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ABSTRACT

Air quality surfaces representing pollutant concentrations across space and time are
needed for a multitude of applications, including tracking trends and relating air quality to
human and ecosystem health. The spatial and temporal characteristics of these surfaces may
reveal new information about the associations between emissions, pollution levels, and human
exposure and health outcomes that may not have been discernable before. This paper presents
four techniques, ranging from simple to complex, to statistically combine observed and modeled

daily maximum 8-hr ozone concentrations for a domain covering the greater New York State
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area for the summer of 2001. Cross-validation results indicate that, for the domain and time
period studied, the simpler techniques (additive and multiplicative bias adjustment) perform as
well as or better than the more complex techniques. However, the spatial analyses of the
resulting ozone concentration surfaces revealed some problems with these simpler techniques in
limited areas where the model exhibits difficulty in s1mulat1ng the complex features such as -

those observed in the New York City area.

IMPLICATIONS

Linking emission control actions to human health impacts is important in determining
whether the regulations that have been implemented are reducing air pollution as intended.
Measurements of pollutant concentration levels are often spatially sparse, and modeled outputs
are only an estlmate of the “true” pollutant concentration levels, hampering our ability to detect a
relatively small signal of change embedded in ambient concentrations. This paper assesses four
techniques to combine the strengths of modeled and observed data to provide high-resolution
ozone concentration surface maps for use in human health studies and assessing whether

regulatory control actions have had the intended impact.

INTRODUCTION

Air pollutant concentrations across space and ti._me are used in a multitude of applications,
including tracking trends and relating air quality to human and ecosystem health. Often, changes
in air quality attributable to emission reductions stemming from control policies are weak signals
within the overall changes in observed or modeled concentrations. This signal can be further
confounded when investigating the impacts of emission reductions on human health. Although
air quality observations taken at various locations represent the “ground truth”, these
observations are often limited in terms of spatial and temporal coverage. Air quality models can
predict pollutant concentrations over a given spatial domain, but the modeled values are
uncertain due to model input errors and the model’s inability to perfectly simulate the various
physical and chemical processes occurring in the atmosphere. To alleviate these problems, four
techniques that statistically combine air quality measurements with model output to produce
high-resolution ambient pollutant concentrations are considered here to better characterize air

quality in a study area encompassing New York State for the 2001 ozone season. These
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improved air quality surfaces may reveal associations between pollution levels and health
outcomes not discernable before.' _

Several investigators 2”7 have applied techniques, such as the Kalman Filter and ensemble
approaches, to adjust forecasted meteorological variables and air pollution concentrations using
observations. Gego et al.® and Hogrefe et al.’ applied bias-adjustment ap'proaches to predict air
pollutant concentrations for use in health studies. Hirst et al.'” used a hierarchical modeling
approach to combine measﬁred and modeled deposition values to estimate long-range transport
of air pollutants in Europe by modeling the underlying (unobserved) "true" deposition process as
a function of two stochastic components; one non-stationary and correlated over long distances,
and the other describing variation within a grid square. Fuentes and Raftery ! used a Bayesian
approach to combine observed and modeled dry deposition pollutant concentrations to improve
spatial predicti;:ms, evaluate the model and remove the model bias. Similar to Hirst et al. 0.
Fuentes and Raftery'' assumed the model output and available observations can be represented
as a function of an unobserved ground truth plus error and bias terms. McMillan et al.' defined
an approach used in this study (discussed later in the paper) that again applies a hierarchical
Bayesian approach to predict ozone concentrations, but extends the model to include a temporal
dimension using an autoregressive structure.

