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Abstract

Atmospheric concentrations of total nitrate (TNO3), defined here
as gas-phase nitric acid plus particle-phase nitrate, are difficult to sim-
ulate in numerical air quality models due to the presence of a variety
of formation pathways and loss mechanisms, some of which are highly
uncertain. The goal of this study is to estimate the relative importance
of these different pathways across the eastern United States by identi-
fying empirical relationships that exist between TNO3 concentrations
and a set of covariates (ammonium, sulfate, ozone, wind speed, rela-
tive humidity, and precipitation) measured from January 1997 to July
2004. We develop two dynamic statistical models to quantify these
relationships. A major advantage of these models over typical linear
regression models is that their regression coefficients can vary tempo-
rally. Results show that TNO3 is sensitive to ozone throughout the
year, indicating an importance of daytime photochemical production
of TNO3, especially in the Southeast. Sensitivity of TNO3 to resid-
ual ammonium (NH+

4 − 2SO2−

4 ) is most pronounced during winter,
indicating a seasonal importance of gas/particle partitioning that is
accentuated in the Midwest. Using a number of physical and chemi-
cal explanations, confidence is established in the spatial and temporal
patterns of several such empirical relationships. In the future, these
relationships may be used quantitatively to improve our mechanistic
understanding of TNO3 formation pathways and loss mechanisms in
the atmosphere.
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1 Introduction

Nitrate is one of the major components of fine particulate matter (PM2.5)
across the United States (Malm et al., 2004), but it is one of the most difficult
components to simulate accurately using numerical air quality models (Yu et
al., 2005). Due to its semivolatile nature, nitrate partitions rapidly between
gas-phase nitric acid (HNO3) and fine particulate nitrate (NO−

3 ). Therefore,
accurate simulations of particulate nitrate require knowledge of the total
nitrate (TNO3) concentration as well as the partitioning behavior of TNO3

into HNO3 and NO−
3 . Thermodynamics of the inorganic aerosol system

have been studied in detail over the past few decades (Ansari and Pandis,
1999; Zhang et al., 2000; references therein), making it possible to determine
quite accurately the partitioning behavior of TNO3. However, numerical
simulation of ambient TNO3 concentrations remains a significant challenge
(Appel et al., 2008) because various atmospheric formation pathways and
loss mechanisms exist and some of them are highly uncertain.

During the day, TNO3 is produced predominantly by the following chem-
ical reaction:

NO2 + OH → HNO3 (R1)

At night, TNO3 is produced by a series of reactions:

NO2 + O3 → NO3 + O2 (R2a)

NO2 + NO3 → N2O5 (R2b)

N2O5 + H2O → 2HNO3 (R2c)

The N2O5 hydrolysis reaction (R2c) occurs in the gas phase and on particle
surfaces, but its rate is highly variable and uncertain (see Brown et al., 2006;
Davis et al., 2008.).

In general, TNO3 may be removed from the atmosphere by wet deposi-
tion (i.e., rain out) and dry deposition. Wet deposition rates are strongly
dependent on precipitation, whereas dry deposition depends on the par-
titioning of TNO3 between the gas and particle phases because the dry
deposition velocity of HNO3 is significantly greater than that of NO−

3 .
For effective air quality management, it is of interest to know the relative

importance of each TNO3 production and loss pathway at different times
and locations. The only available method for accomplishing this objective
involves the use of numerical air quality models (Gipson, 1999; Alexander
et al., 2009), but those results are subject to the rather large uncertainties
in several of the modeled processes. An alternate approach is to identify
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empirical relationships that exist between TNO3 concentrations and a set of
observed variables that act as surrogates for the different TNO3 formation
and loss pathways. To quantify these empirical relationships, we employ the
Reparameterized Dynamic Space Time Models (RDSTM) developed by Lee
and Ghosh (2008). We use ln(TNO3) as the response variable and consider
the following variables as explanatory or predictor variables within a re-
gression model framework: sulfate (SO2−

4 ), ammonium (NH+
4 ), ozone (O3),

temperature (T), relative humidity (RH), wind speed (WS), precipitation
(P), solar radiation (SR), and dew point temperature (Td). The RDSTM
allows us to estimate dynamic relationships that may vary in time between
ln(TNO3) and the explanatory variables. In the future, this empirical infor-
mation may be useful to diagnose and improve numerical air quality model
predictions of ambient TNO3.

Although we use the recently developed RDSTM framework for our data
analysis, there are many other interesting and sophisticated models that
could also be used to analyze data sets like ours. In recent years, there
has been widespread attention in the statistical literature given to space-
time data (Mardia and Goodall, 1993; Cressie, 1993; Mardia et al., 1998;
Kyriakidis and Journel, 1999; Wikle and Cressie, 1999; Brown et al., 2000;
Stroud et al., 2001; Kent and Mardia, 2002; Gelfand et al., 2005; Sahu and
Mardia, 2005). In particular, environmental problems which are commonly
temporally rich in data have motivated an extensive use of multivariate time
series analysis techniques (Guttorp et al., 1994; Carroll et al., 1997). Often
the primary interest in modeling space-time data is to predict the time evo-
lution of a response variable over a given spatial domain. Typically, such
predictions are made from data observed on a number of variables which
themselves vary over time and space. Statistical models are employed in
order to obtain accurate predictions of a response variable, such as concen-
trations of an air pollutant. Such models, if appropriately chosen, allow for
accurate forecasting for near-future time periods and interpolation over the
entire spatial region of interest.

Various approaches have been proposed to model space-time processes
(Kyriakidis and Journel, 1999). One can consider the space-time problem
from a multivariate geostatistical perspective, which requires that the space-
time covariance functions be specified (Cressie and Huang, 1999; Gneiting,
2002; Schmidt and O’Hagan, 2003; Banerjee et al., 2004, Section 8.3). This
approach has been limited in that the known class of valid space-time co-
variance functions is quite small, and such covariance functions are often
not realistic for complicated dynamical processes. In addition, high dimen-
sionality of these space-time models may prohibit practical implementation,
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which can perhaps be avoided by our RDSTM framework.
Space-time processes can also be considered from a multiple time series

perspective. That is, each spatial location is associated with a time series.
Then, multivariate time series models can be used to analyze the space-
time data (Gelfand et al., 1998, Kyriakidis and Journel, 1999; Shumway
and Stoffer, 2000). Such methods have been difficult to implement in cases
where dimensionality is high, that is, the number of spatial locations is large,
e.g., for our nitrate data there were 33 locations in the eastern U.S.

