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Abstract: We compared 2 statistical hypothesis-test approaches (no-observed-effect 

concentration [NOEC] and test of significant toxicity [TST]) to determine the influence of 

laboratory test performance on the false-positive error rate using the US Environmental 

Protection Agency’s Ceriodaphnia dubia reproduction whole-effluent toxicity (WET) test 

endpoint. Simulation and power calculations were used to determine error rates based on 

observed control coefficients of variation (CV) for 8 laboratories over a range of effect levels. 

Average C. dubia control reproduction among laboratories was 20 to 40 offspring per female, 

and the 75th percentile CV was 0.10 to 0.31, reflecting a range in laboratory performance. The 2 

approaches behave similarly for CVs of 0.2 to 0.3. At effects <10%, as CV decreases, TST is less 

likely to declare toxicity and NOEC is more likely to do so. Laboratory performance affects 

whether a sample is declared toxic and influences the probability of false-positive (and -

negative) error rates using either approach. At the 75th percentile control CV observed for each 



laboratory, 4 laboratories would achieve approximately a 5% false-positive rate using 13 or 

fewer replicates for this test method. For the remaining 4 laboratories, more replicates would be 

needed to achieve a 5% false-positive rate. The present analyses demonstrate how false-positive 

rates are influenced by laboratory performance and WET test design.  
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INTRODUCTION  

Whole-effluent toxicity (WET) tests (also referred to as “direct toxicity assessments” or 

“whole-effluent assessments”) are used by many countries to assess the water quality of treated 

wastewater effluents and ensure that aquatic life is protected from toxicity of effluents (US 

Environmental Protection Agency 2002a; Scroggins et al. 2002; Power and Boumfrey 2004; UK 

Environment Agency 2005; OSPAR Commission 2007). The biological data from these tests 

(e.g., number of organisms surviving, number of offspring produced, biomass, number of 

embryos which develop normally) are evaluated using one of several statistical approaches to 

derive a statistical endpoint estimate for toxicity. That endpoint is then compared with a 

threshold or criterion to determine whether the effluent meets regulatory standards. 

In the United States, the statistical endpoint for permitted effluents is evaluated at a 

critical effluent dilution (receiving water concentration [RWC]) identified in the facility’s 

effluent discharge permit. If the effluent is not toxic at the RWC, the effluent is in compliance 



with the regulatory permit. Reliance in the United States on a critical effluent concentration for 

determining compliance has led to the use of hypothesis-testing approaches that determine 

whether the biological response at the RWC is significantly different (i.e., poorer) from the test 

control response. Point estimate endpoints (e.g., 25% inhibitory concentration [IC25]) are also 

used in the United States and elsewhere for effluent toxicity compliance determinations.  

Two statistical approaches based on one-sided hypothesis tests are used in the United 

States to interpret data on survival and sublethal effects in WET tests. These are the no-observed-

effect concentration (NOEC) approach, based on traditional null hypothesis significance testing, 

and a bioequivalence hypothesis-testing approach called the “test of significant toxicity” (TST; 

US Environmental Protection Agency 2010). The NOEC is an accepted statistical option in 

Europe (Organisation for Economic Co-operation and Development 2006), the United Kingdom 

(UK Environment Agency 2007), Canada (Environment Canada 2005), and other countries for 

effluent toxicity assessments.  

The NOEC and other hypothesis approaches (e.g., TST approach) can lead to decision 

errors (Warren-Hicks and Parkhurst 1996; US Environmental Protection Agency 2000, 2010), 

commonly termed “false positives” (type I—error of rejecting the null hypothesis when it should 

be accepted) and “false negatives” (type II—error of accepting the null hypothesis when it 

should be rejected). Decisions based on point estimates (e.g., IC25) are also subject to false 

positives associated with imprecision, as reflected in the confidence intervals around the 

endpoint of interest; we did not address point estimates in the present study. Although numerous 

publications have discussed sources of laboratory and method variability associated with WET 

biological endpoints (e.g., Warren-Hicks and Parkhurst 1996; Burton et al. 1996; Chapman et al. 

1996; Warren-Hicks et al. 2000), few studies have explored false-positive and -negative rates of 



WET endpoints used in regulatory compliance. Furthermore, the few that have made the attempt 

used very small sample sizes (Diamond et al. 2008) or WET tests using methods that have since 

been refined (Moore et al. 2000); moreover, laboratory performance has improved since these 

other studies were conducted (Denton et al. 2011).  

Hypothesis-test approaches explicitly incorporate a false-positive rate determined a priori 

by the investigator (or, in the case of WET compliance, by the regulatory WET program). The 

false-negative rate then depends on the effect size, number of replicates, and intratest variance, 

unless it is also determined a priori. Detailed explanations of hypothesis tests such as TST and 

NOEC and their associated statistical error rates can be found in other sources (e.g., Chapman et 

al. 1996; Denton et al. 2011; Hothorn 2014). Except for the bioequivalence TST approach, to our 

knowledge hypothesis tests used in the United States and elsewhere for effluent regulatory 

compliance explicitly considered only false positives and not false negatives. A percentage of 

minimum significant difference criterion can be used to indirectly limit type-II errors for the 

NOEC approach (US Environmental Protection Agency 2002b). 

The NOEC and TST approaches have been compared using effluent and ambient toxicity 

test results for several WET methods (Diamond et al. 2013). However, that observational study 

did not involve known values for the true percentage effect. Probabilities of declaring toxicity for 

known values of percentage effect, using the TST and NOEC, were reported for many WET 

methods (US Environmental Protection Agency 2010). That study demonstrated that method 

variability (larger control coefficient of variation [CV] for the biological endpoint measurement) 

and replication have an important influence on the probability of declaring toxicity. The US 

Environmental Protection Agency (2010) study used a limited range of values for true 

percentage effect, CV, and number of replicates. It also reported percentiles of CV achieved by a 



composite, national sample of laboratories and not for individual laboratories. Although the 

previous work helps relate the probability of declaring toxicity to the CVs being achieved in 

aggregate, it is important to understand how laboratories differ in endpoint precision (within-test 

variability), which influences the probabilities of false positives and negatives.  