Although varying in their approach, the intent of these statistical data combination
techniques is to retain the strongest components of each data type (i.e., observations and model
outputs) to best represent the pollutant of concern. For example, observations are the best
representation of the “true” pollutant concentration value at a given site and time, however,
depending on the network and the chemical being measured, the spatial and temporal extent may
be limited. Classical interpolation of observed concentrations helps to “fill-in” the spatial and
temporal gaps, but tends to produce overly smoothed results. Three-dimensional deterministic
air quality models, such as the Community Multiscale Air Quality (CMAQ) model®, can
estimate pollutant concentrations across a uniform spatial and temporal scale. However, the
accuracy of these estimates is based on our uncertain understanding of the physical and chemical
processes underlying the formation, interaction and fate of atmospheric pollutants, and errors in
the model input (e.g., emissions, meteorology, boundary conditions). - Even a perfect model with
perfect model input cannot reproduce the observations exactly since random variations

embedded in the observations taken at individual monitoring locations are not explicitly



94  estimated in current regional-scale models. Thus, an observation reflects a single event out of a
95 population, whereas, the modeled concentration represents the population average. Moreover,
96  the predictions from a deterministic model represents the volume-averaged concentration for the
97  grid cell while observations at a given monitoring location reflect point measurements. '
98 Figure 1 illustrates some of the strengths and weaknesses inherent in the modeled and
99  observed data used in this study by displaying the modeled, observed and interpolated (kriged)
100  surfaces for the domain encompassing New York State for June 13, 2001. On this day, the
101  interpolated observations appear to be overly smooth and miss the “hot spots” generated by
102 cmissions from significant sources of ozone precursor chemicals captured by the model. The
103 modeled surface shows the effects of titration in the area of New York City (NYC) where high
104 nitrogen oxide (NO) emissions “scavenge” ozone creating areas of low ozone concentrations
105 around the emission source. If these local features are measured, kriging tends to smooth them
106 out. The model captures this important feature, but may overestimate the extent of the titration
107 effect. Thus, capturing “hot spots” and other spatial gradients that may be smoothed out by
108 kriging, yet correcting the bias that may exist in model estimates may produce improved air
109 quality surface concentrations critical to detecting health impacts. In this study, we apply
- 110 statistical combination techniques that integrate the observed concentrations with the model
I1T  estimates to optimize the strengths of each dataset. We focus on the summer of 2001 for the
112 New York State (NYS) domain as a pilot study to demonstrate the use of these enriched air
113 quality data in an epidemiological health study and risk assessment for NYS.
114
115 APPROACH
116 Four techniques ranging from relatively simple to complex, are investi gated here for
117 combining observed and modeled ozone concentrations for a domain in the greater NYS area
118  from June 1 through August 31, 2001 (Figure 2). The focus of this investigation ié on providing
119 the daily maximum 8-hr ozone concentrations to state health assessors for their use in
120 investigating relationships between air quality and human health endpoints (e.g., respiratory
121 related hospital admissions) across multiple years. The daily maximum 8-hr ozone
122 concentrations used in the study were calculated from observations and from CMAQ model
123 predictions. Four statistical combination techniques were applied to the observed and modeled

124 data to produce combined daily maximum 8-hr ozone concentration surfaces onal2kmx 12 km



125 spatial grid for a total of 92 days in the summer of 2001. These combined surfaces were
126 quantitatively compared through cross-validation and qualitatively compared through analysis of

127 the spatial surfaces produced by each of the methods.

128
129 Observations
130 Hourly ozone observations for June 1 through August 31, 2001 were obtained from: (1)

131 the Environmental Protection Agency’s (EPA) Air Quality System (AQS) database
132 (http://www.epa. gov/oar/data/agsdb.html) and Clean Air Status and Trends Network

133 (CASTNET) ( http://www.epa.gov/castnet/); and (2) the Canadian Environmental Assessment
134 Agency’s National Air Pollution Surveillance Network (NAPS) (http://www.etc-

135 cte.ec.ge.ca/publications/napsreports e.html ). All monitoring networks provided hourly

136 concentrations for each day in the summer with a total of 200 sites (139 AQS sites, 52 NAPS
137 sites and 9 CASTNET sites). Information on the quality assurance conducted for each network
138 can be found on the websites provided above. The daily maximum 8-hr ozone concentrations
139 were calculated by applying an 8-hr moving window to the hourly time series and selecting the
140 8-hr time window with the highest ozone concentration value (referred to as the 8-hr maximum

141 daily average (MDA) throughout the paper). Only those days having greater than 20 hours of
142 data were used for computing the MDA.