Space-time models are often constructed by combining traditional time
series techniques with methods from spatial statistics. In the time series con-
text, popular approaches include ARIMA models (Box et al., 1994) for sta-
tionary data, and dynamic linear models (West and Harrison, 1997), which
allow for nonstationary components such as temporal trends and seasonality.
In the spatial setting, much of the literature revolves around isotropic sec-
ond order stationary models (Cressie, 1993). A limitation of these methods
is that such regularity assumptions may not be valid in practice, especially
when the number of spatial locations is large or we observe volatilities over
a long period of time.

Early attempts to develop space-time models assumed temporal station-
arity. In an early Bayesian application, Handcock and Wallis (1994) con-
sidered the space-time modelling of winter temperature data observed over
a region in the northern United States. They employed stationary Gaus-
sian process models with an autoregressive model for the time series at each
location and carried out separate spatial analyses to study global warming
in each year. Carroll et al. (1997) again used stationary Gaussian pro-
cesses, assuming a separable form for the space-time covariance function to
study ground level ozone. Their model combines trend terms incorporating
temperature and hourly or monthly effects, and an error model in which
the correlation in the residuals is a nonlinear function of time and space, in
particular the spatial structure is a function of the lag between observations.

Many researchers have developed space-time models that allow for non-
stationary components. Guttorp et al. (1994) modeled the spatial covari-
ances of hourly ozone levels using the Sampson and Guttorp (1992) non-
parametric spatial covariance approach. They allowed the parameters of
the model to vary as a function of time of day. Other approaches involving
hierarchical Bayesian models include Wikle et al. (1999) and Waller et al.
(1997). Wikle et al. (1999) analyzed monthly maximum atmospheric tem-
peratures, and Waller et al. (1997) used generalized linear models to map
lung cancer rates in Ohio. Two other notable contributions include Huerta
et al. (2004) and Calder (2007). The latter uses a novel space-time approach
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to a data set obtained from CASTNet.
Despite such a vast amount of literature on spatial and temporal models,

our work based on the RDSTM framework has several distinguishable fea-
tures: (i) there have been no other attempts to investigate spatio-temporal
variability of TNO3 in the statistics literature, though other pollutants (e.g.,
ozone, sulfate) have been examined in detail; (ii) compared to typical linear
regression models, RDSTM as well as several of the space-time models ref-
erenced in the preceding paragraphs have the ability to estimate dynamic
regression coefficients, which are critical for explaining atmospheric TNO3

formation and loss because several dependencies vary seasonally; (iii) our
covariate selection procedure is based on a combination of traditional statis-
tical variable selection coupled with the ability to represent specific atmo-
spheric formation and loss pathways rather than only their ability to explain
the variability in the response variable. This expert-knowledge based scien-
tific method to covariate selection increases the value of our results for the
atmospheric research community.

This article is organized as follows. In Section 2, we describe the obser-
vational data and present some preliminary statistical analyses to identify
the important predictors of TNO3. In Section 3, we provide a brief descrip-
tion of the RDSTM. Results are presented in Section 4 and directions for
future research are discussed in Section 5.

2 Data Description and Exploratory Analyses

2.1 Atmospheric Measurements

All of the data for this study are obtained from the U.S. EPA Clean Air
Status and Trends Network (CASTNet) sites, which are located in rural
areas. A complete description of this network can be found at the website:
http : //www.epa.gov/castnet. This study uses data from 33 sites in the
eastern U.S. which are selected to overlap spatially with the major point
sources of NOX (NO2 + NO) emissions (see Figure 9 in the Appendix).

One of main uses of the U.S. EPA CASTNet data is to evaluate the
ability of deterministic air quality models to simulate the levels of various air
pollutants in the atmosphere. CASTNet data have been used extensively to
evaluate the U.S. EPA Community Multiscale Air Quality (CMAQ) model.
Swall and Davis (2006) used a Bayesian statistical approach to evaluate the
CMAQ model predictions of sulfate aerosol against CASTNet data. Eder
and Yu (2006) and Appel et al. (2008) described full-year evaluations of the
CMAQ model across several monitoring networks including the CASTNet.
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Zheng et al. (2007) compared two statistical methods (the dynamic linear
model method and the generalized additive model method) to estimate ozone
trends in the eastern US and to adjust for meteorological effects. To our
knowledge, none of the previous analyses of CASTNet data sought to capture
a dynamical relationship between TNO3 and other measured variables.

The chemical species used in this study are nitric acid, particulate,
nitrate, sulfate, ammonium, and ozone. Their respective formulas and
units are HNO3 (µmol/m3), NO−

3 (µmol/m3), SO2−
4 (µmol/m3), NH+

4

(µmol/m3), and O3 (ppb). Ozone data are available on an hourly basis,
but the other chemical species are measured in weekly integrated samples
beginning every Tuesday. The maximum hourly O3 values on each day are
averaged from Tuesday to Tuesday to get weekly values. Nitric acid and ni-
trate are summed to get TNO3 (µmol/m3). Residual ammonium (µmol/m3)
is calculated as NH+

4 −2SO2−
4 , and considered in the analysis because it pro-

vides an estimate of the amount of ammonium that is associated with fine
particulate NO−

3 . The factor of two is based on the implicit assumption that
the preferred form of particulate NH+

4 is ammonium sulfate ((NH4)2SO4)
(Malm et al., 2004).

Meteorological variables are also observed at each of the CASTNet sta-
tions. In this study we consider temperature, relative humidity, dew point
temperature, solar radiation, wind speed, and precipitation as covariates for
the statistical analysis. The respective symbols and units used for these
variables are T (◦C), RH (%), Td (◦C), SR (W/m2), WS (m/s), and P
(mm/week). Dew point temperature is calculated from T and RH. The
remaining meteorological variables are measured hourly. To conform to the
weekly chemical measurements, precipitation data are summed over each
week and the other meteorological variables are averaged to obtain weekly
values.

The data used in this study were collected between January 1997 and
July 2004, encompassing 394 weeks. The total number of weeks with avail-
able data for TNO3 and all of the potential covariates varies from station
to station with a maximum of 394 (all weeks observed) and a minimum of
361. On average across all sites, only 3% of the observations were missing.

