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a b s t r a c t

Several numerical and analytical solutions of the radiative transfer equation (RTE) were

compared for plane albedo in a problem of solar light reflection by sea water. The study

incorporated the simplest case—a semi-infinite one-dimensional plane—parallel absorb-

ing and scattering homogeneous layer illuminated by a monodirectional light beam.

Inelastic processes (such as Raman scattering and fluorescence), polarization and

air–water surface refraction–reflection effects, were not considered. Algorithms were

based on the invariant imbedding method and two different variants of the discrete

ordinate method (DOM). Calculations were performed using parameters across all possible

ranges (single-scattering albedo o0 and refracted solar zenith angle y1), but with a special

emphasis on natural waters. All computations were made for two scattering phase

functions, which included an almost isotropic Rayleigh phase function and strongly

anisotropic double-peaked Fournier–Forand–Mobley phase function. Models were

validated using quasi-single-scattering (QSSA) and exponential approximations, which

represent the extreme cases of o0-0 and o0-1, respectively. All methods yielded relative

differences within 1.8% for modeled natural waters. An analysis of plane albedo behavior

resulted in the development of a new extended QSSA approximation, which when applied

in conjunction with the extended Hapke approximation developed earlier, resulted in a

maximum relative error of 2.7%. The study results demonstrated that for practical

applications, the estimation of inherent optical properties from observed reflectance can

best be achieved using an extended Hapke approximation.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A solution of the radiative transfer equation (RTE) for reflectance as a function of inherent optical properties (IOPs) for
an absorbing and scattering medium with the inclusion of lighting geometry is an important issue for numerous
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technological and environmental applications. One important ongoing research application is the use of remote sensing
(RS) to monitor natural waters using both satellites and aircraft-based systems. Various methods for the RTE solution are
currently being studied in an effort to develop an optimal solution for different natural water applications [1–5].

Only under conditions of strong scattering or absorption one can get accurate analytical solutions for different
reflectance types (e.g. reflection function, plane and spherical albedos) [6,7]. However, to obtain an accurate RTE solution,
when both scattering and absorption are important factors, different numerical methods must be applied. Stochastic
(Monte Carlo) simulations can provide good results, but they are computationally intensive for optically thick media under
complicated scattering phase functions (non-monotonic and/or strongly peaked), and often result in statistical fluctuations
for computed values [8]. This is especially critical when solving the inverse optical problem (i.e., decomposition of
measured radiance or reflectance into IOPs). Thus, different techniques are of interest [9] for theoretical and applied
purposes to reduce computational expenses. For example, the iterative solution of the Ambartsumian’s nonlinear integral
equation (NIE) (another name of this method is invariant imbedding, IIM) [10], defines reflectance without calculating
within-layer solution. Independent approximations for both the singular (strongly variable) and regular (slowly variable)
parts of the solution can also be effective [11].

Although accurate numerical methods based on IIM and discrete ordinates (DOM) techniques are available [10,12],
model comparisons between these methods have been limited to consideration of underwater radiance and irradiance [8]
or reflection function [13]. Such comparisons show that both the IIM and DOM methods yield equal accuracy quantities;
however, different Monte Carlo methods may generate upwelling values with significant error. For example, under
idealized natural waters conditions (no atmosphere, incident solar zenith angle y0 ¼ 601, flat air–water surface,
homogeneous and infinitely deep water column, and average-particle scattering phase function [14]), the average error of
the nadir-viewing upwelling radiance at the water surface level computed by the Monte Carlo methods was approximately
6% [8].

A comparison of reflection function calculated by IIM [15] with that by DOM [16] also demonstrated [13] an excellent
agreement between these two methods (excepting the rainbow region at phase angle range between 101 and 151) for semi-
infinite layers of almost non-absorbing 200mm spherical homogeneous particles with relative refractive indices 1.59 and
strongly back-peaked scattering phase function.

The principal optical quantity investigated in this study was plane albedo. This optical property is important for ocean
optics investigations because it can be considered as a component of diffuse or irradiance reflectance [17,18]. Plane albedo
is a commonly measured quantity in experimental ocean optics that is typically measured by integrating spheres [19,
p. 286] or by radiance sensors with calibrated plane albedo standards [20]. This optical property often called by the other
names like ‘‘directional-hemispherical reflectance’’, ‘‘hemispherical reflectance’’, ‘‘flux reflectance’’, ‘‘diffuse reflectance of
the surface, illuminated by the direct solar rays’’, ‘‘hemispherical albedo’’, or ‘‘black-sky albedo’’ [5,17–22]. We use the term
‘‘plane albedo’’ as more acceptable in publications on radiative transfer [5,7,9,22,23].

Only analytical approximations to the plane albedo have been compared previously [7,24,25]. The lack of comparisons
between numerical methods for calculation of plane albedo in natural waters conditions represents a significant problem
for the development of theoretically well-grounded in situ and RS aquatic optics algorithms. This study compares
calculations of plane albedo according to three numerical approaches that include: (a) IIM [15]; (b) a combination of the
DOM (for the regular part of RTE solution) and a small angle modification of a spherical harmonics method, MSH (for the
singular anisotropic part of RTE solution) [11]; and (c) a version of DOM based upon a direct approximation of RTE [26].

The first and second methods take into account specific features of the solution being sought. That is, the NIE algorithm
is intended for semi-indefinite plane-parallel layer, and DOM+MSH technique has been developed for the simulation of
radiative fields in media with strongly peaked phase functions. The third method is direct as it is not based upon any
assumptions on phase functions or the thickness of the medium. Additionally, we exploited different analytical
approximations for plane albedo for verification of numerical solutions in extreme conditions.