Based on questions raised regarding the false-positive rate of bioequivalence-based 

approaches such as TST compared to the NOEC approach (California State Water Resources 

Control Board 2011), the authors have observed a general misunderstanding regarding how such 

error rates are established in relation to WET method test designs. Thus, a more detailed 

examination of the TST and NOEC approaches is warranted, to convey more clearly the relation 

between within-test variability (also called “intratest” or “among-replicate” variability), number 

of replicates, and probability of declaring toxicity. Also, laboratory performance for many WET 

methods has improved since they were first introduced in the late 1980s (US Environmental 

Protection Agency 2010; Denton et al. 2011); thus, more recent data on WET test method 

variability can provide a more current indication of laboratory performance and how laboratories 

differ with respect to test performance. 

The objectives of the present study were 1) to examine laboratory performance in terms 

of mean and within-test variability (standard deviation) for the reproduction endpoint of the 

Ceriodaphnia dubia test (US Environmental Protection Agency 2002b) and 2) to evaluate the 

probability of declaring samples toxic using the TST and NOEC approaches in relation to within-

test variability, for a meaningful range of percentage effect values and numbers of replicates. We 

did not evaluate point estimate approaches because multiple models are in use and various 

concentration–response patterns need to be examined, requiring a larger, more complex study. 

The C. dubia test was selected because it is frequently required or being considered as a 



requirement of freshwater dischargers in the United States, Canada, Japan, and Europe and is 

commonly used to assess toxicity of freshwater streams in California, where the present study 

was focused (Anderson et al. 2010). The C. dubia reproduction endpoint reflects both survival 

and reproduction (i.e., average number of offspring produced by all females, including those 

dying without producing offspring) and is often more sensitive than the survival endpoint. Using 

results from different laboratories, we demonstrate the influence of laboratory performance on 

the probability of declaring toxicity and the importance of test design for this WET method in 

helping to address laboratory performance.  

BACKGROUND  

The NOEC and TST statistical approaches (US Environmental Protection Agency 2002b, 

2010) are applied to sample statistics for the biological endpoints of a WET method, such as 

reproduction in the C. dubia test. The present study is concerned only with sublethal endpoints in 

short-term WET tests for chronic toxicity.  

The NOEC approach is described in US Environmental Protection Agency (2002b) and 

employs data from multiple effluent concentrations (dilutions) in a WET test, for example, 6.25, 

12.5, 25, 50, and 100% of whole effluent. One of the effluent concentrations is the RWC, 

identified in a discharge permit as the concentration at which no toxicity should occur (i.e., this 

concentration and more dilute effluent concentrations should not differ significantly from the 

control). The NOEC statistical approach compares the control to each of the 5 effluent 

concentrations using a multiple comparisons procedure. The nulhypothesis is that all of the 

means for effluent are equal to the control mean (μC = μi, i = 1, 2, 3, 4, 5); the alternative (one-

sided) hypothesis is that at least one of the 5 effluent concentrations has a smaller mean than the 

control.  



The TST statistical approach employs 2 concentrations, an effluent concentration (RWC) 

and a control (US Environmental Protection Agency 2010; Denton et al. 2011). The null 

hypothesis assumes that the RWC (parametric) mean is ≤75% of the control mean (μRWC ≤ 

0.75μC). The alternative (one-sided) hypothesis is that the RWC mean is >75% of the control 

mean.  

No-observed-effect concentration is a proof-of-hazard statistical test (Hothorn and Hasler 

2008; Hothorn 2014); the null hypothesis assumes that the effluent is not toxic; to declare an 

effluent toxic, there must be a statistically significant difference between the control and the 

RWC or a lower concentration (a significant difference with a higher concentration does not 

result in declaring the effluent toxic). The TST is a noninferiority or proof-of-safety statistical 

test (Parkhurst 2001; Hothorn and Hasler 2008; Hothorn 2014); the null hypothesis assumes that 

the effluent is toxic; to declare an effluent nontoxic or “safe,” the null hypothesis must be 

rejected. 

For NOEC, the type-I error rate (probability of erroneously rejecting the null hypothesis) 

is set at 0.05; this is a family-wise error rate (i.e., in this case, it pertains to 5 comparisons with 

control). For TST, the type-I error rate is set between 0.05 and 0.25, choosing the lowest value 

that would make the probability ≤0.05 of not rejecting the null hypothesis (i.e., declaring a 

sample “toxic”) when the true effect is ≤10%, taking into account the variability and minimum 

required replication for each WET test. This is a comparison-wise rate, pertaining to a single 

comparison with control.  

For both the NOEC and TST, lower within-test variability and greater replication make it 

easier to reject the null hypothesis when it is truly false (increasing the power of the test, π = 1 – 

β). For the NOEC, this means declaring an effluent safe when it should be considered toxic; for 



the TST, it means declaring an effluent toxic when it should be considered safe. It is a type-II 

error to “accept” (with probability β) the null hypothesis when it is truly false. For the NOEC, 

the type-II error rate β is not set explicitly but depends implicitly on the WET test design (e.g., 

number of replicates and organisms per replicate) and on the variability of the sublethal endpoint 

measurement achieved by the laboratory conducting the WET test. For the TST, the type-II error 

rate is set explicitly at β = 0.05 when (μRWC ≥ 0.90μC).  

The preceding description identifies 3 key effect sizes: no difference in percentage effect 

(in the NOEC null hypothesis), a 25% difference in means (in the TST null hypothesis), and a 

10% difference (for the TST type-II error rate). Thus, 0, 10, and 25% effects (in terms of the 

parametric means μRWC and μC) are used as benchmarks for evaluating the probability of declaring 

toxicity in the present study. The term “percentage effect” describes the percentage reduction in 

the biological measurement. This can refer either to the sample (observed) means or to the 

parameter values. For example, if C. dubia reproduction has a mean of 25 in the control and 20 

in the RWC, the percentage effect is <ZAQ;1>[100 × (25 − 20)]/25, or 20%.  

In practical terms, the definitions of error rates for the NOEC are the reverse of those for 

the TST. Practical interest centers on the probability of declaring an effluent toxic given its true 

status. It is simpler to describe outcomes in terms of the probability of declaring an effluent toxic 

in relation to the effect size (i.e., percentage effect, the relative difference between the true 

[parametric] mean responses for control and RWC). The present results are presented as 

probabilities of declaring toxicity in relation to the true percentage effect.  

For the present study, we consider that a false positive occurs when an effluent is 

incorrectly declared toxic when the true effect level is at or below a value deemed to be 

“acceptable” (i.e., true percentage effect at RWC is ≤10%; μRWC ≥ 0.90μC). A false negative occurs 



when an effluent is not declared toxic when the true percentage effect is at a value deemed 

“unacceptable” (e.g., true percentage effect at RWC is ≥25%; μRWC ≤ 0.75μC).  