2.2 Exploratory Data Analysis

An examination of the yearly median values indicates little variation from
year to year in the chemical covariates. An exception to this is O3 where
the median values were higher in 1998 and 1999 than the other years. The
median values for the meteorological covariates also show little year to year
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Table 1: Spearman Rank Correlation Coefficients between Observed Values

TNO3 SO4 NH4 ResNH4 O3 SR T Td WS RH P

TNO3 1.00

SO4 0.27 1.00

NH4 0.58 0.83 1.00

ResNH4 0.38 -0.58 -0.11 1.00

O3 0.09 0.66 0.41 -0.61 1.00

SR 0.06 0.58 0.35 -0.53 0.89 1.00

T -0.09 0.69 0.40 -0.69 0.80 0.80 1.00

Td -0.16 0.63 0.36 -0.63 0.64 0.63 0.91 1.00

WS 0.50 -0.17 0.07 0.45 -0.07 -0.03 -0.22 -0.28 1.00

RH 0.00 0.29 0.30 -0.11 -0.05 -0.09 0.16 0.28 0.00 1.00

P -0.14 -0.10 -0.01 -0.11 0.08 0.03 0.18 0.20 0.05 0.39 1.00

variation. Among the chemical variables, TNO3 shows the greatest site-to-
site variation, while among the meteorological variables, WS exhibits the
largest spatial variation. All of the chemical species show a seasonal pattern
with HNO3,SO2−

4 ,NH+
4 , and O3 having higher values during summer than

in winter. In contrast, NO−
3 and TNO3 are lower in the summer and higher

in the winter. Among meteorological variables, WS peaks in winter, while
T, Td, and SR, are highest during summer. Precipitation tends to peak in
the summer due to convective activity. Relative humidity is lowest in the
spring and reaches peaks in late summer and mid-winter, but these seasonal
variations are not large (see Figures A.1-12 in the appendix of Lee, 2006).

Table 1 summarizes Spearman rank correlation coefficients between pairs
of measured variables. The Spearman rank correlation is a nonparametric
measure of the association between two variables based on the rank of the
observed values of the two variables. It is known to be more robust than
the Pearson correlation coefficient which measures the linear relationship
between two variables (Steel et al., 1997). Table 1 shows that TNO3 is only
marginally correlated with a couple of the potential covariates, illustrating
the difficulties in developing an empirical relationship. High correlations
(0.80 or above) are found between O3, SR, and T, and between T and Td.
These four variables exhibit moderate positive correlations with SO2−

4 (0.58
to 0.69) and negative correlations with residual ammonium ResidNH4 (-0.69
to -0.53). Whereas SO2−

4 exhibits a high correlation with NH+
4 (0.83), its

correlation with P (-0.10) is the lowest (in magnitude) in Table 1. Knowledge
of these correlations assist with the covariate selection process described in
the following section.

A frequency histogram of all available TNO3 data reveals a distribution
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Figure 1: Frequency histograms of TNO3 and ln(TNO3)

that is right-skewed, whereas that of ln(TNO3) more closely resembles a
symmetric and bell-shaped distribution (see Figure 1). Although we use the
terms “ln(TNO3)” and “total nitrate concentrations” in this text, ln(TNO3)
is the response variable in both of the statistical models discussed below. We
also (linearly) standardize the chemical species and meteorological variables
such that the covariates have an empirical mean of 0 and a variance of 1.

2.3 Covariate Selection

Before we apply the RDSTM to CASTNet data, covariates must be selected
carefully, avoiding statistical pitfalls such as multicollinearity, to maximize
our chances of obtaining results that are physically and chemically inter-
pretable. Conventional methods for covariate selection were initially con-
sidered, such as the stepwise approach and best-subsets. These methods
seek to determine the set of covariates that optimally explain the variability
in the response variable. The best-subsets procedure (Miller, 2002) based
on minimizing the mean residual sum of squares selected the following vari-
ables as covariates: SO3, NH3, ResidNH4, O3, Td, WS, T and P, whereas the
LASSO procedure (Tibshirani, 1996) based on a L1-penalization approach
selected all of the above variables except T as covariates.

However, the objective of this study is slightly different from typical
model applications. As discussed in Section 1, we seek to develop empirical
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relationships between ln(TNO3) and a set of covariates that act as sur-
rogates for the different formation and loss pathways. Selecting covariates
which meet this objective is a challenge because very few measured variables
can uniquely represent a single pathway, due to the various interdependent
processes in the atmosphere. For example, the SO3 variable is closely related
with numerous pathways that affect TNO3 concentrations. Both SO3 and
TNO3 originate from similar emission sources (power plants are the main
source of sulfur oxides and nitrogen oxides in rural areas) and oxidation
processes (e.g., reaction with OH), both build up during stagnant meteoro-
logical conditions, both are diluted during periods of high winds, and both
are removed efficiently during precipitation events. Therefore, any model
that includes SO3 as a covariate would deduce that the variability in TNO3

is dominated by the variability in SO3. Such a result would not enhance our
understanding of the relative importance of different TNO3 formation and
loss pathways in the atmosphere. Thus, we opt against using the covariates
selected by either the best-subsets or LASSO approaches.

Instead, we apply our knowledge of the atmospheric processes to select
five covariates that meet the objectives of this study: ResidNH4, O3, WS,
RH, and P. ResidNH4 is an indicator of the gas/particle partitioning be-
havior of TNO3. Nitrate will partition preferentially to the particle phase
(NO−

3 ) when ResidNH4 is large and it will partition to the gas phase (HNO3)
when ResidNH4 is small. Thus, ResidNH4 serves as a surrogate for TNO3

removal by dry deposition (see Section 1). Ozone serves as a surrogate for
the OH radical which plays a major role in the daytime production of TNO3

(see equation (R1)). WS affects all pollutant concentrations through dilu-
tion and also impacts the dry deposition velocities of HNO3 and NO−

3 . RH
may play an important chemical role both at night and during the day. High
daytime RH favors partitioning of TNO3 to the particle phase. At night,
high RH enhances the formation of TNO3 via N2O5 hydrolysis (see equation
(R2c)). Precipitation acts as an atmospheric scavenging agent for TNO3 so
it is a surrogate for TNO3 removal by wet deposition. While making the
above selections, the information in Table 1 is used to avoid multicollinearity
problems. For example, we eliminate SR, T, and Td because they are all
highly correlated with O3.
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3 Reparametrized Dynamic Space-Time Models
(RDSTM)

3.1 The Full RDSTM

The approach taken here is to view the data as arising from a vector-
valued time series where each component of the vector corresponds to a
spatial location. From this perspective, it might be more appropriate to
call our model a reparametrized multivariate time series model instead of
a spatio-temporal model. We adapt to the framework of dynamic linear
models (DLM, West and Harrison, 1997), which describe the temporal evo-
lution of the spatial vector in a latent space. Suppose the response vari-
able Z(s, t) is observed at a finite number of sites labeled as s1, ..., sn at
each time t, where t = 1, 2, · · · ,m. Consider the n × 1 vector time series
Zt = (Z(s1, t), ..., Z(sn, t))