143
144 _ Model Output
145 Ozone 8-hr MDAs were calculated from the hourly concentration values simulated by

146 EPA’s CMAQ model, version 4.5. Specifically, the simulated concentrations for June 1 through
147 August 31 were extracted from the 2001 annual simulation with 12 km x 12 km horizontal grid
148 cells. The meteorology and emissions inputs for this simulation were from the Fifth-Generation
149 NCAR / Penn State Mesoscale Model (MMS5) and EPA’s 2001 National Emissions Inventory,
150  respectively. The 12-km simulation encompassed most of the eastern United States (U.S.) and
151 was nested within a 36 km x 36 km horizontal grid simulation covering the contiguous U.S.

152 using the same model configuration as the 12-km nested simulation. Boundary conditions for
133 the 36-km simulation were provided by a global chemical transport model (GEOS-CHEM)."
154 Several evaluations'*?' have been done of the CMAQ model. In particular, Appel et al. *

155 evaluated the CMAQ annual simulation used in this study and found that the median observed
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and predicted ozone concentrations correspond well between 10 a.m. and 6 p.m. which are the
hours that typically makeup the 8-hr MDA. Appel et al.2% also report that the model consistently
over-estimated low concentrations and under-estimated hi gh concentrations of ozone. Additional
details on the CMAQ simulation used in this study and the evaluation of the simulation results

can be found in Byun and Schere'® and Appel ct al.??, respectively.

Statistical Combination Techniques

The four techniques investigated for combining the observed and modeled values are:
additive bias adjustment, multiplicative bias adjustment, weighted average, and hicrarchical
Bayesian. The application of each of these techniques resulted in a spatial surface (12 km
horizontal resolution) of 8-hr MDA ozone concentrations (ppb) for each day of the summer in
2001. In general, the bias adjustment approaches modify the modeled surface concentration
values by accounting for bias in the modeled ozone concentrations. The weighted-average
approach uses weights for the interpolated observations and modeled surfaces based on a relative
accuracy of each surface at each grid cell, and the hierarchical Bayesian approach treats both the
observations and the model concentrations as representing a true surface and calculates model
parameters using a Markov Chain/Monte Carlo technique.

Interpolated Observations. In addition, 8-hr MDA ozone observations were interpolated
with a kriging approach that applies a Matern spatial correlation function? to produce daily 12
km x 12 km maps. For each day of the study, the parameters for fhe Matern covariance function
were estimated using the restricted maximum likelihood estimation technique. Kriging was
performed to estimate the concentration at the grid center-point rather than block kri ging since -
the results of the two techniques were similar.'* Differences in the spatial correlation structure
along different directions (anisotropy) was also accounted for in the model. This same kriging
approach was used in the bias-adjustment approaches and the weighted-average technique
discussed below.

Additive Bias Adjustment. The additive bias was calculated by subtracting the modeled
value from the observed value at each observation site for each day. This bias was then
interpolated to a 12 km x 12 km grid structure using the kriging method explained above to
match the model grid structure. To derive the final corrected ozone concentration value, the

interpolated bias fields were added to the modeled values as follows:
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O™ =C; 40 (1)

-

C;1s C; kriged to estimate the grid-cell center bias values. C; is calculated as follows:
G= Of”’ — Of“-“i (2)

Where i refers to ozone monitor i, j refers to the grid-cell center point of a 12 km x 12 km

horizontal grid structure (variables are also indexed by day, but this designation is omitted for
simplification); C refers to the estimated kri ged bias; O™ refers to observed ozone

concentration value; O™ refers to modeled ozone concentration val ue; and O°°" refers to the
corrected ozone concentration value.

Multiplicative Bias Adjustment. The multiplicative bias was calculated by dividing the
observed value by the modeled value at each observation site for each day. Similar to the
additive bias approach, the bias ratio was interpolated to a 12 km x 12 km grid structure using
the kriging technique described above. However, because large ratios can result in those cases
where the modeled value is small in comparison to the observed value, the ratios were log-
transformed before interpolating and then back-transformed before multiplying the ratios by the
model surface. .The corrected ozone concentration values were calculated as follows:

05" =C; x Ot 3)

-

C; 1s Cikriged to estimate the grid-cell center bias values. C; is calculated as follows:

obs
o Of

=
or

(4)

Neither the additive or multiplicative bias adjustment approaches calculate an error

estimate.