METHODS  

Laboratory test data  

Table 1 reports the number of C. dubia reproduction WET tests evaluated for each 

laboratory in the present study. These data were obtained from facilities in California that submit 

data for regulatory decisions; data are certified as correct under the US National Pollutant 

Discharge Elimination System (NPDES). Two sources of data were compiled into a single data 

set for analysis. The first source (“test drive” in the present study, reported in Diamond et al. 

2013) consisted of 64 effluent tests conducted before 2012 by 3 facilities using 3 laboratories 

(the data set originally consisted of 209 tests; we excluded 145 tests for which the laboratory was 

not known—126 of these were tests of storm water, not effluents). The second source (California 

Integrated Water Quality System) consisted of 180 effluent tests extracted from California’s 

NPDES compliance database that were conducted during 2012 to 2015 (except one test in 

November 2011) by 10 facilities using 6 laboratories. One of these laboratories (“D”) also 

occurred in the earlier test drive data set; labels “D1” and “D2” distinguish tests conducted by 

laboratory D before and after 2012, respectively. This laboratory instituted additional laboratory 

quality assurance practices after 2012; the mean and CV differed between those 2 different time 

periods, so they are reported separately. Thus, test data were produced by a total of 8 laboratories 

(“A”–“H”). All C. dubia effluent tests were conducted using one organism in each of 10 

replicates for the control and 5 effluent concentrations in accordance with the minimum test 

design required in this WET method (US Environmental Protection Agency 2002b). Dilution 



water used in these tests was generally “moderately hard water,” although some tests were 

conducted using “hard” or “very hard water” (US Environmental Protection Agency 2002b). 

Accurate transcription of original data was verified by 2 analysts working independently. 

Data were entered and verified using spreadsheets. Data manipulation and analysis were 

conducted using the R statistical programming system (R Development Core Team 2016). Data 

imported into R from spreadsheets were checked against the spreadsheet using frequencies, 

ranges, and totals and by detailed visual inspection. Replicate test data were organized by 

laboratory and test identification number for subsequent analysis.  

Calculating the probability of declaring toxicity  

The probability of declaring toxicity was evaluated in 3 ways for the TST: 1) by an 

analytic (mathematical) power calculation using the noncentral t-distribution, 2) by simulations, 

and 3) by a resampling approach that avoided parametric assumptions. For the NOEC, only the 

simulation approach was used, for reasons noted later.<ZAQ;2>  

The C. dubia reproduction endpoint can be represented as a normally distributed variate, 

and its means are adequately represented by the t-distribution (Zheng et al. 2013; US 

Environmental Protection Agency 2010). Mean responses (normalized by standard deviation 

[SD]) for each concentration are well represented by the t-distribution. These means and SDs are 

the basis of the TST and NOEC calculations. We considered it prudent to evaluate the extent of 

agreement between the properties of the laboratory test data and the statistical assumptions 

(normality and homogeneity of variances) used for our calculations. Laboratory data were 

examined using normal probability plots and the Shapiro-Wilk test for normality. The relations 

between SDs and means were examined for controls and for all tested concentrations 

(Supplemental Data, Part 2). 



Power calculations for the TST  

The probability of declaring samples toxic is readily calculated directly for the TST using 

statistical functions in R for the noncentral t-distribution. Thus, the probability of declaring 

toxicity (by failing to reject the null hypothesis for the TST; US Environmental Protection 

Agency 2010) can be calculated for specified values of percentage effect, number of replicates, 

and SD or CV (Supplemental Data, Part 4). We also calculated the number of replicates 

necessary to achieve a probability 0.05 of declaring toxicity at 10% effect given the observed CV 

for each laboratory.  

Simulations for the TST and NOEC  

A direct calculation of the probability of declaring toxicity was not possible for the 

NOEC approach. Simulation of a multiconcentration WET test was necessary because NOEC 

evaluation requires multiple decisions in a flowchart, calculations of Dunnett’s or Steel’s test, 

and application of percentage of minimum significant different (PMSD) bounds (US 

Environmental Protection Agency 2002b). Simulations were therefore used to estimate the 

probability of declaring toxicity using the NOEC approach. The same simulated data (using only 

the control and 100% effluent concentration) were also used to compute the TST hypothesis test. 

The simulation results for TST were essentially identical to results from the mathematical power 

calculation.  

The probability of declaring toxicity with the NOEC approach depends on the 

concentration–response relationship. Thus, a comprehensive evaluation would require simulating 

multiple scenarios for patterns of response across the range of effluent concentrations. Instead, a 

simpler case was examined: a control and 5 concentrations with the mean response decreasing 

linearly (i.e., by constant decrements) from the one concentration to the next (starting at 0% 



effluent, the control), until the mean response reached a specific percentage effect (ranging from 

0 to 50%) at the highest concentration (100% effluent). The parametric mean response was 25 

neonates for the control, which is close to the median for a large sample of tests and laboratories 

(US Environmental Protection Agency 2010). The 100% concentration was selected as the RWC 

because 11 of 13 dischargers (and 196/244 tests) in the present study had the RWC set at 100% 

effluent. In the simulations, the percentage effect parameter at the RWC ranged from 0 to 50%. 

Setting the RWC at the highest, 100%, concentration is likely to yield a slightly greater 

probability of declaring toxicity than when the RWC is the middle concentration (for a given 

percentage effect at the RWC). Each concentration had 10 replicates. Variances of simulated 

data were homogeneous across concentrations. Data sets (“WET tests”) were simulated 10 000 

times for each combination of maximum percentage effect (at 100% effluent) and control CV. 

These combinations were maximum percentage effect = 0, 5, 10, 15, 20, 25, 30, 40, and 50% and 

CV = 0.10, 0.20, 0.25, 0.30, and 0.40 (note, these are parameters, not observed values). The 

sampling error for the estimated probability of declaring toxicity based on simulation is 

approximately 0.05 ± 0.00427 for a probability of 0.05 and 0.10 ± 0.00588 for a probability of 

0.10, calculated as 1.96 standard errors using the normal approximation.  