To obtain a rigorous solution and avoid extraneous influence—the simplest case was studied—a semi-infinite one-
dimensional plane-parallel absorbing and scattering homogeneous layer illuminated by a monodirectional light beam
without regard for inelastic processes (e.g., Raman scattering and fluorescence), polarization and air–water surface
refraction–reflection effects. To generalize a solution, we used all possible ranges of the single-scattering albedo o0 ¼ b/c (b

and c are the scattering and attenuation coefficients, respectively) and refracted angles y1 (including angles greater than
Brewster’s angle) for our calculations. Also, we analyzed our results to account for the realistic optical conditions pertaining
to natural waters. Specifically, we compared numerical solutions for the all possible angles y1A[01; 901] and o0A[0; 1] with
a special emphasis on the natural waters [1,4] with y1A[01; 48.71] and o0A[0.1; 0.95].

The question of dependence of plane albedo on type of particulate scattering phase function was considered separately.

2. Background

2.1. Definitions and relationships

We consider the case of a sea water illuminated by collimated parallel beam that is incident on sea surface at angle y0

with beam refracted at sea surface entering the water at an angle y1 (Fig. 1). We accounted for a large optical thickness
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t* ¼ c(DZ) (DZ is the geometrical thickness of plane-parallel layer), calm surface, and semi-infinite 1-D plane-parallel
layers.

Radiative transport was simulated via transfer equation, written in the form [1–5,9,12,13,22,23]:

m2

@Lðt;m2;j2Þ

@t ¼ �Lðt;m2;j2Þ þ
o0

4p

Z 1

�1
dm1

Z 2p

0
Lðt;m1;j1ÞpðwÞdj1,

t 2 ð0;1Þ; m2 2 ð�1;1Þ; j2 2 ð0;2pÞ, (1)

where solution L defines unpolarized radiance at optical depth t within the water layer. The scattering angle w is related to
the incident ðm1;j1Þ and scattering ðm2;j2Þ directions within the water by the geometrical relationship [7,8]:

w ¼ arccos½m1m2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� m2

1Þð1� m2
2Þ

q
cosðj2 �j1�; m1 ¼ cos y1; m2 ¼ cos y2. (2)

Eq. (1) contains two parameters. They are single scattering albedo o0 and scattering phase function p(w). The following
boundary condition is defined just below the water surface (i.e. at the depth of 0+):

Lð0þ;m2;j2Þjm240 ¼ L0dðm2 � m1Þdðj2Þ, (3)

where d is the Dirac’s delta function and L0 is the incident beam radiance.
Far from the surface radiance is negligible as a result of absorption and multiple scattering processes:

Lðt;m2;j2Þ ! 0 for t!1. (4)

The reflection function R is defined [6,13,19,22,27] as the ratio of the intensity of light (radiance) reflected from a given
turbid layer to the intensity of light reflected from the perfectly reflecting Lambertian surface for given incident beam
direction X0 (or for the given refracted beam direction X1) and observation direction X2 (or X3) (Fig. 1). Thus, R is
determined via incident solar zenith angles y0 (or y1) for air (water), viewing nadir angles y2 (or y3) for water (air), the
refracted azimuth angle j1 and viewing (in the water) azimuth angle j2.

R is equal to 1 for Lambertian surface. For the water medium with any optical properties we can write R in the form
[13,19,22]:

Rðy1;y2;j1;j2Þ ¼
p
m1

Luðy2;j2Þ

Edir
d ðy1;j1Þ

, (5)

where Edir
d is the incident direct (collimated) irradiance and Lu is the upwelling radiance.

The plane albedo [6,19] < just below the water surface is defined as the integral of the reflection function R:

<ðm1Þ ¼
1

p

Z 2p

0
dj2

Z 0

�1
Rðm1;m2;j2Þm2 dm2. (6)

Eq. (6) imposes a wide range for angles y1 and y2: [01; 901]. However, for situations of refraction at air–water surface, angles
y1 and y2 are connected with the angles y0 and y3 through Snell’s law of geometrical optics as

y1 ¼ arcsinðsin y0=nwÞ; y2 ¼ arcsinðsin y3=nwÞ, (7)

where nw is the refractive index of seawater. Thus, at nw ¼ 1.330, a common value for natural waters, the realistic range of
y1 and y2 [01; 48.71] is limited by the Brewster’s angle. Nevertheless, in Eq. (6) and henceforth we allow for the full range of
m2 [0; 1], to maintain generality in our algorithms and calculations.

Sokoletsky [18] has shown by comparing several radiative transfer approximations that a layer can be taken as an
‘‘optically thick’’ when optical thickness (tk) for the diffuse attenuation coefficient (Kd) defined as tk�KdDZ (DZ is the
geometrical thickness of the layer) more than 4. Kd may be approximated (within the framework of the quasi-single-
scattering approximation, QSSA) as [28,29] Kd ¼ (a+bb)/m1, where a and bb are the absorption and backscattering
coefficients, respectively. Using this expression, one can relate tk with a ‘‘classical’’ optical thickness for optically
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homogeneous layer t�cDZ by

t ¼ m1

1�o0F
tk, (8)

where F is the forward-scattering probability, defined as

F ¼
1

2

Z p=2

0
pðwÞ sin wdw. (9)

Our numerical computations carried out for FFM scattering phase function (see below) within turbid layer show that the
value of tk ¼ 4 yielded a negative relative error of plane albedo (compared to plane albedo values computed for tkb4) and
ranged from 0.0% to �0.3% at values of o0 running from 0 to 0.995. However, values of errors sharply increased
(approximately up to 8%) at further increasing o0. We will give below (Section 3.3) an exact algorithm for estimation of
optical thickness simulating the semi-infinite turbid layer used in the study.

