Light-Induced Transformations of the C₆₀ Derivative, Fullerenol: Interactions with Natural Organic Matter

R. Zepp¹, L. Kong², K. Chan³ and O. Tedrow³

¹U.S. EPA, NERL/ERD, Athens GA; ²NRC Associate, U.S. EPA, Athens GA; ³Student Services, U.S. EPA, Athens GA

RESEARCH & DEVELOPMENT

Outline

- Background
- Direct photolysis of fullerenol
- NOM effects on C60 and fullerenol photoreactions
- Spectral studies of NOM and fullerenol
- ROS reactions with fullerenol: ¹O₂, OH

RESEARCH & DEVELOPMENT

Definition of Fullerenes

 Fullerenes are a family of carbon allotropes, molecules composed entirely of carbon, in the form of a hollow sphere, ellipsoid, tube, or plane. Spherical fullerenes are also called buckyballs, and cylindrical ones are called carbon nanotubes or buckytubes.

Molecular Structures of Carbon Nanomaterials (Fullerenes)

C₆₀

single wall nanotubes (SWNT)

fullerenol isomers

RESEARCH & DEVELOPMENT

Fullerenol Degradation under Simulated Solar Irradiation

RESEARCH & DEVELOPMENT

Fullerenol Monochromatic and Solar Irradiation Kinetics (22°C)

Quantum yield:

fast: 1.55×10⁻³, slow: 1.71×10⁻⁵

RESEARCH & DEVELOPMENT

pH Dependence of Kinetic Parameters for Direct Photoreaction of Fullerenol

	<i>k_{fast}</i> (hr⁻¹) (±1sd)	f _{fast} (±1sd)	k _{slow} (hr ⁻¹) (±1sd)	f _{slow} (±1sd)
pH 3.0	1.093 ± 0.310	0.154 ± 0.193	(3.94 \pm 0.55) \times 10 ⁻³	$0.844{\pm}0.011$
pH 6.6	0.314 ± 0.085	0.212 ± 0.193	(3.20 ± 1.12) × 10 ⁻³	0.772 ± 0.027
pH 10.4	0.027 ± 0.0084	0.466 ± 0.109	(2.70 ± 1.03) × 10 ⁻³	0.516 ± 0.109

RESEARCH & DEVELOPMENT

Fullerenol Constituents Include pH Dependent Hemiketals

۲

RESEARCH & DEVELOPMENT

Direct Photomineralization Kinetics of Fullerenol (Simulated Solar Irradiation)

RESEARCH & DEVELOPMENT

SRNOM Effect on C₆₀ Photolysis Implication: NOM Enhances Dispersion & Persistence

RESEARCH & DEVELOPMENT

Natural Organic Matter (NOM) Effect on Simulated Solar Irradiation of Fullerenol

DIC photoproduction also is enhanced

RESEARCH & DEVELOPMENT

Calculation of the Enhancement/ Attenuation Factor

Apparent enhancement factor of NOM, EF

 $EF = k_{obsd} / k_{ful}$

 k_{obsd} and k_{ful} is the first order rate constant of fullerenol solution in the presence and absence of SRNOM, respectively.

Light attenuation factor of NOM, S

$$S = \frac{1 - \exp(-a_{330}l)}{a_{330}l}$$

RESEARCH & DEVELOPMENT

Effect of NOM on the Photodegradation of Fullerenol

SRNOM (mg C /L)	<i>k_{obsd}</i> (hr⁻¹)	EF	<i>a₃₃₀</i> (m⁻¹)	initial S	EF Corr.
0	0.0074	1.00	0.12	1.00	1.00
2.5	0.0095	1.28	31.16	0.85	1.51
5.0	0.0085	1.15	38.89	0.81	1.42
10.0	0.0057	0.77	55.65	0.75	1.03

RESEARCH & DEVELOPMENT

Possible Mechanisms for Light-Induced NOM Interaction

•Intramolecular photoreactions of NOM-Full Aggregates –

NOM + FUL
$$\longrightarrow$$
 NOM:FUL $\xrightarrow{h_v}$ Products

Site saturation leads to plateau in EF vs [NOM]

• NOM is both source and sink for reactive transients that mediate fullerenol photoreaction

NOM
$$\longrightarrow$$
 ROS (e.g. OH)
NOM
ROS \longrightarrow FUL

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Mixtures of SRNOM and Fullerenol Have Additive Absorption Spectra

RESEARCH & DEVELOPMENT

Reactive Oxygen Species Photoproduced From NOM

RESEARCH & DEVELOPMENT

Rose Bengal Effect on DIC Production by Fullerenol

However, singlet oxygen reaction within NOM/Ful aggregates could be involved

RESEARCH & DEVELOPMENT

Determination of 2nd Order Rate Constant (k_{ful}) for OH Reaction with Fullerenol

* Zepp et al. 1987, Environ. Sci. Technol., **21**, 443-450

RESEARCH & DEVELOPMENT

Fullerenol Reaction With OH Radical Nitrate/Octanol System at 313 nm

RESEARCH & DEVELOPMENT

Conclusions

- Fullerenol photoreaction is enhanced in presence of NOM; C₆₀ photolysis is retarded
- Photomineralization is a primary pathway for direct and NOM-enhanced photoreaction
- Dependence of enhancement on NOM concentration suggests either site saturation involving NOM-fullerenol aggregates or NOM scavenging of NOM-produced ROS
- Reaction via singlet oxygen in bulk water not likely but intramolecular pathway in aggregates possible.
- OH radicals react with fullerenol rapidly (k = 1.2 x 10⁹ M-1 s⁻¹) so NOM may degrade fullerenol via OH mediated path.

RESEARCH & DEVELOPMENT

Acknowledgements

- Chad Jafvert
- Dermont Bouchard
- Jim Weaver
- Eric Weber
- Cissy Ma

RESEARCH & DEVELOPMENT