For simulated data sets, the NOEC was determined using the statistical approaches (US 

Environmental Protection Agency 2002b) for equal numbers of replicates: if tests for normality 

and homogeneity of variances were not rejected, analysis of variance was followed by Dunnett’s 

test for multiple comparisons to a control; otherwise, Steel’s test was used (this occurred for 2% 

of simulated tests). Simulations were generated using normally distributed data with equal 

variances and equal replication, which satisfied assumptions for Dunnett’s test. The requirement 

(test acceptability criterion) that the control mean be at least 15 offspring per female for the C. 



dubia reproduction endpoint was applied. A finding of toxicity occurred if any concentration less 

than or equal to the RWC (in this case, 100%) differed significantly from the control, with 

exceptions as required for PMSD bounds (US Environmental Protection Agency 2002b). Results 

and Supplemental Data (Part 4) report how often the test acceptability<ZAQ;3> criterion was 

violated (almost never) and how often the PMSD bounds were applied. 

If the PMSD calculated for the simulated data exceeds the upper bound for Ceriodaphnia 

(47%) but no concentration differs significantly from control, a second water sample must be 

taken within 2 wk and a new WET test conducted. This outcome was rare in the simulations 

except at CV = 0.40, when it accounted for 12 to 19% of tests. The probability of declaring 

toxicity in the second test should be the same as for the first test if all parameters are unchanged. 

Therefore, we estimated the overall probability of declaring toxicity using the NOEC by 

multiplying the probability that the second test is required by the probability that the first test is 

declared toxic and adding this to the probability of declaring toxicity for the first test.  

In these simulations and in mathematical power calculations, the SDs were the same for 

control and RWC, which implies that the CV at the RWC is larger (because the mean is smaller). 

This exaggerates the variability at the RWC: based on the data from the present study 

(Supplemental Data, Part 2), the SD calculated from the data is approximately the same across a 

range of concentrations when the percentage effect is <25%.  

Resampling control data  

We also evaluated the probability of declaring toxicity for the TST by resampling the 

laboratory test data, rather than simulating data from a normal distribution. This avoids 

parametric assumptions about the distribution of the data and can validate the parametric 

approach if the results agree closely. Control replicates for each of the 244 WET tests in the C. 



dubia reproduction WET method were resampled 10 000 times. Each time, a pair of samples 

(each with 10 replicates, sampled with replacement) was taken, comprising the “control” 

concentration and the “RWC.” The data for the RWC were multiplied by 0.9 to induce a 10% 

effect. This means that the SD for the RWC samples was 0.9 times that for the control (the SD 

wasroportional to the mean, so the CV was the same for control and RWC). “Tests” for which 

the sample mean for control was fewer than 15 neonates were excluded from the calculation of 

probability.  

This bootstrap resampling approach was designed to reflect the variability among control 

replicates based on actual laboratory test data collected in the present study. If the data are not 

exactly described by the normal distribution, this approach should provide a more realistic 

estimate of the probability of declaring toxicity. If the data are well described by the normal 

distribution, this approach should agree closely with a mathematical power calculation for the 

TST that uses the sample statistics (CV, mean, and SD) of the laboratory data.  

RESULTS  

Laboratory differences in variability and reproduction  

Table 1 summarizes the sample statistics of control means, CVs, and SDs for the 8 

laboratories contributing C. dubia reproduction data. Differences in average control reproduction 

among laboratories were apparent, ranging from 20 to 40 offspring per female. The SDs also 

differed among laboratories, ranging between 2.9 and 7.1. The 75th percentile CV for the 8 

laboratories ranged between 0.13 and 0.31. Laboratory performance exhibited by the sample of 8 

California laboratories is similar to that observed nationally (Table 2; US Environmental 

Protection Agency 2010); thus, the laboratories represented in the present study are expected to 



achieve the same probabilities of declaring toxicity as were reported by the US Environmental 

Protection Agency (2010) in a national study.  

The C. dubia reproduction control data generally agreed with assumptions of the 

unequal-variance t test used for the TST. Normal probability plots and the Shapiro-Wilk test 

(Supplemental Data, Figure S1) indicated that normality is a well-supported assumption except 

for one laboratory (laboratory A, n = 43, p < 0.001). Boxplots of control SDs and means revealed 

large laboratory differences in means and smaller differences in SDs (Supplemental Data, 

Figures S2 and S3). Control SDs appeared to be constant across the range of control means 

(Supplemental Data, Figures S4 and S5). Using all concentrations (control and effluent), SDs 

appeared to increase with the mean offspring per female, up to a mean of approximately 15 

(these low values for reproduction involved effluent concentrations, not controls), and then were 

constant or decreased very slightly with increasing mean (Supplemental Data, Figure S6 and Part 

2.3). This observation bears on the methods used for simulations and resampling, which assumed 

constant SD or constant CV, respectively.  

Probability of declaring toxicity: Power calculations  

Figure 1 shows the probability of declaring toxicity for the TST in relation to CV when 

there is no difference between the control and RWC and when there is a 10% effect, based on 

resampling. When there is no difference, the probability of declaring toxicity is <5% up to a CV 

of approximately 0.25. When there is a 10% effect, this probability is <5% up to a CV of 

approximately 0.17 and exceeds 10% when the CV exceeds approximately 0.20. In resampling, 

the proportion of “tests” failing the test acceptance criterion for the control mean (it must be at 

least 15) was very low (≤0.003 of “tests”) for 7 laboratories, 0.018 for laboratory H, and 0.100 

for laboratory A. The result for laboratory A is not surprising because 11 out of 43 control means 



were between 15 and 16 neonates per female, the lowest control mean observed among the 

laboratories in the present study.  

Probability of declaring toxicity: Simulations  

Figure 2 summarizes the simulation results for the probability of declaring toxicity in C. 

dubia reproduction tests using the TST and NOEC approaches. Even at the highest CV, only a 

small fraction (<0.0013) of tests were rejected because the control mean was <15. This result 

was expected given the simulation values for the control means and CVs, which are typical for 

experienced laboratories. Good laboratory practices will prevent test rejection and repetition 

related to failing this test acceptance criterion.  

Considering the results of our analyses based on the minimum required number of 

replicates (n = 10 in Figure 2, bottom row), increasing CV decreases the power to declare toxicity 

at any given percentage effect for both approaches and more so for the NOEC than the TST. As 

CV increases, the TST is increasingly likely to declare toxicity at low percentage effect (also 

shown in US Environmental Protection Agency 2010). As CV decreases, the NOEC is 

increasingly likely to declare toxicity at a low percentage effect. These outcomes are a direct 

consequence of the different hypothesis-test approaches used by the NOEC and TST.  