T at time t. For each t, the DLM is usually
characterized by an observation equation and an evolution equation. An
observation equation describes the relationship between the vector of ob-
servations (Zt) and the matrix of regressors (Xt) that takes the form of a
multivariate regression model evolving over time

Zt = Xtβt + νt, νt ∼ N(0,Σν
t ) (1)

where Xt is an n × p observed design matrix (containing a row of 1’s for
the intercept) and βt is a p × 1 vector of regression coefficients or state
parameters. An evolution equation describes the dynamics of the vector of
regression coefficients or state parameters βt through time

βt = Gtβt−1 + ωt, ωt ∼ N(0,Σω
t ) (2)

where Gt is a p × p evolution matrix. There are several ways to model
the Gt’s. The most common assumption is that the Gt’s are structurally
known, possibly up to some finite number of parameters. In our study, we
do not make any structural assumption about the Gt’s but we assume that
Gt = G for all t and that G follows a matrix-valued normal distribution
with mean G0 and variance-covariance parameters Ω0 and ΣG

0 (Nagar and
Gupta, 2000, chapter 2). We also assume that the νt and ωt error vectors
are independent and have multivariate normal distributions with mean 0

and variance-covariance matrices Σν
t = Σν and Σω

t = Σω, respectively, for
all t. The model is completed with a normal prior for the initial state,
β1 ∼ N(β0,Σ

ω
0 ), where β0 is known. Inverse-Wishart distributions (Nagar

and Gupta, 2000, chapter 3) can be used as priors for Σν and Σω.

10



The updating scheme in the dynamic space-time model (which involves
several matrix operations) may not be easy to implement when the G ma-
trix is completely unknown. Further, these types of multivariate updating
schemes can be very unstable and time consuming when the dimensions
are very large and some intermittent observations are missing. In order to
avoid such numerical instabilities and to accelerate model fitting, we use
an equivalent univariate scheme for the aforementioned DLM using a novel
reparametrization method (Lee and Ghosh, 2008).

Suppose Zit denotes ln(TNO3)it and Xitk the kth covariate (centered and
scaled) at site i and time t, where i = 1, · · · , n = 33, t = 1, · · · ,m = 394,
and k = 1, · · · , p = 6. Notice that Zt = (Z1t, · · · , Znt)

T and {Xt}n×p =
((Xitk))1≤i≤n,1≤k≤p. Recall that Xit1 = 1 for all i and t, i.e., the first column
represents the intercept. Then following the work of Lee and Ghosh (2008),
the RDSTM consists of the observation equation that can be written as

Zit =

p∑

k=1

βktXitk +
i−1∑

i′=1

φii′Zi′t + νit, (3a)

Z1t =

p∑

k=1

βktX1tk + ν1t, ν1t ∼ N(0, σ2
ν1) (3b)

where νit ∼ N(0, σ2
νi) for i = 2, · · · , n and t = 1, · · · ,m. In (3) above,

notice that φii′ denotes the entries of the lower triangular matrix of the
Cholesky decomposition TΣνT T = D of the positive definite matrix Σν

where D is the diagonal matrix of eigenvalues (σ2
νi’s) of Σν and T is the

unique lower triangular matrix with φii′ ’s as its lower triangular entries and
all the diagonal entries being equal to unity. The evolution equation can
now be written as

βkt =

p∑

k′=1

βk′t−1gkk′ +
k−1∑

k′=1

ψkk′βk′t + ωkt, (4a)

β1t =

p∑

k′=1

βk′t−1g1k′ + ω1t, ω1t ∼ N(0, σ2
ω1) (4b)

where ωkt ∼ N(0, σ2
ωk) for k = 2, · · · , p, t = 2, · · · ,m and the initial state

equation can be written as,

βk1 = βk0 +
k−1∑

k′=1

ψkk′βk′1 + ωk1, (4c)
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where ωk1 ∼ N(0, σ2
ωk) for k = 2, · · · , p. Here again, ψkk′ denotes the entries

of the lower triangular matrix of the Cholesky decomposition of the positive
definite matrix Σω, and σ2

ωk denotes the kth eigenvalue of Σω.The model is
completed with

β11 = β10 + ω11, ω11 ∼ N(0, σ2
ω1). (4d)

Notice that the multivariate observation model in (1) corresponds to the
system of univariate observation models (3a,b) and similarly, the multivari-
ate evolution model (2) corresponds to the system of univariate evolution
models (4a,b,c,d). Using these univariate reparametrized regression models
we avoid numerical instabilities due to high dimensionality that could occur
in a multivariate scheme. Also, this allows missing data to be imputed from
their full conditional distributions. In addition, by allowing the φii′ ’s to be
completely unstructured, the RDSTM does not require simplifying assump-
tions like stationarity, isotropy, etc. for the spatial covariance function.

Our results from the RDSTM are obtained numerically using a Markov
chain Monte Carlo (MCMC) procedure via the WinBUGS software available
at: http://www.mrc-bsu.cam.ac.uk/bugs/. As our data involves miss-
ing observations, the proposed RDSTM performs univariate imputations
using Gibbs sampling as opposed to multivariate imputations. Gibbs sam-
pling provides a natural solution by imputing values for the missing data at
each iteration by sampling from their full conditional distribution given the
available data. Regression coefficients are then updated conditionally on the
imputed values. We assume that each of the standardized covariates, when
missing, follows a standard normal distribution (i.e., Xmiss

itk ∼ N(0, 1)). We
analyze the data using vague priors (i.e., proper priors with large variance)
on parameters to have minimal impacts on the posterior inference. We assign
independent zero-mean normal distributions with variance 103, denoted by
N(0, 103), as priors to φii′ , ψkk′ and gkk′ , and independent Ga(10−3, 10−3)
priors to 1/σ2

νi and 1/σ2
ωk, where Ga(a, b) denotes a Gamma distribution

with mean a/b and variance a/b2. It can be shown that the above series of
univariate priors corresponds to a special case of the inverse-Wishart prior
for the covariance matrices (Nagar and Gupta, 2000). Notice that the σνi’s
and σωk’s in our full RDSTM represent the eigenvalues of the original condi-
tional covariance matrices Σν and Σω, respectively, and hence the flat priors
(e.g., Ga(0.001, 0.001)) do not necessarily lead to improper posteriors. In
order to check the convergence issue numerically we re-ran our code with
a few other values of a and b and found the parameter estimates virtually
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the same as reported in the next section using the above mentioned default
values. Though we could have used other weakly informative priors for the
parameters, we would not expect the results to differ substantially.

