NEI 1990, 1996-2001,
OTC2002, and OTC2009, processed by SMOKE .

2.2 Observations

Observations (ozone concentrations and meteorological variables) used for time series
examples were recorded by the Clean Air Status and Trends Network (CASTNET,
www.epa.gov/castnet/data/metdata/) operated by the Environmental Protection Agency’s
Clean Air Markets Division. CASTNET sites are located in mostly rural and remote
areas such as national parks and monuments. [llustration of weekly variation in ozone
was demonstrated with ozone data from the EPA’s air quality system
(www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm).

CASTNET sites and CMAQ grid cells at Abington, CT (ABT147) and Shenandoah
National Park, VA (SHN418) were chosen for purposes of illustration. ABT is
downwind of the New York City urban area. SHN is a high altitude site (elev. 1,073 m).

2.3. Low pass filter (KZ) ;

A low-pass filter (iterative moving average where high frequencies are damped and
low frequencies are unaltered) was used to define the trend (KZ(k=3 iterations, q=182
days) and intra-day (original - KZ(k=3 iterations, q=1 hour)) time scales (Zurbenko,
1986; Rao and Zurbenko, 1994). An advantage of the KZ over other linear filters is its
ease of application when some observations are missing: missing values are ignored and
a mean is computed from whatever values are present. Endpoints of time series (as well
as the edges of gaps) are not properly filtered and are therefore clipped when presented.



2.4, Wavelet filter
The KZFT(q,k,w) wavelet is a Fourier transform (FT) version of the KZ (Zurbenko
and Porter, 1998). The KZFT is given by:

¢ Zqii kgq exp(-i2m o k) - X (1
where q is the half-window size and k is the number of iterations, T is a frequency of
interest, and ‘i’ is (-1)'. The real part of the filtered time series, Y(Y,), is a bandpass
component centered at frequency T, and |(Y,)| is the instantaneous amplitude of Y(t).

Cross-correlations do not adequately describe relationships among different periodic
processes. Any two time series with seasonal (or diurnal) variation will tend to be highly
correlated when adjusted for phase difference. As such, it’s better to compare amplitudes
and phases. Consider the following conceptual model for seasonal variation:

Q. = A, - cos (ZTM % phl) 2)
where Q,. is seasonal variation in a process Q at time t, A, is the amplitude of seasonal
variation at time t, p is the period (one year) and ph, is the phase at time t. Seasonal
phase is calculated from (Bloomfield, 2000):

Y,-exp(-i-2-m-t- |
abs(Y, - exp(-i - 2 - 7 S (n))]

ph, = g [ In 3)
and can be thought of as the day of the year that a process reaches a maximum, An
estimate of A; is the modulus of the wavelet filtered time series. Phase (ph,) and
amplitude (A,) of seasonal ozone are typically low frequency processes.
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Figure 1. Observed and modeled trend (low- Figure 2. Observed and modeled seasonal
frequency variation) at ABT and SHN variation at ABT and SHN

3. RESULTS AND DISCUSSION

3.1. Observed and modeled ozone by time scale _

Low-frequency ozone variation (trend) was defined with a low-pass filter (Figure 1).
The trend is captured by CMAQ (R = 0.79 and 0.89 at ABT147 and SHN418,
respectively).

Observed and CMAQ seasonal wavelets and their amplitude for ABT and SHN are
shown in Figure 2. Correlations between observed and CMAQ seasonal variation (0.97
and 0.99 at ABT and SHN, respectively), for the most part measure phase differences.

Among the meaningful measures of agreement between observations and model
outputs are the correlation between seasonal amplitudes (0.71 and 0.76 at ABT147 and



SHN4 18, respectively) and the phase difference (Figure 3). CMAQ is out of phase with
observations, sometimes by more than 10 days. The CMAQ phase has trended
downward since 1999 at both sites (seasonal maximum coming earlier).

Ozone seasonal amplitude is modulated in part by meteorology (Figure 4). The dotted
lines in Figure 4 are linear combinations of meteorological variables that include
temperature, solar radiation, relative humidity and wind speed. The most significant
covariates are wind speed and solar radiation at ABT and SHN, respectively.
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Figure 3. Observed and modeled seasonal Figure 4. Seasonal amplitude and linear
amplitude and phase at ABT and SHN meteorological model for ABT and SHN

Weekly amplitude and phase at ABT,
shown across the eastern US for two
different times in 2001 (Figure 5) illustrate
widely varying temporal and spatial
properties of weekday/weekend ozone
fluctuation.

Observed and CMAQ  diurnal
amplitude and phase are compared in
Figures 6 and 7. Observed diurnal
amplitude at ABT is greater than that of
Figure 5. ABT weekly amplitude (log of ppb) CMAQ. During the 18 years that were

a) 20 June and b) 22 July and weekly phase modeled, the average diurnal phase
¢) 20 June d) 22 July difference between observations and

CMAQ is zero (cross-correlations between
observations and model peak at zero lag). However, there are times (as in Figure 7)
when the two are out of phase.

As with seasonal processes, correlations between observed and CMAQ diurnal
variation (0.91 and 0.76 at ABT147 and SHN418, respectively), mostly reflect phase
differences (Figure 6), while observed/model amplitude correlation (0.79 and 0.41)
measure the extent to which the model correctly gauges changes in diurnal forcings
(Figure 7). Observation/model agreement was poor at intraday time scales (< 11 hours, R
0.26 and 0.19 at ABT and SHN, respectively), reflecting, in part, the model’s inability to
simulate stochastic variation like measurement instrument noise.

4. SUMMARY

Wavelet analysis provides frequency specific information about observations and
model outputs that can be useful in model evaluation. Differences in the strength
(amplitude) between observations and model were illustrated for low-frequency (trend)
and intra-day variation, while differences in both strength and timing (phase) were
illustrated for seasonal, weekly and diurnal processes. Modulation of seasonal and
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Figure 6. Observed and modeled Figure 7. Observed and modeled diurnal
diurnal variation at ABT and SHN amplitude and phase at ABT and SHN

diurnal ozone occurs at low frequencies (three to five years for seasonal and one year for
diurnal processes) and can be tied to low frequency variation in meteorological variables.
Wavelet analysis of weekly variation can be used to identify spatial/temporal variation in
weekday/weekend ozone air quality.
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