Considering the influences of increased replication and decreased CV generally, the most 

precise results are obtained with a CV of 0.1 and 30 replicates and the least precise results with a 

CV of 0.4 and the minimum number of replicates (10). Decreasing the CV and increasing the 

number of replicates will increase the precision of the hypothesis-test statistic, although halving 

the CV (from the national average, ~ 0.25) may have a greater influence than doubling the 

required minimum number of replicates.  



The curves for the TST pivot around a point placed at 25% effect and 0.80 probability of 

declaring toxicity, becoming steeper for smaller CV and greater replication. That is a 

consequence of the TST hypothesis test in which the RWC mean must exceed 75% of the control 

mean to “pass” at alpha = 0.20 for the Ceriodaphnia reproduction endpoint. The curves for the 

NOEC are “anchored” at 0% effect and probability 0.05 of declaring toxicity; however, at low 

CV, the lower bound PMSD is triggered, recharacterizing significant but small effects as "not 

significant," so the curve dips below probability 0.05. Thus, the curves for the NOEC also 

become steeper for smaller CV and greater replication but from a pivot point near 0% effect and 

probability 0.05. This is a consequence of the proof-of-hazard hypothesis-test approach used for 

the NOEC (which must reject the hypothesis of 0% effect at alpha = 0.05 to show that toxicity is 

present at some concentration at or below the RWC).  

Considering effects of 10% or less, the NOEC is more likely than the TST to declare 

toxicity for CV <0.20 and less likely to do so for higher CVs with the minimum required 

replication. This creates a disincentive to increase test precision (via lower CV or higher 

replication) using the NOEC approach. For 10 replicates and CV = 0.3 or 10 to 20 replicates and 

CV = 0.4, the NOEC is less likely to declare toxicity.  

Ideally, the probability of declaring toxicity should increase abruptly near the desired 

percentage effect threshold, having low probability of declaring toxicity for biologically 

inconsequential effects and high probability of declaring toxicity at effects at or near the 

threshold for unacceptable toxicity. The TST comes closest to this ideal for CV = 0.2 to 0.3 and 

20 to 30 replicates.  

The results for the NOEC include the possibility that the PMSD upper bound may be 

exceeded, requiring resampling and a new WET test. This occurred very infrequently except for 



the case of CV = 0.4 and 10 replicates. In that case, 12 to 19% of tests had NOEC > RWC and 

PMSD > 47 (the maximum acceptable PMSD for the Ceriodaphnia reproduction endpoint using 

the NOEC approach). Most of the simulated WET tests that triggered repeat sampling (i.e., 

PMSD > 47 and found "not significant" by the NOEC approach) were declared toxic using the 

TST (Supplemental Data, Part 4.2). This is evident from the relative pobabilities of declaring 

toxicity using the TST and NOEC in Figure 2.  

Laboratory differences and TST error rates  

Figure 3 <ZAQ;4>shows the probability of declaring toxicity with the TST at 0 and 10% 

effect as a function of number of replicates and the control CV parameter, when the SD 

parameter is the same for the control and RWC, based on a mathematical power calculation. A 

target probability of ≤0.05 for declaring toxicity at a 10% effect using the TST was identified in 

US Environmental Protection Agency (2010).  

At 0% effect (Figure 3), the target probability of 0.05 is achieved with 10 replicates when 

the CV is approximately 0.25 or less. However, approximately 15 to 30 replicates are required as 

CV increases from 0.30 to 0.40 to achieve the same target probability of 0.05. At 10% effect 

(Figure 3), the probability of declaring toxicity is >0.05 for CVs exceeding approximately 0.15. 

That is approximately a 50th percentile CV for this WET method based on a large nationwide 

sample (Table 2). Doubling the number of replicates (20 replicates per concentration) decreases 

the long-run probability of declaring samples toxic with a 10% effect, but that probability is 

>0.05 at CVs >0.20. Tripling the number of replicates to 30 would reduce the probability below 

0.05 for CVs up to approximately 0.25. For 30 replicates and with a CV of 0.3 to 0.4, the 

probability of declaring toxicity for a 10% effect is estimated to be 0.09 to 0.21. 



Table 3 shows the expected long-run probability of declaring toxicity at a 10% effect for 

each laboratory in the present study, based on resampling each laboratory’s controls and 

applying the TST approach, for C. dubia reproduction. The influence of higher control CVs is 

again evident. Table 3 also shows the number of replicates needed to achieve a 5% probability of 

declaring a sample toxic when the true percentage effect is 10% and the true (parametric) control 

CV equals the observed 75th percentile CV (based on resampling; the CV parameters for control 

and RWC are the same, so the SD for RWC is 0.9 times the control SD). The observed 75th 

percentile was chosen to provide a suitable margin of error, but this choice will depend on the 

number of CV observations in any particular case (see Supplemental Data, Part 2.4). More than 

30 replicates would be needed to reduce the probability to 0.05 at 10% effect for laboratories 

having CVs >0.25. Laboratories having CVs <0.15 can achieve a probability of 0.05 or less at 

10% effect using the minimum number of 10 replicates for this WET method reproduction 

endpoint. In between this range, 10 to 30 replicates would be needed; fewer than 20 replicates 

are needed when CV is <0.21. These findings agree with previous work on TST (US 

Environmental Protection Agency 2010): the probability of declaring a sample toxic using the 

TST increases with percentage effect, and this probability depends primarily on the within-test 

variability and on the number of replicates used in the test.  

In Table 3, there is some discordance between the calculation of replicates needed based 

on a mathematical power calculation using the observed 75th percentile CV and the probability 

of declaring toxicity with 10 replicates based on resampling. This occurred mainly because the 

probability from resampling tracks the laboratory differences in average CVs rather than the 75th 

percentiles. For example, compare laboratories H and F, which have the same 75th percentile CV 

and thus the same number of replicates needed on that basis; laboratory F has a smaller average 



CV and a smaller expected probability of declaring a sample toxic, based on resampling, when 

the sample has a 10% effect.  