3.2 A Simplified RDSTM

Difficulties encountered while interpreting results of the full RDSTM (see
Section 4.1.2) motivated the development of a simplified model. In partic-
ular, we restrict our attention to Σν

t = σ2
t In, where In denotes an identity

matrix (i.e., a diagonal matrix with diagonal entries as unity). Notice that
the variance term (σ2

t ) is now allowed to change with time t. In other
words, we assume that the TNO3 observations (conditionally on the βt’s)
are spatially independent but we use a site-specific intercept, α, to capture
spatial differences in the mean concentrations. Thus a reduced version of
the RDSTM can now be written as

Zt = α + Xtβt + νt, νt ∼ N(0, σ2
t In), (5)

where Xt is an n × (p − 1) observed design matrix (the intercept term is
omitted) and βt is a (p − 1) × 1 vector of regression coefficients or state
parameters. Notice, that with a little abuse of notation, we are re-using Xt

and βt for this simplified model although their dimensions are not identical
to those in the full model. The evolution equation (2) remains unchanged
except we now express the equation as follows:

βt = β0 + Gt(βt−1 −β0) + ωt, for t = 2, 3, . . . and ωt ∼ N(0,Σω), (6)

where β1 = β0 +ω1. The time-varying variance paremeters σ2
t are modeled

using an exchangeable process, 1/σ2
t ∼ Ga(aν , bν), and an inverse-Wishart

prior is used for Σω. For the reduced RDSTM, the σ2
t ’s represent time-

varying variances of the measurement error process, but these are very well
estimated by borrowing information across various sites at a given time
point t. Hence, a flat prior does not lead to nearly improper posteriors. For
comparison with equation (3a,b), the observation equation in the simplified
model can be written as

Zit = αi +

p−1∑

k=1

βktXitk + νit, (7)

where i = 1, · · · , n, t = 1, · · · ,m, and αi is the site-specific intercept term.
It is noted that the simplified RDSTM still captures the (unconditional)
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spatial correlations among the response variable, and that

Cov[Zt,Zt′ ] = E[Cov[Zt,Zt′ |βt,βt′ ]] + Cov[E[Zt|βt], E[Zt′ |βt′ ]]

= Cov[νt,νt′ ] + XtCov[βt,βt′ ]X
T
t′ ,

is not necessarily a diagonal matrix.
For both versions of RDSTM, we obtain 10,000 iterates using a single

chain from the MCMC sampler. The first 5000 iterates are discarded as a
part of the Markov chain burn-in period, and all the posterior summaries
reported below are based on Monte Carlo estimates from the remaining
5000 iterates. The number of burn-in samples and final MCMC sample
sizes are chosen using trace plots for the parameters. Trace plots of the
sampled values versus the iteration number are examined for evidence of
when the simulation appears to have stabilized to a stationary distribution.
The WinBUGS code developed for this study are available on the journal
website as a part of supplemental materials and can be adapted easily for
applications to other data sets. The full model run takes about 6 hours while
the reduced model takes about 5.2 hours on a Pentium 4 CPU 2.4GHz PC
with 1.00 GB of RAM.

The output from both models are compared based on their predictive
performances. In Section 4.2.1, we obtain site-specific predictive values of
ln(TNO3) using each of the RDSTM versions and compare with the observed
values.

4 Results

4.1 Full RDSTM

4.1.1 Statistical Significance and Stationarity

For every covariate, k, and week, t, the RDSTM provides posterior estimates
(e.g., posterior medians) of the dynamic regression coefficient, βkt. The left
half of Figure 2 illustrates the seasonal variation of β for each covariate.
Weekly β values from the full RDSTM are binned by month-of-year to ob-
tain the boxplot distributions shown. Regression coefficients for ResidNH4

exhibit a distinct seasonal pattern, peaking during the cooler months and
reaching a minimum from July – September. Conversely, the coefficients for
O3 and WS are highest during the summer months. Coefficients for RH and
P do not exhibit a strong seasonal pattern. It is important to note that a
typical linear regression model (LRM) would yield coefficients that are fixed
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in time, thus missing the potentially important dynamic relationships shown
in Figure 2 between ln(TNO3) and the covariates.

To assess the statistical significance of these time-varying relationships,
we check whether or not the 95% equal-tail credible interval (obtained by
computing 2.5% and 97.5% posterior percentiles) for each regression coeffi-
cient overlaps with zero. Alternatively, one may also use Bayes factors to
assess the significance of these time-varying regression coefficients, but we
find significance testing using posterior intervals much simpler computation-
ally for our high-dimensional models. Also, Bayes factors are known to be
sensitive to priors and are not even well-defined when improper priors are
used. We count two separate numbers in each month for all of the covariates.
The first count provides the number of weeks which have significant positive
coefficients (i.e., lower limit of the 95% interval is positive) and the other
counts weeks with significant negative coefficients (i.e., the upper limit is
negative). These counts are summarized in the right half of Figure 2. The
dynamic regression coefficients for ResidNH4, O3, and WS, are found to be
statistically significant during 57%, 54%, and 40% of all weeks in the study
period, respectively.

To gain a better understanding of the stochastic aspects of our results,
we check whether the covariance function obtained from the RDSTM (us-
ing φii′ and σ2

νi) is stationary in nature. To this end, we first compute the
posterior median of each entry of the conditional covariance matrix Σν and
then we obtain the box plots of these posterior medians binned by inter-site
distance and direction to obtain the correlograms in Figure 3. These pro-
vide a measure of spatial autocorrelation as a function of inter-site distance.
In the spatial analysis, generally, correlations at short inter-site distances
(under 100 km) are important to identify the characteristics of the covari-
ance function (e.g., stationary, nonstationary, isotropic, or anisotropic). The
CASTNet sites are somewhat sparse and unfortunately only a few site pairs
are separated by less than 100 km. Hence, our data may be inadequate for
this spatial analysis.