2.2. Scattering phase functions

Although angle dependence p(w) can be quite variable for natural waters [30], we considered only two phase functions.
The first scattering phase function is the strongly forward-peaked Fournier–Forand–Mobley (FFM) phase function [14] that
is close to scattering phase functions observed in ocean water [6] and has been proven to be applicable in natural waters
[31]. This allowed for a comparison between different peak-forward phase functions (Section 4.3). An almost isotropic
Rayleigh scattering phase function describing scattering by the water molecules [3] corresponds to the extreme case of
minimal particulate matter, and was used for debugging the computer codes and to quantify the impact of p(w) on
computational accuracies.

The exact angular dependence for the Rayleigh p(w) (Fig. 2) may be written as follows:

pRayleighðwÞ ¼ ð3=4Þð1þ cos2 wÞ, (10)

and it yields F ¼ 0.5 and the asymmetry parameter g ¼ 0, where g is defined as

g ¼
1

2

Z p

0
pðwÞ sin w cos wdw. (11)

The exact expression for the particulate FFM scattering phase function is given by [14]

pFFMðwÞ ¼
jð1� dÞ � ð1� dj

Þ þ 2½dð1� dj
Þ � jð1� dÞ�=ð1� cos wÞ

ð1� dÞ2dj
þ
ð1� dj

180Þð3cos2 w� 1Þ

4ðd180 � 1Þdj
180

, (12)

where

j ¼
3� J

2
; d ¼

2ð1� cos wÞ
3ðn� 1Þ2

; J ¼ 3þ
n� 1:01

0:1542
. (13)

Here n is the real index of refraction of the particles and J is the slope parameter of the particle hyperbolic (Junge-type)
distribution. Importantly, at n ¼ 1.10, pFFM(w) corresponded well to the Petzold’s average-particle phase function observed
in San Diego Harbor [14].
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The phase functions in the IIM and DOM+MSH methods were set by the finite Fourier–Legendre series, namely:

pðwÞ ¼
Ximax

i¼0

aiPiðcos wÞ, (14)

where ai and Pi(cosw) are Fourier–Legendre coefficients [32] and Legendre polynomials [33], respectively, derived to obey
the normalization condition:

1

2

Z p

0
pðwÞ sin wdw ¼ 1. (15)

The Rayleigh phase function (10) can be exactly expressed by only two terms of the Fourier–Legendre series in the form:
pRayleigh(w) ¼ 1+P2(cosw), yielding F ¼ 0.5 and g ¼ 0.

Generally, the more asymmetric the phase function, greater the number of terms to achieve the required accuracy.
Taking into account that pFFM(w) runs six orders of magnitude (Fig. 2) with two peaks (forward and backward), it was
difficult to accurately express this p(w) over all angles by the Fourier–Legendre series. Nevertheless, we used Eq. (14) with
L ¼ 1998 and mathematically derived values of ai for a representation of pFFM(w) (Fig. 2). A pFFM(w) was defined to derive
parameters of g ¼ 0.9377, F ¼ 0.98168, compared with g ¼ 0.9300, F ¼ 0.98170 for the ‘‘exact’’ FFM phase function, defined
by Eq. (12).

A comparison between the approximated FFM and exact FFM phase functions was realized by the root-mean-square
percentage difference calculated for the scattering angles weighted by the sines and in the angular scattering ranges as
recommended by Mobley et al. [14]. This yielded values of 1.8%, 1.3%, and 1.9% over 5–901, 90–1801 and 5–1801,
respectively. Comparison shows that the FFM phase function approximated by a Fourier–Legendre series is closer to the
exact FFM (n ¼ 1.10) than the phase functions of different types considered by Mobley et al. [14]. Additionally, the
approximated FFM did not have a singularity at the zero scattering angles, as with the exact FFM, and could be
recommended for natural water optics investigations.

3. Methods

Analytical approximations to the plane albedo were compared with numerical solutions (Section 4.1). These
approximations lead to the exact solution at o0-0 and o0-1, respectively. The analysis permitted the development of
a new approximation for the plane albedo termed ‘‘extended QSSA’’ (Section 4.2). The dependence of plane albedo on
particulate scattering phase function is considered in Section 4.3.

Numerous difficulties were encountered in numerical solving the RTEs. First, was the need to deal with radiation fields
in the finite layer with large variations over spatial variable t. Second, we had to simulate complex scattering according to
FFM double-peaked phase function. Lastly, the need to account for the high spatial boundary gradients for a small refracted
angle y1. To avoid numerical errors caused by these difficulties we used a feature of the medium with conservative
scattering: < ðo0 ¼ 1Þ ¼ 1: This is logical since all radiation entered into completely scattering medium could leave the
layer after infinite travel time. This result may also be derived analytically, if to integrate Eq. (1) over all variables t, m, j
using boundary conditions (3) and (4) and definition (6).