Figure 4 shows the probability of declaring toxicity using the TST with 2 WET test 

endpoints, Ceriodaphnia reproduction and red abalone larval development (US Environmental 

Protection Agency 1995) at the minimum required replication, in relation to percentage effect 

and 3 values of control CV. These curves are based on mathematical power calculations for the 

TST. Figure 4 shows the influence of precision (low within-test variability) on the probability of 

TST declaring toxicity at larger effect levels and not declaring toxicity for small effects. The 

WET test methods that require a greater minimum number of replicates or a greater number of 

organisms examined per replicate are likely to have lower control CVs and, therefore, greater 

statistical power to reject the null hypothesis. For example, the red abalone larval development 

test is capable of relatively high precision (control CVs are frequently <0.10; US Environmental 

Protection Agency 2010) because of the greater number of organisms examined in that test 

method. Using the TST, this test can detect a 25% effect with a probability of 0.95 and has a 

negligible chance of declaring toxicity for small effects (<10%). Using the NOEC approach, this 

WET test method is capable of statistically distinguishing very small effluent effects (<5% 

effect), thereby declaring toxicity because statistical power is relatively high (Diamond et al. 

2013).  

DISCUSSION  

Agreement of resampling and power calculations for the TST  

Control data were resampled as a way to avoid parametric assumptions about the 

distribution of the data. The results agreed well with the mathematical power calculation that 

assumed normally distributed data and SD proportional to the mean (Figure 1). Mean values of 



reproduction data for C. dubia controls are well described by a normal distribution 

(Supplemental Data, Part 2; Zheng et al. 2013). Although the tails of the distribution of means 

are shortened by the infrequent rejection of means of fewer than 15 offspring per female and the 

termination of the test (US Environmental Protection Agency 2002b; when 60% or more of 

surviving females have produced 3 broods), this favors robustness of the t test, and variance 

heterogeneity among concentrations is accommodated successfully by use of the unequal-

variance t test (Ruxton 2006; US Environmental Protection Agency 2010; Zheng et al. 2013).  

Comparison of the TST and NOEC  

The 2 approaches are increasingly likely to declare toxicity as percentage effect increases 

for a given CV (Figures 1, 2, and 4), as they were designed to do. For the TST, lower control CVs 

reduce the probability of declaring toxicity for effects <25% and increase that probabiity for 

effects >25% (this is inherent in the design of the test statistic). For the NOEC, lower control 

CVs increase the probability of finding a significant effect of any size (even small effects). This 

tendency is mitigated by applying the “lower-bound PMSD,” which means that if an estimated 

effect is significant but <13% (Ceriodaphnia reproduction), it is reclassified as not significant. 

As control CVs increase, the NOEC approach has an increasing probability of declaring any 

positive effect to be nontoxic. It is well known that the NOEC can fail to declare toxicity when 

within-test variability is high (Chapman et al. 1996; Denton et al. 2003, 2011; Diamond et al. 

2011; Landis and Chapman 2011). Increasing replication is qualitatively analogous to decreasing 

CV because it reduces the variance of the sample statistic used in the hypothesis tests for the TST 

and NOEC. These are well-known consequences of the TST and NOEC approaches.  

In comparing the relative chance that the NOEC and TST approaches will declare 

toxicity across a range of effect sizes, for realistic values of CV and replication, the NOEC and 



TST differ most at high and low CVs across a range of effect levels (Figure 2). This is a direct 

consequence of the differing null hypotheses. Previous analyses have shown that effluent 

samples with percentage effect as high as 25 to 30% may not be declared toxic using the NOEC 

approach at CVs corresponding to the 90th percentile for the C. dubia reproduction test 

(Diamond et al. 2013). Inability to detect what is generally considered a significant biological 

effect (e.g., 25%) is a clear disadvantage for a regulatory compliance program. Also, with the 

NOEC approach, high test precision results in a high probability of declaring effluent toxicity for 

small effects that are deemed biologically inconsequential. This behavior of the NOEC is related 

to using a null hypothesis of no difference, as noted before (Diamond et al. 2013). The 

bioequivalence test approach used by the TST can address these concerns so long as the 

laboratory can achieve sufficient within-test precision to minimize the probability of an effluent 

being declared toxic at effect levels that are acceptable according to regulatory policy.  

Variation among laboratories  

It is apparent that laboratories having different levels of precision will differ in the 

probability of declaring toxicity using the TST and the NOEC approaches. In the present study, 

laboratory A had CVs ranging up to 0.30 or higher (Table 1), which could translate to 

probabilities of declaring toxicity as high as 0.34 for a 10% effect using the TST (Table 3), given 

the minimum test design of 10 replicates for the C. dubia reproduction test. Laboratory A was 

the only laboratory with demonstrably non-normal data, caused mainly by a high proportion of 

tests (11 of 43) in which the control means barely met one of the test method acceptability 

criteria for reproduction (average of 15 or more neonates per female). Laboratories having 

relatively low CVs for this WET test method (≤0.15) are expected to achieve a probability of 

0.05 or less with a 10% effect using the TST and 10 to 20 replicates (Table 3). When the 



percentage effect is 0%, all of these laboratories would have probabilities of 6% or less for 

declaring toxicity (3 laboratories exceed 5%) using the minimum test design for the C. dubia 

reproduction endpoint.  

Varying precision among laboratories has different consequences for the NOEC and TST 

given their different null hypotheses (Figure 2). For the C. dubia reproduction endpoint, 

relatively high (but achievable) precision (CV ≤ 0.2) results in probabilities >0.20 for declaring 

toxicity at a 10% effect using the NOEC approach, whereas for the TST the probabilities are 

<0.20. Low test precision (CV ≥ 0.3) results in a relatively low probability (<0.50) of declaring 

an effluent as toxic at a 25% effect using the NOEC, whereas the TST maintains probabilities 

>0.80.  

Implications for improving practices  

The present analyses point to the need for laboratories to track their control CV and, when 

necessary, adopt measures to decrease within-test variability, thus ensuring quality data for 

decision-making (Diamond et al. 2008). Variation among laboratories in means and CVs for C. 

dubia reproduction results in interlaboratory variability in the probability of declaring toxicity. 

Using the TST, it is to the permittee’s advantage to select laboratories that have smaller control 

CVs. The effect of larger CVs on the probability of declaring toxicity at small percentage effect 

can be counteracted predictably by increasing replication, which decreases the standard error 

(denominator) used in the t test for the TST. Using the NOEC approach, increasing the number 

of replicates or otherwise increasing within-test precision increases the probability of declaring 

toxicity across the full range of effect sizes, including small effects (≤10%).  

The effect of improved laboratory performance for the C. dubia reproduction test can be 

seen by comparing the estimated probabilities of declaring toxicity for laboratory D over time. 



Before refinements in laboratory technician training and additional quality control steps, the 

mean reproduction and 75th percentile CV were 31.6 and 0.31, respectively (n = 30; Table 1). 