In Figure 3, the X-axis represents the inter-site distance in kilometers
and the Y-axis represents the posterior median of the conditional correlation
between residual ln(TNO3) (after adjusting for predictors) at two different
locations. We also computed three different directional correlograms to see
if such residual concentrations appear to be isotropic. The first correlogram
plot shows that the correlation has a low median value (0.1) at a distance
200km, and it decreases to zero as the inter-site distance increases. The
underlying spatial variations seem to be stationary because the estimated
conditional correlations computed at fixed distance appear to depend only
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Figure 2: Monthly summary of dynamic regression coefficients from the full
RDSTM

16



on distances between two locations. Also the underlying spatial variations
seem isotropic because three different directional correlograms look similar,
which means the conditional correlations are not changing significantly with
direction.

Considering a variety of stationary isotropic structures for the covari-
ance model of the RDSTM, we find that the exponential covariance model
with parameter values of τ2 ≈ 0.029 (nugget), σ2 ≈ 0.008 (partial sill),
and r ≈ 20 (range) has the smallest Frobenius distance (0.031) from the
estimated conditional covariance matrix of RDSTM. Recall that a Frobe-
nius distance between two square matrices is defined as the square root of
the sum of the squared differences between their elements (Golub and van
Loan, 1996, p.55). Hence the exponential covariance model seems appro-
priate to fit the conditional covariance (Σν) of RDSTM. The advantage of
using an unstructured covariance model is that we do not have to make a

priori structural (parametric) assumptions (e.g., stationary, isotropic etc.)
about the covariance. Instead, we can fit our unstructured model, which has
the capability of capturing many features of the covariance, and let our data
decide which structure is most appropriate. Moreover, unlike most spatial-
temporal analyses in the literature, spatial interpolation is not a goal in this
study as spatial smoothing is not even possible since the covariates are not
available at unmonitored sites.

4.1.2 Physical and Chemical Interpretation

The RDSTM results at individual sites are examined in an effort to estimate
the relative importance of different physical and chemical pathways influenc-
ing the ambient TNO3 concentrations. As an example, model results from
the Ann Arbor, MI site are illustrated in Figure 4. To visualize the results
easily, each vertical bar represents a four-week average of RDSTM outputs
rather than the individual weekly results. The solid black line represents
the intercept term, β0t, which is treated as a dynamic variable in the full
RDSTM. The contributions of each covariate to ln(TNO3) during each time
step are shown as red (O3), orange (RH), yellow (WS), green (ResidNH4),
and blue (P) patches. These contributions are computed by the product
βktXitk, in equation 3. Colored patches are plotted above the black line if
the product is postive, and below the black line otherwise. Similarly, the
contributions of spatial terms are plotted in purple. Those are computed
from equation 3a as

∑i−1

i′=1
φii′Zi′t. The model error, νit, is shown as gray

patches.
The small amount of gray area relative to the sum of all colorful patches

17



200 400 600 800

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Omni−Direction

Distance

Rh
o

200 400 600 800

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

0 +/− 30 degrees Direction

Distance

Rh
o

200 400 600 800

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

60 +/− 30 degrees Direction

Distance

Rh
o

200 400 600 800

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

120 +/− 30 degrees Direction

Distance

Rh
o

Figure 3: Fitted spatial correlogram in several directions

18



1

2

5

10

20

T
ot

al
 N

itr
at

e 
[µ

g 
m

−
3 ]

1997 1998 1999 2000 2001 2002 2003 2004

Model Error
Spatial
Precipitation
RH
Wind Speed
Ozone
Resid NH4

Figure 4: Covariate and spatial contributions to total nitrate at the Ann
Arbor, MI site using the full RDSTM

19



in Figure 4 indicates that most of the variability in ln(TNO3) at the Ann
Arbor site is explained by the full RDSTM. However, two aspects of the full
RDSTM formulation encumber our interpretation of Figure 4. First, the
intercept term exhibits a pronounced seasonal cycle that peaks in the winter
and reaches a minimum value every summer. This implies that much of the
seasonal variability in ln(TNO3) is not explained by any of the covariates
and, therefore, is not being attributed to specific atmospheric processes.
From the perspective of air pollution control, it is of little value to know that
TNO3 peaks every winter if the pathways producing that pollution remain
unknown. Second, the spatial term is quite large and swamps the summed
contribution from all observable covariates at many of the CASTNet sites.
This result is also of limited value because it does not enhance our knowledge
of the complex source and sink processes which control TNO3.

Given our primary objective of determining the influence of each TNO3

production and loss pathway in the atmosphere, it is critical that we maxi-
mize the amount of variability in ln(TNO3) that can be tied to those path-
ways rather than to any latent variables. Analysis of the full RDSTM results
motivated our development of the simplified RDSTM. As described in Sec-
tion 3.2, the intercept term is fixed in time in the simplified RDSTM. The
matrix of conditional spatial dependencies, φii′ , is removed, but the inter-
cept is allowed to vary with location to capture spatial differences in the
temporally-averaged ln(TNO3) concentrations.

4.2 Simplified RDSTM

4.2.1 Comparison to Full RDSTM

To establish confidence in the simplified RDSTM, we compare its predic-
tive performance to that of the full RDSTM in Figure 5. Some degradation
in model performance is expected because the simplified RDSTM contains
neither a matrix of spatial terms nor a time-varying intercept. The left
plot illustrates the performance of the full RDSTM, which matches 99.1%
of the observed values within a factor of 2, 96.7% within a factor of 1.5, and
83.8% within factor of 1.25. The analogous performance statistics from the
simplified RDSTM are only slightly lower: 98.9%, 93.3% and 74.7%. We
therefore conclude that the simplified model is a reasonable substitute for
the full RDSTM. It should be noted that the RDSTM performance statis-
tics are substantially better than those of numerical air quality models for
TNO3 (Appel et al., 2008), so the empirical relationships drawn from either
RDSTM will provide unique insights. The only data points which are poorly
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Figure 5: Comparison of performance between the full and simplified models.
Red lines encompass the points where model predictions match the observed
total nitrate concentrations within a factor of 2.

predicted by the RDSTM are those with very low ln(TNO3) concentrations
(i.e., less than 1 µg m−3). From an air quality management perspective,
model performance during such pristine conditions is of minor importance.

One practical advantage of the simplified model over the full RDSTM is
that the former requires far less observational data to make a prediction of
ln(TNO3). Due to the spatial matrix φii′ in the full RDSTM, equation 3a
can be evaluated only on weeks when TNO3 observations are available at all
33 sites. Using the simplified RDSTM, we can predict ln(TNO3) at any time
and location when observations of the 5 covariates are available. Evidence
of this advantage is seen in Figure 5, in which the right-hand plot contains
50% more data points than the left plot.