Weighted-average. This technique used the kriging interpolation method described

above to calculate a gridded surface based on the observed values. The final estimated ozone

concentration was calculated using a wei ghted average of the observation-based estimate, O;"fgf ;
and the CMAQ output value, O;““d . The following statistical model was used to combine these
two sources of information about the true (unknown) ozone concentration, O}, at grid cell j:

krig __ ytrue Z
Oj —Oj +£;;

& ~(0,0%) 5)
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O;'“d =07 +1;; n; ~ (0, 0',1_) (6)

This statistical model does not rely on any assumptions about the distribution of the errors, £ ; and

- 17;, except that they each have mean zero and known variances, o-jj_ and o , respectively. The

final weighted average estimate at each grid cell is:

O Icorr i wjojkrig + (1 _ Wj )OJde (7)

g

The weights are determined by minimizing the mean square error of O ;" Using this least

2

O'_,?}_

squares approach, the weight factor is defined as: w, = :
o, +0

2z
",

The kriging analysis provides an estimate for the error variance , o;fi , for each grid cell
based on the covariance structure of the observed ozone. This estimated error variance accounts
for measurement error in the observations and for uncertainty in the kri ging prediction, due to
sparseness of the monitoring network and the heterogeneity of the underlying unobservable
ozone field. Since the uncertainty in the model output is more difficult to characterize, the error

variance for the model values is held constant across all N grid cells and is set equal to the
maximum kriging error variance for a given day: o} = max j(ofi ) forj=1, ..., N. This choice

for the model error variance was made because it produced the following properties for the final
estimate. At locations where the kriging error variance is large (e.g. in regions of very few
monitors), the kriging estimate will be given less weight than at other locations; but its wei ght is
never less than half that of the model. In grid cells that contain a monitoﬁng site, the kriging
estimate will be weighted more heavily as compared to the modeled value. Thus this approach
uses the error variances to quantify the relative quality or accuracy of the observation-based

gridded concentrations compared to the model output. In addition, the error variance of the final

2 .2
g0

+o

estimate is the ratio:
o

L

2"

=3
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Hierarchical Bayesian Modeling (HBM). A Bayesian hierarchical space-time fusion
modeling approach'? has been developed for integrating various sources of air quality data. This
flexible model was developed to provide daily pollutant predictions over the continental U.S. for
multiple years. In this application, the HBM model was applied to estimate ozone concentration
values for the greater NYS domain (Figure 1) for the summer of 2001. Bayesian analysis
decomposes the modeling problem into linked stages: 1) air quality monitoring data; 2) CMAQ
output; 3) measurement errors and CMAQ bias; and 4) the underlying “true” concentration
surface. A Bayesian approach incorporates “prior knowledge’ of the unknown parameters which
results in improved estimation of the uncertainty of the ‘true” pollutant surface at any location in
space and time. This model assumes that both mo.nitoring data and CMAQ output provide good
information about the same underlying pollutant surface, but with different measurement crror
structures. Discussion of the choice of parameters used and additional details on the overall

HBM approach can be found in McMillan et al.'?

Comparison of different techniques

The interpolated observations and combined surfaces resulting from each of the
techniques described above were evaluated using cross-validation. Selection of cross-validation
sites used in an evaluation can present many challenges. In this study, the number and location
of the ozone monitors was relatively dense. However, because monitors are sometimes placed to
determine compliance with regulatory exceedance thresholds, the monitors tend to be clustered
around urban areas (Figure 2). As a result, random selection of monitors can result in a
relatively large number of urban sites. This tendency can bias the results of the evaluation to
favor the interpolated observations as interpolation will always perform best in those areas where
there are many monitors. In addition, the clustering of monitoring sites in urban areas can result
in under-representation of rural areas. In order to ensure that rural areas as well as urban areas
were represented in the selection, the observation sites were overlaid on the 2000 Census Bureau
urban metropolitan area boundaries using a Geographical Information System to determine
whether the observations were in a rural or urban environment. Cross-validation sites were then
selected in two steps: (1) 7 rural CASTNET monitoring sites were used for cross-validation; and
(2) 20 sites were randomly selected from the AQS and NAPS networks for a total of 27 sites and
2,454 observations (Figure 3). Four of the 27 randomly selected AQS and NAPS sites were
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designated as rural, resulting in a total of 11 rural sites (7 CASTNET sites + 4 AQS/NAPS sites)
and 16 urban sites. These obscrvations were set aside for cross-validation and all methods
utilized the remaining observations to generate the combined surfaces.