That CV translates to approximately a 34% probability of declaring toxicity at 10% effect, using 

the minimum test design of 10 replicates (Figures 1 and 3). After quality assurance/quality 

control and training improvements were instituted, the control mean reproduction and 75th 

percentile CV forthis laboratory and test endpoint were 40.0 and 0.17, respectively (n = 57; Table 

1). The lower CV translates to a probability between 5 and 10% at a 10% effect in the RWC 

using the minimum required test design (Figures 1 and 3). The probability could be lowered 

below 5% by increasing replication to 20.  

Limitations of the present study  

Several choices made for the simulations limit their generality, including the adoption of 

a linear decrease in responses across the range of concentrations, setting RWC at the highest 

concentration, and assuming homogeneous variance of responses across the range of effluent 

concentrations. To evaluate the behavior of the NOEC approach, it was necessary to choose a 

concentration–response curve and to choose the concentration for the RWC. The NOEC could 

exhibit different behaviors for different shapes of response curves across the concentration series 

or when the RWC is an intermediate concentration. As noted, setting the RWC at the highest 

concentration may slightly increase the chance of declaring toxicity. Although this matter 

deserves further investigation, the effort required for a thorough study is substantial (e.g., Bailer 

et al. 2009). The present study was primarily intended to reveal the behavior of the TST 

approach, which depends on only 2 concentrations (control and RWC). Note that for most 

permittees in the present study, the RWC is set at 100% effluent, so the present results for the 



TST and NOEC should yield a fair assessment of the relative performance of those 2 approaches 

for such effluent discharges.  

For power calculations and simulations, the variance parameter was homogeneous (thus 

for smaller response means, CV is greater). The decision to make the variance of responses 

homogeneous was based on the data, as noted in the present study (see Supplemental Data, Part 

2). Using a constant SD tends to overestimate the false-positive rate (Supplemental Data, Part 

4.1). For the resampling analysis (and the curves shown with resampling results in Figure 1), the 

SD was proportional to the mean: when the mean parameter for RWC is 0.9 × (control mean), 

the SD parameter for RWC was 0.9 × (control SD). A 10% decrease in the response mean is 

considered a small effect. Power calculations show that the choice of homogeneous versus 

proportional SD has little influence over the probability of declaring toxicity for small effects 

(Supplemental Data, Part 4.1).  

The present study used laboratory average or median CVs. It is important to note that 

sample statistics for CV, mean, and SD are subject to sampling variation. To apply our methods 

and inferences, laboratories should consider using upper confidence limits for CV or SD 

estimates, to err on the side of caution (Supplemental Data, Part 2.4).  

False positives and false negatives  

The regulatory program in the United States has identified a 25% effect as a threshold for 

unacceptable toxicity, both for the TST hypothesis-test approach and the IC25 point estimate 

approach (US Environmental Protection Agency 2002b, 2010). For the TST approach, up to a 

10% effect at the RWC effluent concentration is deemed acceptable. We note, however, that a 

10% effect is not necessarily considered negligible in regulatory programs. For example, the US 

Environmental Protection Agency’s revised selenium water quality criterion is based on a 10% 



effect on larval fish development (US Environmental Protection Agency 2016), which is well 

below the 25% effect used as the basis for IC25 in WET testing in the United States. In addition, 

toxicity assessments of effluents and chemicals in the European Union are generally based on 

either 0% (i.e., no difference from control) or a 10% effect level in their chemical registration 

process (European Commission 2003; OSPAR Commission 2007). 

Declaring an effluent toxic when the true percentage effect is zero is clearly a false 

positive. Extending the definition of false positive to larger effects is inherently a policy 

decision, as discussed in US Environmental Protection Agency (2010). Obviously, the true 

percentage effect is unknown for effluent samples or receiving waters. Blank studies could, in 

principle, be used to estimate a false-positive rate for a given test method; however, a very large 

number of tests is needed to estimate the rate accurately, and the estimate would be conditional 

on a laboratory’s performance characteristics, such as its consistency in achieving a high control 

mean and a low control SD, as demonstrated in the present study. It is important to emphasize 

that declaring a single effluent sample toxic or not toxic, using any statistical approach, cannot 

be identified unambiguously as a false-positive or false-negative event. Also, samples of 

unknown toxicity or composition do not provide evidence about the error rates of a WET method 

or a statistical approach.  

False-positive and false-negative error rates are linked to the test design and laboratory 

performance of the test method and to the effect level identified with these errors. Increased 

replication along with lower within-test variability will increase test statistical power and 

decrease error rates, as demonstrated in the present study. The NOEC approach does not directly 

control false negatives. As demonstrated in the present study, the NOEC approach, using the 



minimum required replication, could declare an effluent “safe” with a true effect of 30% or more 

in the C. dubia reproduction test if within-test variability is high.  

The results for the C. dubia reproduction endpoint are not representative of all WET 

endpoints and methods. For example, the red abalone (Haliotis rufescens) larval shell 

development WET method (US Environmental Protection Agency 1995), which is commonly 

required for marine discharges in California and some other Pacific coast states, examines larval 

shell development for 100 organisms in each of 5 replicates. The CVs for this WET method are 

an order of magnitude lower than those observed for the C. dubia reproduction test (US 

Environmental Protection Agency 2010). Thus, for the H. rufescens and Mytilus species WET 

test methods, even with a percentage effect of 10% at the<ZAQ;5> RWC, samples are often 

declared toxic using the NOEC approach, whereas they are not declared toxic using the TST 

(Diamond et al. 2013). Similar results are expected for other WET test methods that examine a 

relatively large number of organisms per replicate and/or more replicates, such as the 

echinoderm fertilization WET test method (US Environmental Protection Agency 1995). Thus, 

the WET test design influences the ability to distinguish samples having small and large effects 

using hypothesis statistical approaches such as the TST and the NOEC.  

The bioequivalence null hypothesis encourages a laboratory to achieve higher test power 

(by minimizing within-test variability and increasing replication) to demonstrate that the effluent 

is safe and not a potential hazard (McDonald and Erickson 1994; New Mexico Energy, Minerals 

and Natural Resources Department, Mining and Minerals Division 1999; Hoenig and Heisey 

2001; Denton et al. 2011; Hothorn 2014). The statistical literature has long supported applying 

properly stated null and alternative hypotheses and appropriate test designs (McBride et al. 1993; 

Erickson and McDonald 1995; Parkhurst 2001; Streiner 2003). The regulatory management 



decisions used to define the TST also address the issues inherent in determining statistical 

significance without defining what is biologically significant (McBride et al. 1993; Parkhurst 

2001; Van der Vliet et al. 2012; Hothorn 2014).  