4.2.2 Covariate Contributions

Having established confidence in ln(TNO3) predicted from the simplified
RDSTM, we may proceed with a physical and chemical interpretation of
the model results. As discussed earlier, our objective is to use the model
outputs to infer the relative importance of each TNO3 formation and loss
pathway as a function of time and location. A convenient way to compute
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the relative contributions from each covariate is

Contribk =
βktXitk∑p−1

k=1
|βktXitk| + |νit|

, (8)

following the notation from equation 7. By definition, the contributions
calculated in this manner range between -1 and +1. The site-specific inter-
cept term, αi, is purposefully omitted from equation 8 to allow comparisons
of the covariate contributions across all sites. Results are summarized by
month in Figure 6. Comparison across months is facilitated by the fact that
the denominator of equation 8 exhibits no discernable seasonal cycle.

Figure 6a indicates that ResidNH4 makes a positive contribution to
TNO3 during the winter months and has little or no impact on TNO3 during
the summer. These results are supported by the following explanation. It
can be seen from the definition of ResidNH4 (NH+

4 minus 2SO2−
4 ) that the

numerical value of this covariate can be zero, positive, or negative. When
the particle-phase NH+

4 is exactly enough to neutralize all of the SO2−
4 ,

ResidNH4 is zero. If there is insufficient NH+
4 to neutralize all of the SO2−

4 ,
ResidNH4 is negative and the particles are acidic. In the eastern U.S., this
often occurs during summer when SO2−

4 levels are high (Ferek et al., 1983).
During those months, we expect most of the TNO3 to remain in the gas
phase and, therefore, be insensitive to the magnitude of ResidNH4. The
RDSTM results are in agreement with this expectation, showing little or
no contribution from the ResidNH4 covariate between April and October
(see Figure 6a). When the ambient NH+

4 concentration is in excess of the
amount required to neutralize SO2−

4 , ResidNH4 is positive. In the eastern
U.S., positive values of ResidNH4 are most often observed during the winter
when SO2−

4 concentrations are lowest. Under these conditions, TNO3 par-
titions favorably to the particle phase and the dry deposition rate of TNO3

decreases substantially (Dennis et al., 2008). Thus, we expect the ambient
TNO3 concentrations to be enhanced during the winter months due to slower
deposition. Again, the RDSTM results are in agreement with this expec-
tation showing positive contributions from the ResidNH4 covariate between
November and March.

The contribution of the O3 covariate to TNO3 is positive during most
months, with the largest relative contributions in June and August (see
Figure 6b). The long summer days coupled with high mid-day solar elevation
angles provide ample solar radiant energy for the photolysis of NO2, which is
necessary for the formation of O3. A number of other reasons also contribute
to the seasonal cycle of O3 concentrations in the eastern U.S., where peak
values are observed every summer. The eventual photolysis of O3 leads to
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ln(TNO3), as defined in equations 8 and 9
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the formation of OH, which is critical to the daytime oxidation of NO2 that
produces TNO3 (see R1). Given the dearth of routine OH measurements, O3

is used in the present study as a surrogate for daytime TNO3 production. It
is therefore encouraging to see positive contributions from the O3 covariate
during most months. The few negative contributions during October and
November result from positive β values during those months multiplied with
negative values of the O3 covariate. The negative covariate values result from
the standard normalization of RDSTM inputs discussed in Section 2.2. It is
surprising that the positive contributions from O3 in January and February
are nearly as large as the summertime O3 contributions and are comparable
in magnitude to the ResidNH4 contributions during the same months. The
high wintertime O3 contributions are explored on a site-by-site basis in the
following section.

Simplified RDSTM results for the meteorological covariates are also quite
interesting. As noted in Section 2.3, WS impacts the dry deposition veloci-
ties of HNO3 and NO−

3 . The WS contribution is negligible from November
through April, whereas a clear negative contribution is seen between June
and September (see Figure 6c). During summer, TNO3 is primarily in the
form of gas-phase HNO3. The deposition velocity of HNO3 is high and very
sensitive to wind speed. In contrast, TNO3 during winter is mostly in the
particle phase. Particulate nitrate has a relatively low deposition velocity so
one would not expect wintertime ln(TNO3) concentrations to be sensitive
to the small, WS-dependent changes in the NO−

3 deposition rate.
The low covariate contributions from RH are a bit surprising. It is

well documented that partitioning of TNO3 to the particle phase is favored
under high RH conditions (Stelson and Seinfeld, 1982), which in turn should
decrease the TNO3 deposition rate. Moreover at night, high RH is expected
to promote TNO3 formation via N2O5 hydrolysis in the gas phase (Mentel
et al., 1996) and on particle surfaces (Kane et al., 2001). For these reasons,
one might expect a positive contribution from the RH covariate during all
months. However, recent field measurements by Brown et al. (2006) imply
that the nighttime formation rate of ln(TNO3) is highly variable and may
depend on a number of factors in addition to RH. Our result, showing a
lack of ln(TNO3) sensitivity to ambient RH (see Figure 6d), is in line with
that recent finding and further indicates that RH is not as influential as
ResidNH4 in dictating the gas/particle partitioning behavior of TNO3.

Precipitation is seen to have a small effect on ln(TNO3) when averaged
by month across all sites. The large number of data points falling below the
box and whiskers during all months (see Figure 6e) is indicative of the fact
that precipitation is temporally variable and, during many individual time
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periods, this covariate has a strong negative effect on ln(TNO3). This result
is anticipated because precipitation serves as our surrogate for wet removal
of TNO3. Furthermore, the simplified RDSTM yields negative values of β
for the precipitation covariate during all months. This means that if pre-
cipitation were to increase during any month while all other covariates are
held constant, ln(TNO3) would decrease. This result is intuitive and sup-
ports the credibility of the RDSTM for estimating the relative importance
of different TNO3 sources and sinks.

Figure 6f also shows the relative contribution of model error, calculated
as

Contriberr =
νit∑p−1

k=1
|βktXitk| + |νit|

. (9)

During each month, the contribution of model error has a median value close
to zero and its distribution is centered evenly about zero. This illustrates
that the simplified RDSTM results are temporally unbiased.

Finally, it is worthwhile to highlight a couple of the unique results shown
in Figure 6 that could not be obtained using a standard LRM in which
the regression coefficients are fixed in time. For example, a typical LRM
would likely yield positive contributions from the ResidNH4 covariate during
winter and negative contributions during summer due to the seasonal sign
change in the ResidNH4 concentrations discussed above. In contrast, the
RDSTM produces a more physically meaningful result showing essentially no
effect of ResidNH4 during summer. Also, a standard LRM would probably
show lower contributions (i.e., more negative) from WS during winter than
summer due to the larger magnitude of surface wind speeds in winter. The
RDSTM produces a very different result showing no sensitivity to WS during
winter.