The coefficient of determination (R2), mean bias, and root mean square error (RMSE)
were calculated between the observed value at the cross-validation site and the modeled output,
interpolated observation and cach of the three combination techniques for all 92 days of the
summer. In addition, time series plots were generated to evaluate the error for each day at all
sites. Rz, mean bias and RMSE were also compared for urban sites versus rural sites, and by
network (AQS, NAPS and CASTNET), however, these latter analyses are not shown as they did
not result in substantial differences among the different data combination techniques.

In order to assess how the various combination fechniques compared across different
percentiles, the observed concentrations used in the cross-validation were ranked by
concentration level, and then binned by non-uniform percentiles (0-50", 50"-75", 7590 9.
95M and 95M-1 00). The matching cross-validation surface reéults for each technique were also
binned, and the binned values were compared to the binned observations through scatterplots. In
addition, the error (predicted — observed) for each technique was calculated and averaged fof
each bin, allowing for all techniques to be shown on one line plot. Finally, the spatial features of
the combined surfaces were qualitatively assessed by comparing the spatial maps (i.e.,
concentration estimates at each 12 km x 12 km grid cell) produced by the three combination
techniques, the model and the interpolated observations. For the spatial analysis, maps
displaying the mean, median, various percentiles, standard deviation, coefficient of variation

(standard deviation/mean) were examined. Only the most relevant of these maps are included in

the paper.

RESULTS AND DISCUSSION

Of the four combination techniques, the additive and multiplicative bias adjustment
approaches were the easiest methods to use. The HBM approach was the most complex model,
requiring specification of prior distributions for all model parameters. Related to this
requirement, estimating the model error parameter for both the weighted-average and HBM
approaches was ﬁrob]ematic as this value is unknown. In the near future, however, use of

ensemblc runs may improve our ability to cstimate the model variance. It should also be noted

10
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that the weighted-average and HBM approaches were the only combination techniques compared
in the study that provided an estimate of predicted error. This estimate of predicted error can be
important for some applications.

For the standard metrics examined, the cross-validation produced similar results for all
four combination techniques and the kriged observations (Table 1). The RMSE for the four
combination techniques and kriged observations was within 1.4 ppb of each other, and the mean
bias was within 1.05 ppb of each other. R? ranged from 85 to 88 percent. The metrics also
indicated that all four combination techniques substantially improved the modeled surface (R? of
0.66).

The percentile rank-ordered analysis, however, revealed interesting differences among
the combination techniques and the interpolated observations. Fi gure 4 displays scatterplots
(predicted versus observed), hi ghli ghted by color code to depict the percentile range. Note that
the weighted- average and HBM techniques correct the model bias fairly well at the lower _
percentiles, but follow the scatterplot pattern of the raw modeled output at the higher percentiles.
The additive and multiplicative bias techniques follow the one-to-one line closely, indicating that
a simple correction of the model bias may be effective for improving the spatial characterization
of ozone concentrations.