Water quality agencies can develop WET methods and evaluate laboratory performance 

to minimize long-run error rates using test designs that ask and answer the appropriate question 

statistically (Diamond et al. 2011). Those who use WET methods and engage in discussions 

about their error rates need to recognize that an individual test result (for a water sample of 

unknown toxicity) cannot be declared either a “false positive” or a “false negative” because error 

rates are based on long-run statistical properties.  
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10.1002/etc.4347.  
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Table 1. Summary statistics of control data for the Ceriodaphnia dubia reproduction test 

endpoint for each laboratory in the studya  

               Percentiles of CV  

   Laboratory  No. 

tests  

Mean  SD 0%  10%  25%  50%  75%  90%  100%  

After 2012 (CIWQS)  

   A  43  19.8  4.2  0.10  0.16  0.20  0.23  0.28  0.34  0.47  

   B  18  32.4  6.4  0.08  0.10  0.11  0.15  0.25  0.31  0.44  

   C  20  26.6  4.1  0.04  0.10  0.14  0.20  0.27  0.36  0.39  

   D (D2)  57  40.0  7.1  0.04  0.06  0.09 0.10  0.17  0.29  0.49  

   E  22  25.1  2.9  0.05  0.08  0.09  0.11  0.21  0.27  0.33  

   F  20  32.7  3.2  0.05  0.06  0.09  0.11  0.16  0.27  0.30  

   Before 2012 (test drive)  

   D (D1)  30  31.6  5.2  0.04  0.09  0.13  0.17  0.31  0.37  0.51  

   G  17  29.8  6.0  0.05  0.06  0.09  0.09  0.13  0.16  0.52  

   H  17  26.2  6.8  0.04  0.07  0.09  0.10  0.16  0.34  0.57  

a Laboratory D modified laboratory practices and quality controls during the time frame of the 

present study; D1 represents laboratory statistics prior to laboratory refinements, and D2 

represents after laboratory refinements were instituted. 

CV = coefficient of variation; CIWQS = California Integrated Water Quality System; SD = 

standard deviation.  

   



Table 2. Comparison of percentiles for coefficients of variation of control Ceriodaphnia 

reproduction between the national study (US Environmental Protection Agency 2010) and the 

present study  

Percentile  US Environmental 

Protection Agency 

(2010),  

TST technical 

document  

Present study  

 0%  —  0.036  

10%  0.08  0.076  

25%  0.10  0.097  

50%  0.15  0.147  

75%  0.24  0.244  

90%  0.35  0.332  

100%  —  0.568  

No. tests  792  244  

No. laboratories  44  8  

   

  



Table 3. Number of replicates required for test of significant toxicity to achieve a 5% probability 

of declaring toxicity at 10% effecta  

   Observed control CV  Number of 

replicates 

required  

Probability 

(declaring toxic) 

at 10% effect 

with 10 

replicates  

Laboratory  Average  75th 

percentile  

Number of tests  

G  0.13  0.13  17  8  0.037  

F  0.13  0.16  20  11  0.052  

D2 b  0.15  0.17  57  13  0.071  

E  0.15  0.21  22  20  0.070  

H c  0.17  0.16  17  11  0.101  

B  0.18  0.25  18  27  0.100  

C  0.21  0.27  20  32  0.151  

A  0.24  0.28  43  35 0.208  

a The number of replicates is based on a mathematical power calculation using the laboratory’s 

75th percentile coefficient of variation (CV) and assumes that the standard deviation is the same 

for control and receiving water concentration. Probability of declaring toxicity with 10 replicates 

at 10% effect is based on resampling each laboratory’s data; it is more closely related to average 

CV.   

b Data for laboratory “D” from before 2012 (“D1” in Table 1) were excluded because laboratory 

practices and quality assurance/quality control were improved after 2012.   



c The average (sample mean) of CV for laboratory H exceeds the sample 75th percentile, which is 

not improbable given n = 17 and some skewness (see Supplemental Data Part 3 for more detail).  

  



Figure [HC1]1. Proportion of Ceriodaphnia reproduction tests that would be declared toxic using 

the test of significant toxicity as a function of the control coefficient of variation. Plots on the left 

show results of (nonparametric) resampling of 244 individual tests’ control replicates as dots, 

superimposed on the (parametric) mathematical calculation shown as a line, to establish how 

closely these 2 agree. Each dot is an average of 10 000 resamples from one of the 244 controls. 

Plots on the right show mathematical power calculations for n = 10, 20, and 30 replicates.  

 

  



 

 

 

  



Figure [HC2]2. Probability of declaring a sample toxic using the no-observed-effect concentration 

(NOEC) and test of significant toxicity (TST) based on simulating 10 000 whole-effluent toxicity 

tests at each of various percentage effect parameter values (horizontal axis), 4 values of control 

coefficient of variation parameter, and 3 values for number of test replicates. Gray horizontal line 

shows probability of 0.05. Solid curves represent TST and broken curves, NOEC. CV = 

coefficient of variation.  

  



 
 

 

 

 

 

 

  



Figure 3. Probability of declaring a sample toxic using the test of significant toxicity with the 

Ceriodaphnia reproduction test, in relation to number of replicates and control coefficient of 

variation (CV). Four curves show CV = 0.1 (lowest curve, solid line), 0.2, 0.3, and 0.4 (highest 

curve, dotted line). Percentage effect parameter is zero in the upper plot and 10% in the lower 

plot.  

 

 

  



 



Figure [HC3]4. Probability of declaring a sample toxic for Ceriodaphnia and red abalone with the 

test of significant toxicity (using the minimum number of replicates specified for each whole-

effluent toxicity test). Vertical dashed line shows 25% effect. Steeper (less divergent) curves 

have smaller coefficients of variation (CV). The 3 CV values correspond to low, medium, and 

high CVs from a national sample (specifically, the 10th, 50th, and 90th percentiles of CVs 

achieved for each toxicity test method; US Environmental Protection Agency 2010). These 

percentiles are 0.08, 0.15, and 0.35 for Ceriodaphnia and 0.02, 0.03, and 0.06 for red abalone, 

respectively.  

  



 


