Linkage of Exposure and Effects using Genomics, Proteomics, and Metabolomics in Small Fish Models

G. Ankley¹*, D. Bencic²*, <u>T. Collette²*</u>, M. Breen³, R. Conolly³, D. Ekman², K. Jensen¹, M. Kahl¹, D. Lattier², J. Lazorchak², D. Martinovic¹, D. Miller¹, Q. Teng², D. Villeneuve¹, R. Wang²; U.S. EPA, ORD, 1NHEERL, 2NERL, 3NCCT

Academic Partners, STAR Cooperative Agreement: N. Denslow, Univ. of Florida, C. Orlando, Univ. of Maryland; M. Sepulveda, Purdue Univ.; K. Watanabe, Oregon Health Sciences Univ. Other Federal Partners: E. Perkins, US Army Corps of Engineers, ERDC; A. Miracle, Pacific Northwest National Laboratory; Joint Genome Institute, DOE; Sandia National Laboratories, DOE

research & development

U.S EPA, ORD, Computational Toxicology Research Program

Specific Approach

complox

Science Question

· How can we improve extrapolation

levels of organization), species (including under-represented taxa) and

from the lab to field for single

chemicals and complex mixtures?

· Can we establish functional linkages between changes at the molecular level

risk assessment for multi-organ biological systems well conserved

among vertebrates?

· Can we develop integrated, biologically-based computational

Research Goals

· Identify novel molecular markers of

representing different mechanisms of

action (MOA) within the vertebrate hypothalamic-pituitary-gonadal (HPG)

effects of exposure to chemicals

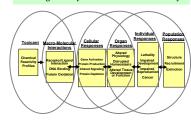
· Link these biomarkers to responses

· Support development of integrated

as a basis for prediction of adverse

relevant to ecological risk assessment

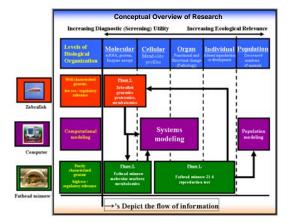
modeling approaches that utilize MOA

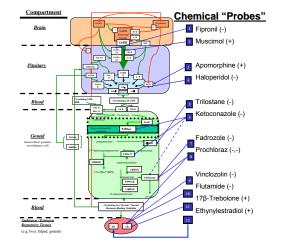

and phenotypic outcomes relevant for

models that use mechanism of action as a basis for predicting adverse

across life stages/endpoints (biological

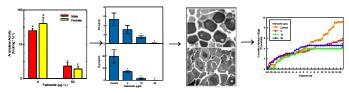
- Investigate effects of chemical probes on the HPG axis using definitive tests in the fathead minnow to establish initial toxicity pathways and ecologically-relevant responses (Phase 1)
- Identify transcriptomic, proteomic, metabolomic, and other whole-animal responses to the same chemicals using short-term zebrafish exposures (Phase 2)
- Validate genomic markers in the fathead minnow with an emphasis on time-course of responses and/or compensation and recovery after exposure (Phase 3)
- Concurrently integrate data from above in a systems modeling context, as well as relevant population modeling

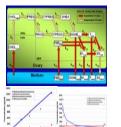

Defining Toxicity/Adverse Outcome Pathways



Overview of Fish Reproduction

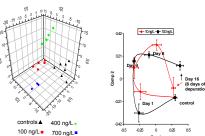
Methods/Approach



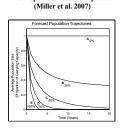

Results/Conclusions

Impact and Outcomes

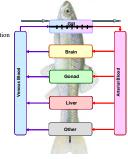
Definition of Novel Toxicity/Adverse Outcome Pathways (Ankley et al. 2009)



Computational Model of Vertebrate Steroidogenesis (Breen et al. 2007)


controls A 400 ng/L •

Metabolomics for Defining Pathways and Exposure Reconstruction (Ekman et al. 2008; 2009)



Physiologically-Based Model for Predicting Estrogen Effects on HPG Axis Function (Watanabe et al. 2009)

Translating Biochemical Alterations into Population-Level Responses

Gill: Chemical Uptake Brain: Signaling Liver VTG Production Other: Elimination Blood: Transport