Although cross-validation often favors kriging of the ozone observations (due to the
concept discussed earlier of randomly selecting cross-validation data from clustered monitoring
sites), the bias-adjustment techniques produce sli ghtly better results than kriging at the higher
percentiles. This same difference is evident in the error plots in Figure 5. The tendency of the
CMAQ model to overestimate low ozone values and underestimate hi gh ozone values can be
clearly seen. Similar to the scatterplots, the wei ghted-average and HBM techniques appear to
correct this overestimation at the lower ozone concentrations, but do not do as well at
reproducing the observed ozone concentration levels at the higher percentiles (it should be noted
that the HBM technique was designed to provide Bayesian predictions over large national spatial
scales rather than the small regional domain of this study.) The additive and multiplicative bias
adjustment approaches appear to perform best across all percentiles, slightly out-performing the
kriging of the observations at the higher percentiles as noted carlier. Although it is recognized
that inferences from the smaller sample sizes in the higher percentile bins must be done with

caution (sample size ranges from 370 to 123 site-days for the three highest percentile bins), the

11
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sample sizes range from 5% - 15% of the total sample size of 2,454 site-days, providing credence
to the results discussed above.

In addition, the spatial texture scen with the combined surfaces indicates that model-
based spatial informélion seen in CMAQ is retained with the combined surfaces. Figure 6 shows
8-hr MDA ozone values for the (a), CMAQ model (b) kriged observations and (c) multiplicative
bias adjusted values for two representative days on June 7, 2001 and July 19, 2001. Note the
overly smooth surfacc inherent in the inierpolated observations and the influence of the model in
the spatial texture of the combined surface. Figure 7 shows the mean concentration values for
each grid cell. The model estimates of the ozone titration effect near NYC and Boston can
clearly be scen in the modeled surface. The measurements in these same areas also show low
ozone concentration values; however, these low values are averaged out by the interpolation. In
addition, high ozone values are predicted by the model over the Great Lakes and the Atlantic
Ocean due to lower planetary boundary layer heights, stable atmospheric conditions, and reduced
turbulence and deposition; all physical processes known to exist over large waterbodies. Ozone
measurements taken over Lake Michigan and aircraft observations over the coastal areas of the
Northeast indicate the presence of high ozone concentrations over large waterbodies which the
model seems to capture >*?°. Similar to titration in the urban core, the interpolated observations
do not show this physical phenomenon. Since the purpose of this study is to provide improved.
air quality data for health studies, the difference in the estimation of titration is particularly
relevant as this physical phenomenon can occur in highly-populated areas.

The coefficient of variation (Figure 8) calculated for all days at each grid cell reveals a
problem introduced by the large standard deviation values (relative to the mean) produced by the
titration effect in both the additive and multiplicative bias adjustment approaches. For example,
the coefficient of variation is high for the multiplicative bias surface near Staten Island and
Boston for which the model predicts low 0zone concentration values duc to titration. These hi gh
coefficient of variation values are the result of large differences between the modeled and
observed concentrations that result in very large observed-to-modeled ratios‘(Eq 4; Figure 9a).
Kriging the ratios and multiplying them by the model surface creates high ozone concentrations
in the non-titrated area surrounding the titrated area (Fi gure 9b). While selection of a cross-
validation site in one of the impacted areas may have changed the results, this effect occurs for

less than 0.03% of the total concentrations and for only 3 days during the 92-day time period. In

12



addition, the high observed-to-modeled ratios do not produce excessively high ozone

concentrations except for over the ocean outside of Staten Island where the population is low.

SUMMARY

The cross-validation results of this pair-wise comparison using standard statistical metrics
did not reveal a large difference among the four combination techniques, but did reveal that all -
techniques provide improved estimates of 8-hr MDA ozone concentrations as compared to the
model surface alone. The percentile analysis of the cross-validation results revealed interesting
results not discerned by the all-days/all-sites metrics alone. The percentile analysis indicated that
the additive and multiplicative bias adjustment techniques tended to improve the combined 8-hr
MDA ozone concentrations at the higher percentiles as compared to the other techniques,
including kriging the observations. Further analysis of the resulting spatial surfaces, however,
revealed problems with the additive and multiplicative bias adjustment approaches introduced by
the modeled titration effect, yielding artificially high ozone concentration values in adjacent
cells. This problem, though, occurred for less than 0.03% of the total concentrations on only 3
days of the total summer, and primarily over waterbodies where the population is low. The
qualitative spatial analysis performed supported that the combination techniques added spatial
information from the model as compared to kriging the observations alone. In the case of this
study, the intended application of the combination approach is to provide improved air quality
surface maps for conducting epidemiology studies in NYS. The additive and multiplicative bias
adjustment approaches are considered appropriate for this application because; (1) accurately
representing days of high-ozone concentrations is important for the health study of interest and
the additive and multiplicative bias adjustment approaches out-performed the other methods at
the higher ozone concentration percentiles, (2) the additive and multiplicative bias adjustment
approaches are relatively simple and can readily be applied by the state health community, and
(3) to date, estimates of predicted error produced by the HBM and weighted average approaches
are not generally used in health studies. However, as epidemiology studies move towards the
use of predictive distributions, more complex approaches such as HBM may be needed to
estimate prediction error. Finally, these results are limited in applicability to the domain,