3.1. Iterative solution of the Ambartsumian’s NIE (‘‘invariant imbedding method, IIM’’)

Instead of RTE (Eq. (1)), a NIE [10] by Ambartsumian (1943) for radiance reflected by a semi-infinite plane-parallel layer
with arbitrary phase function p(w) and the single scattering albedo o0 was solved. This equation was based on the
‘‘principle of invariant imbedding’’, derived firstly for non-absorbing (transparent) layers by A.J. Fresnel in 1821 and then by
G.G. Stokes in 1862 for the absorbing (opaque) layers. Further, this principle was extended for different conditions
by numerous researches such as Neumann, Schmidt, Shuster, Wien-Harms, Ambartsumian, Sobolev, Chandrasekhar,
Tuckerman, Bellman, Wing and Preisendorfer [34–37].

Ambartsumian’s equation does not simulate radiative fields within a layer because it excludes optical thickness t, thus
reducing computational requirements. Previous results have demonstrated [10] that a reflection function obtained via RTE
converges to a NIE solution as t-N. We used the open source code developed by Mishchenko et al. [15] for the solution of
Ambartsumian’s equation.

The computational technique here is based on the expansion of the reflection function and also the phase function in
Fourier series with respect to the azimuth. The NIE for the m-th harmonic of the reflection function Rm(m1,m2,j2) is written
in the following form [15]:

Rmðm1;m2;j2; t!1Þ ¼ o0½Fmðm1;m2;j2Þ þFmðm1;m2;j2Þ þYmðm1;m2;j2Þ

þCmðm1;m2;j2Þ�, (16)
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where

Fmðm1;m2;j2Þ ¼
Pmðm1;�m2;j2Þ

4ðm1 þ m2Þ
, (17)

Fmðm1;m2;j2Þ ¼
m1

2ðm1 þ m2Þ

Z 1

0
Pmðm02;m2;j2ÞRmðm1;m02;j2Þdm

0
2, (18)

Ymðm2;m1;j2Þ ¼
m2

2ðm1 þ m2Þ

Z 1

0
Pmðm1;m02;j2ÞRmðm02;m2;j2Þdm

0
2, (19)

Cmðm1;m2;j2Þ ¼
m1m2

m1 þ m2

Z 1

0
dm002

Z 1

0
Pmðm002;�m

0
2;j2ÞRmðm02;m2;j2ÞRmðm1;m002;j2Þdm

0
2. (20)

Here Pm ðm1;m2;j2Þ is the m-th Fourier component of the phase function as it is described in detail by Mishchenko et al.
[15]. Because ocean waters are weakly reflecting medium and the influence of multiple light scattering represented by
integrals in Eq. (16) is rather weak, the NIE can be solved using the method iterations. In the first iteration, only the first
term in Eq. (16) responsible for the first-order scattering is used.

3.2. Combined discrete ordinate and a modified spherical harmonics (‘‘DOM+MSH’’) method

This method deals with the layer of definite (but large enough to ensure simulations of semi-infinite layers) optical
thickness t and was developed for modeling radiation fields in strongly anisotropic media with singular sources, where the
RTE solution contains singularities. It is based on decomposition of the solution into the sum of the following two
components [11]:

Lðt;m2;j2Þ ¼ LSA-SHMðt;m2;j2Þ þ
~Lðt;m2;j2Þ. (21)

The first component, LSA-SHM ðt;m2;j2Þ, contains all the singularities of the exact solution of RTE and is defined as a solution
of RTE in a small-angle (SA) modification (in the Goudsmit–Saunderson form [38]) of a spherical harmonics method (SHM):

LSA-SHMðt;m2;j2Þ ¼
X1
i¼0

exp �
½1� 4po0ai=ð2iþ 1Þ�t

m1

� �
Piðm2Þ, (22)

where ai and Pi are Fourier–Legendre coefficients and Legendre polynomials taken as in Eq. (14).
The latter component is the remaining part of the solution, which conforms to conditions:

~Lð0;m2;j2Þjm240 ¼ 0; ~Lðt;m2;j2Þjm2o0 ¼ �LSA-SHMðt;m2;j2Þ, (23)

of the RTE written in the form:

m2

@~Lðt;m2;j2Þ

@t ¼ �~Lðt;m2;j2Þ þ
o0

4p

Z 1

�1
dm1

Z 2p

0

~Lðt;m1;j1ÞpðwÞdj1 þ Fðt;m2;j2Þ, (24)

where source Fðt;m2;j2Þ is residual of RTE in approximation LSA-SHMðt;m;j2Þ:

Fðt;m2;j2Þ ¼ � m2

@LSA-SHMðt;m2;j2Þ

@t � LSA-SHMðt;m2;j2Þ

þ
o0

4p

Z 1

�1
dm1

Z 2p

0
LSA-SHMðt;m1;j1ÞpðwÞdj1. (25)

This function is determined using the addition theorem for Legendre polynomials:

Fðt;m2;j2Þ ¼
X1

m¼�1

X1
k¼0

Fm
k ðtÞQ

m
k ðm2Þ e

imj2 , (26)

where

Fm
k ðtÞ ¼

1

m1

½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 1Þ2 �m2

q
bkþ1Qm

kþ1ðm1ÞZkþ1ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
�m2

q
bk�1Qm

k�1ðm1ÞZk�1ðtÞ�

�
2kþ 1

4p
bkQm

k ðm1ÞZkðtÞ; bk ¼ 1� 4po0ak=ð2kþ 1Þ,

ZkðtÞ ¼ exp �
½1� 4po0ak=ð2kþ 1Þ�t

m1

� �
. (27)

Here Qn
l ðm1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� nÞ!=ðlþ nÞ!

p
Pn

l ðm1Þ, Pn
l ðm1Þ, Pkðm1Þ—semi-normalized, associated, and classical Legendre polynomials,

correspondingly.
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By decomposing Lðt;m2;j2Þ over azimuth j2:

Lðt;m2;j2Þ ¼
X1

m¼�1

Cm
ðt;m2Þ e

imj2 , (28)

and taking into account relation (27) and orthogonality of spherical harmonics eimj2 , we obtain equations for expansion
coefficients Cm

ðt;m2Þ:

m2

@Cm
ðt;m2Þ

@t ¼ � Cm
ðt;m2Þ þ

X1
k¼0

Fm
k ðtÞQ

m
k ðm2Þ

þ
1

2
o0

XN

k¼m

akQm
k ðm2Þ

Z 1

�1
Qm

k ðm1ÞC
m
ðt;m1Þdm1. (29)

Then replacing the integral on the right side of these equations via Gauss quadrature we find a linear system of equations:

M
2 @~C

m
ðtÞ

@t ¼ �~C
m
ðtÞ þ~F

m
ðtÞ þ S

2
~C

m
ðtÞ, (30)

where ~C
m
¼ fCm

i g is the vector being sought, M
2

¼ Diagðmi
2Þ is diagonal matrix, and matrices ~F

m
ðtÞ and S

2

are defined by
expressions

~F
m
ðtÞ ¼

X1
k¼m

Fm
k ðtÞQ

m
k ðm

i
2Þ

( )
; S

2

¼ 2pwj

X1
k¼m

akQm
k ðm

i
2ÞQ

m
k ðm

j
2Þ

( )
, (31)

where mj
2 are the roots of Legendre polynomials PNðmj

2Þ ¼ 0, wj are the weights of Gauss quadrature of the order N.
A system of linear differential equations (30) with constant coefficients has an analytical solution in the form of a matrix

exponent [11,39,40]. This spherical harmonic system is not consistent with RTE boundary conditions (1), and conditions of
the Mark type [41] were used to represent a unique approximation. Using Mark’s boundary conditions along with the other
well-known tools of RTE solution (i.e., SHM and DOM) have demonstrated efficiency when some singularities occur
[11,39,40].

Conditionality of a matrix of system (30) quickly deteriorates with increasing layer’s optical thickness. To alleviate this
problem, a scale transformation [39] was used that led to an expression with exponents with negative degrees t to derive a
solution for semi-infinite layer. In Eqs. (21)–(31), optical thickness t may be any value, but for the method under
consideration, t has been taken as infinity for all calculations using Matlab software with a constant Inf (‘‘infinity’’).

3.3. Discrete ordinate method, DOM (‘‘RADUGA’s Method’’)

The code RADUGA-5.1 (see [26]) has been developed to solve RTE in 1-, 2-, and 3-D regions via DOM by a parallel
supercomputer (MVS-1500BM) [42] of the Russian Academy of Sciences containing 1148 processors (200 were actually
used), under general assumptions on source and media properties. The method here incorporated direct replacement of
RTE by algebraic equations system based on the following:

1. We consider problem expressed by Eqs. (1)–(4) for a finite layer of very large optical thickness t* defined by condition
t�k ¼ 5 for o0o0.995 and t* ¼ 350 for o0X0.995. Such a choice is based on numerical experiments with different optical
thicknesses. A layer of optical thickness t* may be considered as the semi-infinite layer, if increasing of t* by 10 changes a
plane albedo by 0.001.

2. We decomposed the solution into unscattered radiance Lunscðt;m2;j2Þ and scattered radiance Lscðt;m2;j2Þ:

Lðt;m2;j2Þ ¼ Lunscðt;m2;j2Þ þ Lscðt;m2;j2Þ. (32)

Each of these functions were determined using a corresponding transport problem:

m2

@Iunscðt;m2;j2Þ

@t þ Lunscðt;m2;j2Þ ¼ 0; t 2 ð0þ; t�Þ; m2 2 ð�1;1Þ,

j2 2 ð0;2pÞ; Lunscð0þ;m2;j2Þjm240 ¼ L0dðm2 � m1Þdðj2Þ,

Lunscðt�;m2;j2Þjm2o0 ¼ 0, (33)

m2

@Lscðt;m2;j2Þ

@t ¼ �Lscðt;m2;j2Þ þ
o0

4p

Z 1

�1
dm1

Z 2p

0
½Lunscðt;m1;j1Þ þ Lscðt;m1;j1Þ�pðwÞdj1,

t 2 ð0þ; t�Þ; m2 2 ð�1;1Þ; Lscð0þ;m2;j2Þjm2o0 ¼ 0; Lscðt�;m2;j2Þjm240 ¼ 0. (34)

Unscattered radiance Lunscðt;m2;j2Þ was determined analytically and a grid method was used for scattered radiance
Lscðt;m2;j2Þ.
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3. We introduced a uniform angular grid over angular variable m2 and j2. The grid was formed by pairs ðmk
2;jk

2Þ and
identical weights wk � w, k ¼ 1; . . . ;K , and permitted replacing the scattering integral with a quadrature sum:Z 1

�1
dm0

Z 2p

0
Lscðt;m2;j2ÞpðwÞdj2 ffi

X
k0

Lk0

scðtÞwk0pk;k0 , (35)

where symbol Lk0

scðtÞ stands for Lscðt;mk0 ;jk0 Þ, the multiplier pk;k0 was defined via values of a phase function for scattering
angles w, corresponding to scattering event from direction ðmk0 ;jk0 Þ to direction ðmk;jkÞ. Each value of pk;k0 was calculated
via a high order Gauss quadrature formula based upon a piece-wise linear approximation of a phase function via its value in
nodes of some grid over scattering angle w. A high order Gauss quadrature formula accurately takes into consideration
the complicated twice-peaked phase function. Note, because the scattering matrix does not depend on o0 and m1, it was
calculated first.