4.2.3 Site-Specific Analyses

Figures 7 and 8 illustrate the time series of RDSTM results at two sites.
The format of these plots is analogous to that of Figure 4, where the solid
line represents the intercept term, αi, and the colored patches represent the
absolute contributions from different covariates, βktXitk. For visualization
purposes, model results are averaged into 4-week intervals. Results at the
Ann Arbor, MI site (Figure 7) are similar to those at most other midwest-
ern locations. The two most important covariates are ResidNH4 and O3,
and their contributions dominate during winter and summer, respectively.
Wind speed makes a small negative contribution each summer. Results at
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Figure 7: Covariate contributions to total nitrate at the Ann Arbor, MI site
using the simplified RDSTM

the Georgia Station, GA site (Figure 8) are representative of those at other
southeastern CASTNet locations. At these sites, the O3 covariate makes
a substantial positive contribution throughout the year while the contribu-
tions from ResidNH4 and WS are smaller in magnitude and their sign is
more variable. The high wintertime O3 contributions discussed above in
association with Figure 6b are in fact driven by results at the southeastern
sites. In the winter, day length and the elevation angle of the noon sun
increase as one moves south. As a result, climatological maps show an in-
crease in ground level solar radiation incident on a horizontal surface. It
follows that O3 levels and, hence, the daytime production of TNO3 should
be highest at the southern sites. This is what we find in the RDSTM results
(compare red patches in Figures 7 and 8). Low ResidNH4 contributions
are due to lower ammonia emissions in central Georgia as compared to the
Midwest (Gilliland et al., 2006).

In order to further test the validity of our simplified RDSTM, we used
out-of-sample spatial and temporal cross-validation measures. For example,
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Figure 8: Covariate contributions to total nitrate at the Georgia Station,
GA site using the simplified RDSTM

we can withhold observations from a selected number of sites and weeks
and then use the remaining observations to fit the simplified RDSTM and
obtain the posterior predictive distributions of the withheld observations.
Upon finding that the spatial (conditional) correlations are rather weak in
our data set (see Section 4.1.1), we used only temporal cross-validation to
test the goodness of fit by withholding data for the most recent observed
year (i.e., 2004) at some selected sites ( CKT130, OXF122 and ANA115).
Our simplified RDSTM model performed very well by capturing an overall
95.7% of the withheld observations by using 95% posterior predictive inter-
vals across these three selected sites for the year 2004. For sites CKT130,
OXF122 and ANA115, the 95% posterior predictive intervals based on the
simplified RDSTM captured about 96%, 93% and 98% of the withheld ob-
servations, respectively. These additional results indicate that the simplified
RDSTM model is well calibrated and can possibly be used for near-future
predictions of TNO3 concentrations.
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5 Discussion and Future Research

In this study, the statistical model developed by Lee and Ghosh (2008) has
been refined and simplified to increase its utility for atmospheric scientists
and air quality managers. A quantitative understanding of the sources and
sinks of TNO3 is extremely important in the United States, where multi-
million dollar policy decisions are made based on the knowledge of such
physical and chemical processes (NRC, 2004). Rather than drawing atten-
tion to the values of the regression coefficients, which is a focal point in
many statistical analyses, we focus on the absolute contribution of each co-
variate to ln(TNO3) (i.e., βkt × Xitk). In doing so, a few challenges have
been encountered which may motivate future research. Transformation of
the response variable from TNO3 to ln(TNO3) is warranted for numerical
reasons (see Section 2.2), but it hinders the ability to compute covariate
contributions in the native units of TNO3 (µmol/m3) which are desired by
atmospheric scientists. In addition, the (linear) standardization of covari-
ates to have an empirical mean of 0 and a variance of 1 facilitates data
imputation and the fitting of extreme values in the observational data set,
but the resultant sign of βkt × Xitk is physically counterintuitive in some
cases. For example, precipitation is found to make a positive contribution
to ln(TNO3) at many times and locations (see Figure 6e) in spite of the fact
that the β values for precipitation are most often negative. Future efforts
directed at the above issues could further increase the appeal of our model
results to air quality managers.

In Section 4.2, statistical metrics were used to establish confidence in the
simplified RDSTM for reproducing the observed ln(TNO3) concentrations.
More importantly from an air quality management perspective, some confi-
dence is established in the seasonal and spatial patterns of each covariate’s
contribution to ln(TNO3) using a variety of physical and chemical expla-
nations. For example, the RDSTM helped confirm results from numerical
air quality models which suggest that TNO3 concentrations are dominated
by daytime production during summer months and by gas/particle par-
titioning during winter months. The strong negative influence of WS on
summertime TNO3 concentrations confirms the importance of HNO3 de-
position, and suggests that errors in the performance of numerical models
during summer months may be tied to dry deposition velocity formulas.
Finally, the lack of dependence on RH provides useful input in a current
controversy over whether or not the nighttime hydrolysis of N2O5 exhibits
a RH dependence (Davis et al., 2008). In general, the RDSTM results in-
dicate that the ResidNH4, O3, and WS covariates have the greatest impact
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on TNO3 concentrations. The monthly contributions of these three covari-
ates to ln(TNO3) match qualitatively with expectations based on the known
production and loss pathways. The RH and P covariates have a smaller net
effect on ambient TNO3, which is also an informative result.

Though we have focused largely on qualitative aspects of the model re-
sults, we must not overlook that the RDSTM provides a quantitative and ro-
bust empirical relationship between atmospheric TNO3 concentrations and
a set of observable covariates. In the future, this quantitative relationship
may prove useful in improving our mechanistic understanding of TNO3 for-
mation and loss processes. For example, the simplified RDSTM described
in this study can be applied to the outputs of a numerical air quality model
simulation to determine the time-varying relationship between the simulated
TNO3 concentrations and the numerically simulated values of ResidNH4, O3,
WS, RH and P. Then, that quantitative relationship can be compared with
the empirical relationship derived in the present study to assess whether the
numerical models are capturing the correct relationships between TNO3 and
the selected surrogate variables across time and space. Such a comparison
should provide unique quantitative insights that may lead to an improved
ability to simulate the atmospheric concentrations of TNO3.
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Figure 9: CASNET sites that were used to obtain data for this study

Appendix

The following figure shows the location of the sites that were used in our
analyais.
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