pollutént and time period studied.
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Table 1. Cross-Validation Results

Table 1: Cross-Validation Results
Ozone 8-hour Maximum Daily Averages
_ s e RMSE Mean Bias
CMAQ Only 11.70 0.88 0.60
Kriged Observations 6.40 0.49 0.88
Additive Bias Adjustment 6.80 0.33 0.86
Multiplicative Bias Adjustment 6.80 0.05 0.86
Weighted average 6.70 0.50 0.88
Hierarchical Bayesian 7.80 110 0.85
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Figure 1: Ozone 8-hr MDA (ppb) for June 13, 2001: (a) modeled, (b) observed and (c) kriged

observations. Kriging smoothes the hotspots whereas, the model may over-predict titration in
NYC.

Figure 2: Domain and observations used in study. Solid circles show location of AQS sites,
triangles show NAPS sites and squares show CASTNET sites. Open circles highlight sites

clustered in urban areas.

Figure 3: Location of cross-validation sites. Circles denote NAPS sites, triangles denote

CASTNet sites and diamonds denote AQS sites.

Figure 4: Observed (y-axis) and predicted (x-axis) 8-hr MDA ozone (ppb) binned by percentile
for cross-validation sites. Black = 0-50%, red = 51-75%, orange = 76-90%, blue = 91-95%,
green = 96-100%.

Figure 5: Mean error (binned by percentile) between modeled, kri ged and the four combination
techniques versus mean observed concentrations for all cross-validation sites. Circles represent
average mean for each binned percentile; lines are for identification of technique but do not

represent linear relationships between averaged points.

Figure 6: Contribution of spatial information from model in combined surface of 8 hr MDA.
Column (a) is modeled surface, column (b) is interpolated observations and column (c)is

multiplicative adjusted bias. Top panels are for June 7, 2001 and bottom panels are for July 19,
2001.

Figure 7: Mean 8-hr MDA ozone concentrations across all days for (a) modeled, (b) kriged
observations, (c) multiplicative bias, (d) additive bias, (e) weighted average, and (f) HBM.
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Figure 8: Coefficient of Variation calculated for 8-hr MDA ozone concentrations across all days
for (a) modeled, (b) kriged observations, (c) multiplicative bias, (d) additive bias, (€) weighted
average, and (f) HBM.

Figure 9: Maximum values of (a) observed-to-modeled ratios (eq 4) and (b) 8-hr MDA ozone

concentrations resulting from the multiplicative adjusted bias approach.
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Figure 1: Ozone 8-hr MDA (ppb) for June 13, 2001: (a) modeled, (b) observed and (c)
kriged observations. Kriging smoothes the hotspots whereas, the model may over-predict
titration in NYC.
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Figure 3: Location of cross-validation sites. Circles denote NAPS
sites, triangles denote CASTNet sites and diamonds denote AQS
sites.
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Figure 5: Mean error (binned by percentile) between modeled, kriged
and the four combination techniques versus mean observed
concentrations for allcross-validation sites. Circles represent average
mean for each binned percentile; lines are for identification of technique
but do not represent linear relationships between averaged points.
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Figure 7: Mean 8-hr MDA ozone concentrations across all days for (a) modeled, (b) kriged
observations, (c) multiplicative bias, (d) additive bias, (e) weighted average, and (f) HBM.
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Figure 9: Maximum values of (a) observed-to-modeled ratios (eq 4) and (b) 8-hr MDA ozone
concentrations resulting from the multiplicative adjusted bias approach.