4. We introduced a grid over spatial variable t by nodes tj+1/2:

0 ¼ t1=2ot3=2o � � �otj�1=2otjþ1=2o � � �otjþ1=2 ¼ t� (36)

and replaced the left side of RTE (Eq. (1)) by algebraic relations, containing a solution at layer boundaries Lk
scðt1=2Þ and

Lk
scðtjþ1=2Þ and mean solution values in cells ½

R tjþ1=2

tj�1=2
Lk

scðtÞdt�=ðtjþ1=2 � tj�1=2Þ using a non-uniform spatial grid refined in the
vicinity of the extremes of the solution.

5. We composed an algebraic equation system approximating RTE solution as

Ŝ~L ¼ T̂~Lþ ~Q , (37)

where vectors~L and ~Q contain required grid function values and source values, correspondingly, Ŝ and T̂ are some matrices.
6. To solve this algebraic system we applied a two-step iterative technique. The first step incorporated a source iteration

method:

Ŝ~L
itþ1=2

¼ T̂~L
it
þ ~Q , (38)

and accelerating correction was added to the solution at the second step:

~L
itþ1
¼~L

itþ1=2
þ~�itþ1=2

. (39)

Correction ~�itþ1=2
is defined as the approximate solution of equation for error of function ~L

itþ1=2
:

Ŝð~L�~L
itþ1=2

Þ ¼ T̂ð~L�~L
itþ1=2

Þ þ T̂ð~L
itþ1=2

�~L
it
Þ. (40)

We used an approximate solution for this equation based on a linear approximation over mk:

�kðtjþ1=2Þ ¼ j0ðtjþ1=2Þ þ 3j1ðtjþ1=2Þmk, (41)

where functions j0ðtjþ1=2Þ and j1ðtjþ1=2Þ were derived from the two equalities obtained by averaging Eq. (39) over mk and
jk with weights 1 and mk, respectively.

This acceleration technique resulted in convergence within 35 iterations. The simplifications accounted for the
particularities of a desired solution generally used in other numerical methods but not previously incorporated into the
RADUGA method. Thus, it can be applied for the calculation of radiation fields with arbitrary features. A Fourier–Legendre
series (Eq. (14)) to a phase function was not used in this algorithm. Instead, we used an approximation to the phase
function p(w), based on values in 10 801 nodes over scattering angle y. This technique is stable and also supports the
solution for RTE under the exact phase function p(w) [43].

3.4. Quasi-single-scattering approximation (QSSA)

An equation expressing reflection function R as a function of IOPs in the frame of QSSA had been initially supposed by
Gordon [28]. The QSSA is based on the premise that p(w) is highly peaked in the forward direction in natural waters, so
most of the scattered light remains in the beam, and all of the losses result from absorption and backscattering. Also it is
assumed that the probability of photon absorption is great.

A derivation of equations for the reflection function R and for the plane albedo R for QSSA was presented by Anikonov
and Ermolaev [44] and Kokhanovsky and Sokoletsky [7], respectively:

Rðo0; F; pðwÞ;m1;m2Þ ¼
o0

4ð1�o0FÞ

pðwÞ
m1 þ m2

, (42)

<ðo0; F; ai;m1Þ ¼
o0

2ð1�o0FÞ

XL

i¼0

ð�1ÞiaiPiðm1ÞQiðm1Þ, (43)
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where F, ai and Pi represent the forward-scattering probability, Fourier–Legendre coefficients and Legendre polynomials,
respectively, as defined above; Qi is the function defined as

Qiðm1Þ ¼

Z 1

0
Piðm2Þðm1 þ m2Þ

�1m2 dm2. (44)

Further simplification of QSSA may be obtained, if to explore p(w) with the constant scattering in backward hemisphere
(i.e. at scattering angles from p/2 to p). In this case, from Eq. (9) follows that p(w) ¼ 2(1�F). Substituting this result in
Eq. (42) we get

Rðo0; F;m1;m2Þ ¼
1

2ðm1 þ m2Þ

1� F

1�o0F
. (45)

Eq. (45) directly shows that reflection function increases with increasing o0 and decreases with F, m1 and m2. Keeping a
relationship between R and R (Eq. (6)) in mind it is easy to derive similar conclusions about the plane albedo. Also note that
at o0-0 or F-0, Eqs. (42), (43) and (45) converted to the form of the single-scattering approximation [13].

Different phase functions with the asymmetry parameter g A(0.85; 0.96) [7] Fig. 3b and c have yielded a relative error
|d|of QSSA for the plane albedo smaller than 11% at o0o0.7 and y0A[01; 701] comparing with the IIM method; it achieve
|d| ¼ 0% at o0-0 and any phase function. However, additional calculations [6] indicated that for a phase function with
g ¼ 0.6962 and F ¼ 0.9411, QSSA has a maximal error d ¼ �35% for y0A[01; 181]

3.5. Exponential approximation (EA)

We use an EA in the form described in [7], Eq. (16):

<ðs;m1Þ ¼ exp �
4
ffiffiffi
3
p

7
ð1þ 2m1Þs

" #
, (46)

where s is the Hulst’s similarity parameter [6,23] defined by

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�o0

1� go0

s
. (47)

Eq. (46) leads to the similar conclusions with respect to R as in the case of QSSA approximation, namely, increasing R with
increasing o0 and decreasing with g (or, equivalently, with F) and m1. An accuracy |d|of EA compared to an IIM method has
been estimated (see [7], Fig. 2) to beo10% at so0.45 (i.e., at o040.80 or o040.98 at g ¼ 0 or 0.9377, respectively) and any
incoming angle; it achieves |d| ¼ 0% at o0-1 and any phase function.

4. Results

4.1. Verification of existing numerical and analytical methods

Three numerical methods were used to derive plane albedo R from Eqs. (1) to (4) with Rayleigh and FFM scattering
phase functions for different values of single-scattering albedo o0 and cosine of the refracted angle just below the surface
m1. Fig. 3 presents the results of calculations by numerical methods (IIM and DOM+MSH) and analytical methods (extended
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Fig. 3. Plane albedo for the Rayleigh (a) and FFM (b) scattering phase functions calculated by numerical methods (solid lines) for the following single-
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extended Hapke approximation (circles) for o040.8.
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QSSA and extended Hapke) for Rayleigh and FFM phase functions. Both phase functions yield similar qualitative results: R

increases with increasing y1 and o0. However, quantitative predictions for R(o0, y1) are highly dependent on phase
function form.

For Rayleigh phase function, albedo angular dependence (Fig. 3a) was much flatter than for strongly forward-scattering
FFM phase function (Fig. 3b). Fig. 4 shows relative errors between plane albedo approximations and IIM method for
Rayleigh (Fig. 4a and c) and FFM (Fig. 4b and d) phase functions. Fig. 4(a and b) demonstrates how calculations performed
using IIM matched with a QSSA approximation and Fig. 4(c and d) illustrates comparisons with EA approximation.
The general tendencies illustrated by these plots include: (a) smaller errors for pFFM(w) than for PRayleigh(w) for the QSSA
approximation; (b) smaller errors for PRayleigh(w) than for pFFM(w) for EA approximation; (c) decreasing divergence between
numerical methods and QSSA at decreasing o0 and between numerical methods and EA at increasing o0 and (d) the errors
of QSSA and EA generally larger at small values of o1.

The result (c) may be strengthened: calculated errors of R tend to zero at o0-0 and o0-1 comparing with QSSA and
EA approximations, respectively. The results (a)–(c) may be expressed in terms of only similarity parameter s, namely:
QSSA works better at s-1 (i.e., at g-1 or o0-0) while EA works better at s-0 (i.e., at g-0 or o0-1); the impact
of g is generally lesser than o0. These results confirm those obtained in the previous study [6] for the five different
scattering phase functions. An additional evaluation of methods’ accuracy including consideration of intermediate o0

values (0.3 and 0.7) was conducted using the direct numerical methods comparison (Fig. 5).
Calculations indicated that divergences between numerical methods are very small (o1.8%) over the range of

meaningful incoming angles with m140.66, but may be relatively large at the small m1. For example, at o0o0.8 and
m1o0.05 divergences may reach 4–7% as shown in Fig. 5b, d, and f for the FFM phase function.

4.2. Development and verification of extended QSSA approximation

At m140.66, errors of QSSA approximation are nearly independent relative to incoming geometry and flat in a function
on o0 (with minimum at o0-0 or s-1) (Fig. 4a and b). Accordingly, it is possible to extend QSSA toward greater values of
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o0 comparing with an original approximation (Eq. (43)). The following simple quadratic approximation has been derived
by polynomial least-squares fitting within the ranges of m1 A[0.65; 1] and o0 A[0.1; 0.9]:

<ðg;o0; F; ai;m1Þ ¼ <QSSAðo0; F; ai;m1Þ½1þ b1ð1� sÞ þ b2ð1� sÞ2�, (48)

where <QSSA is an original QSSA approximation; b1, b2 ¼ (�0.1534, 1.289) or b1, b2 ¼ (1.493, �1.361) for Rayleigh and FFM
phase functions, respectively. The plots of errors for approximation (48) demonstrate (Fig. 6a and b) the significant
improvement of the new ‘‘extended QSSA approximation’’ in comparison with initial QSSA approximation (Fig. 4a and b) for
both the scattering phase functions.

The accuracy of the new approximation can also be compared with that of the extended Hapke approximation derived
previously [7, Eqs. (35)–(37)] for the set of scattering phase functions with the asymmetry parameters g A[0.00; 0.96] in
the form:

<ðg;o0;m1Þ ¼ Fðg;o0;m1Þ
1� s

1þ 2sm1

, (49)
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Fig. 5. Relative differences of plane albedo calculation between: DOM+MSH and IIM (a, b); RADUGA’s and DOM+MSH (c, d) and RADUGA’s and IIM (e, f)

methods for the Rayleigh (a, c, e) and FFM (b, d, f) scattering phase functions.
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where function F(g,o0, m1) is defined as

Fðg;o0;m1Þ

¼ exp
½ð�0:991þ 3:139g � 1:874g2Þxþ ð1:435� 4:294g þ 2:089g2Þx2

�s

þ½ð0:719� 5:801g þ 2:117g2Þxþ ð�0:509þ 0:418g þ 3:360g2Þx2
�s2

8<
:

9=
;, (50)

where x � m1 � 0:5.
Fig. 6c and d represents the accuracy of approximation (49) versus DOM+MSH method for the Raleigh (Fig. 6c) and FFM

(Fig. 6d) phase functions, respectively. Comparing Fig. 6c and d with Fig. 6(a and b) shows that for low values of o0 (up to
o0p0.8), the extended QSSA approximation yields more accurate values of plane albedo, while for higher values o0 results
obtained by extended Hapke approximation are preferable. Combined plots for the plane albedo (for the both scattering
phase functions) computed by extended QSSA (up to o0p0.8) and extended Hapke (for o040.8) approximations
represented in Fig. 3 along with the results computed by numerical methods (IIM and DOM+MSH).

4.3. Particulate scattering phase function impact

All calculations of plane albedo by numerical methods shown above were performed assuming the Rayleigh or FFM
scattering phase functions. It is clear that real p(w) describing scattering by particles may substantially differ from the
pFFM(w). This may lead to serious errors of calculations based on the pFFM(w) assumption. To show an impact of selected
scattering phase functions on calculations of plane albedo, two other p(w) typical for natural waters [6] were applied: one
characterized very clear waters (with g ¼ 0.6962, F ¼ 0.9411) and the second very turbid waters (with g ¼ 0.9583,
F ¼ 0.9913) (Fig. 7). All computations were performed for the same sets of o0 (0.03, 0.05, 0.1, 0.2,y, 0.9, 0.99, 0.999,
0.9999) and y0 (01, 29.31, 58.91) by IIM method. As predicted, R increases with increasing o0 and y0 and decreases with F.
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Errors arising from the information gap on the scattering phase function should be taken into account for solution of both
the direct (estimation of reflectance from observed IOPs and lighting geometry) and inverse (estimation of IOPs from observed
reflectance) optical problems. Obviously, additional a priory information about angular scattering (phase function) of
underwater light fields is needed for more accurate analysis. This information may be obtained either from direct
measurements or from different optical and bio-optical models. Further decreasing of errors in calculation of reflectance may
be achieved also by the use of spectral reflectance ratios widely used in remote-sensing applications [45–48].

5. Conclusions

This study used three numerical methods to calculate plane albedo. They included: (1) IIM to iteratively solve the
Ambartsumian’s nonlinear integral equation; (2) DOM+MSH, which is a combination of discrete ordinate method for the
regular part of RTE solution and a small angle modification of a spherical harmonics method for the singular anisotropic
part of RTE solution; and (3) direct DOM (RADUGA code), which does not use any simplified assumptions. All three
numerical methods yielded highly accurate plane albedo computational results for the molecular water (Rayleigh) and
particulate matter (FFM) scattering phase functions p(w), and for all ranges of optical parameters and lighting geometry
common to natural waters. The high accuracy of these methods was confirmed by comparison with QSSA approximation at
o0-0 (Fig. 4a and b) and with exponential approximation at o0-1 (Fig. 4c and d).

The differences between numerical methods using the Rayleigh p(w) were p1.6% for natural waters conditions and
p2.4% for the whole parameters ranges (Fig. 5e). For the pFFM(w), the maximum difference was 1.8% (Figs. 5d and f) and 6.6%
(Fig. 5b) for the normal and the whole parameter ranges, respectively. We attributed these differences to the two reasons:
(i) slightly different assignment of pFFM(w) for different numerical methods and (ii) the application of different assumptions
and simplifications for different numerical methods.

Results indicated that the DOM+MSH method was preferable based on its accuracy and computer resource requirements.
An additional advantage of this method was the capability to calculate different kinds of reflectance (both directional and
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method.
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diffuse) within the layer. Both the DOM+MSH and RADUGA’s methods provide modeled kinds of reflectance for any optical
thickness. Additionally, a RADUGA’s method may be especially appropriate for the solution of RTE in conditions of optically
inhomogeneous media and for 2- and 3-D regions [25,43]. However, a reliable comparison of this direct method with the IIM
and DOM+MSH methods for the FFM phase function was not possible because the phase function determination was slightly
distinct for different methods. The results of the IIM method had similar high accuracies as the DOM+MSH and RADUGA’s
methods, but this method can only be used for semi-infinite or infinite turbid layers.

A new analytical method to extend QSSA approximation was developed for use in conjunction with early developed
extended Hapke approximation, reducing errors to 2.7% (Fig. 6a and c) and 2.4% (Fig. 6b and d) for the Rayleigh and
FFM p(w), respectively. Thus, the accuracy of the combined (i.e., extended QSSA and extended Hapke) approximation is
comparable to that of the numerical methods. The extended QSSA approximation was more suitable for both the phase
functions considered at low values of o0 (up to o0p0.8). When o040.8, the extended Hapke approximation would be
preferable. In either case, we would expect an accuracy of separate approximations better than 14% (Fig. 6) for both phase
functions, that is better than experimental precision achieved currently for reflectances [49,50].

Our calculation methods of the plane albedo should be applied in the context of the specific situation. This research
compared numerical and analytical solutions for the plane albedo, but does not provide exact values of the plane albedo for
any situation, caused, for example, by variable forms and sizes of water particles, and, hence, by different scattering phase
functions. Computations performed for different phase functions demonstrated strong dependence of plane albedo on
selected phase function. Because information about phase functions is not generally known for the typical underwater
observations, the accurate computation of reflectance from IOPs and lighting geometry is still problematic. A solution of
inverse task (estimation of IOPs from observed reflectance at known lighting geometry) would also be difficult, especially
to find several IOPs simultaneously. Using spectral reflectance ratios and different approximations may favor the solution.
For example, an extended Hapke approximation to plane albedo may be best applied to calculate direct and inverse
underwater optical problems, since it incorporates only a small number of parameters and provides good accuracy across
the entire range of natural waters parameters. However, additional research is required to further substantiate this
conclusion.
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