## APPENDIX B: MEETING AGENDA AND TECHNICAL PRESENTATIONS

The meeting agenda material shared with participants is presented in the first section of this report. The technical presentations provided by the invited experts follow the agenda, in the order listed.

### **MEETING AGENDA**

### **Estimating Greenspace Exposure and Benefits** for Cumulative Risk Assessment Applications

### 4-5 May 2015

Room AG-30, U.S. Environmental Protection Agency 26 Martin Luther King Drive West, Cincinnati, OH 45220

### **Meeting Purpose**

The role of ecosystem services, including access and exposure to greenspace, may have beneficial effects on population health. There is some uncertainty as to which mechanisms (e.g., social connectedness, psychological well-being from exposure to nature) associations between greenspace and health outcomes are acting through. Given that greenspace may be a marker of non-chemical stressors or an exposure modifier, it is a good candidate to examine in a cumulative risk context, which could help determine its use and effectiveness as an ecosystem service and potential risk management practice. To this end, EPA's National Center for Environmental Assessment in Cincinnati is hosting a technical meeting to evaluate various measures and roles of greenspace from a cumulative risk assessment (CRA) perspective. The technical group will review existing greenspace exposure measures and methods used across different fields of study, with a focus on which measures are useful for different health outcomes and cumulative risk applications. The meeting discussion and outputs will inform methods for evaluating environmental health risks and benefits associated with greenspace (GS).

### **Driving Questions**

- How can existing cumulative risk assessment frameworks consider greenspace as it relates to exposure assessment for human health?
- How is greenspace conceptualized across disciplines?
- What health outcomes are relevant to greenspace prevalence and access?
- Which evidence-based measures of greenspace provide the most applicable, reliable, and replicable estimates for greenspace exposure in urban settings?
- What are the specific mechanisms for certain health benefits and can these be used to inform biologic plausibility of reported associations with greenspace?

### **Key Objective**

Identify and qualify approaches and appropriate data sources for measuring greenspace and evaluating the distribution of health benefits (i.e., across socioeconomic status, sensitive populations), including risk reductions, from a cumulative risk assessment perspective, with attention to bias and uncertainty in reporting and measurement.

- 1. Evaluate key pathways and methods for estimating greenspace exposure.
- 2. Evaluate key health outcomes and/or benefits and related methods and data sources for quantifying health outcomes related to greenspace.
- 3. Determine appropriate applications for greenspace measures, outcomes, and benefits within existing cumulative risk assessment frameworks.

| Technical Fields and Focus Areas        |                                                         |                        |  |
|-----------------------------------------|---------------------------------------------------------|------------------------|--|
| Urban tree cover                        | Air quality                                             | Reproductive health    |  |
| Parks and recreation                    | Physical activity                                       | Respiratory health     |  |
| Built environment/neighborhood planning | Socioeconomic disparities (environmental and/or health) | Cardiovascular disease |  |
| Regional planning                       | Exposure and risk assessment                            | Obesity and diabetes   |  |
| Ecosystem services                      |                                                         | Psychological health   |  |

## Schedule at a Glance

|                                                                                                          | Sun 3 May    |
|----------------------------------------------------------------------------------------------------------|--------------|
| 3:00-3:30 pm Greenspace Tour 1 5:00-5:30 pm Greenspace Tour 2 6:00-7:00 pm Social hour 7:00 pm Dinner op | 3:00-3:30 pm |

| Mon 4 May   | Greenspace Metrics and Exposure Assessment     | Tues 5 May  | Greenspace and Health                       |
|-------------|------------------------------------------------|-------------|---------------------------------------------|
| 9:00-9:15   | Welcome and meeting overview                   | 9:00-9:45   | Respiratory effects                         |
| 9:15-9:30   | Group process; shared data sets for GS metrics | 9:45-10:25  | Reproductive effects                        |
| 9:30-10:20  | Exposure assessment approaches                 | 10:25-10:35 | Break                                       |
| 10:20-10:30 | Break                                          | 10:35-11:15 | Obesity and physical activity               |
| 10:30-11:10 | Tree cover measurements                        | 11:15-12:00 | Cardiovascular disease and mortality        |
| 11:10-12:00 | Access to greenness                            | 12:00-1:00  | Lunch                                       |
| 12:00-1:00  | Lunch                                          | 1:00-1:40   | Neurological/neurodevelopmental effects     |
| 1:00-1:40   | Built environment                              | 1:40-2:40   | Psychosocial effects                        |
| 1:40-2:30   | Design and environmental psychology            | 2:40-3:20   | Attention restoration/cognitive effects     |
| 2:30-3:20   | Specific populations, exposure considerations  | 3:20-3:30   | Break                                       |
| 3:20-3:30   | Break                                          | 3:30-4:10   | Economic and community benefits             |
| 3:30-4:20   | Exposure metrics, links to health              | 4:10-4:40   | Specific populations, health considerations |
| 4:20-5:10   | Key points for exposure                        | 4:40-5:00   | Refine conceptual diagrams of GS/CRA        |
| 5:10-5:30   | Wrap-up of Day 1, review of plan for Day 2     | 5:00-5:30   | Key points for health; meeting wrap-up      |

### **Greenspace Metrics and Exposure Assessment**

• How is greenspace conceptualized across disciplines? What is being measured, and what needs to be measured for accurate assessments?

• Which evidence-based measures of greenspace provide the most applicable, reliable, and replicable estimates for greenspace exposure in urban settings?

• What are accepted methods for quantifying exposure to greenspace?

• Considerations of multiple routes of greenspace exposure

| 8:30-9:00   | Arrival                                                           |             |                   |                     |
|-------------|-------------------------------------------------------------------|-------------|-------------------|---------------------|
| 9:00-9:15   | Welcome and meeting overview                                      | R. Gernes   |                   |                     |
| 9:15-9:30   | Group process; shared data sets for greenspace metrics            | T. Miller   |                   |                     |
| 9:30-10:20  | Exposure assessment approaches (U.S. and international)           | L. Jackson  | M. Nieuwenhuijsen | M. A. van den Bosch |
| 10:20-10:30 | Break                                                             | i           |                   |                     |
| 10:30-11:10 | Tree cover measurements (NDVI, regional-local UTC)                | G. Donovan  | P. Hystad         |                     |
| 11:10-12:00 | Access to greenness                                               | R. Mitchell | M. Kondo          | M. A. van den Bosch |
| 12:00-1:00  | Lunch                                                             | i           |                   |                     |
| 1:00-1:40   | Built environment                                                 | P. Hystad   | Y. Michael        |                     |
| 1:40-2:30   | Design and environmental psychology                               | J. Africa   | R. Mitchell       | W. Sullivan         |
| 2:30-3:20   | Specific populations, exposure considerations                     | R. Mitchell | A. Hipp           | Y. Michael          |
| 3:20-3:30   | Break                                                             |             |                   |                     |
| 3:30-4:20   | Exposure metrics, links to health (attention restoration example) | W. Sullivan | Y. Michael        |                     |
| 4:20-5:10   | Key points for exposure                                           | T. Miller   |                   |                     |
| 5:10-5:30   | Wrap-up of Day 1, review plan for Day 2                           | T. Miller   | R. Gernes         |                     |

| Tues 5 May                                                                                                                                                                                                                                                                                                                                                                                                                  | Greenspace and Health                        |                     |                     |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|---------------------|------------|
| <ul> <li>How can existing CRA frameworks consider greenspace as it relates to health?</li> <li>What health outcomes are relevant to greenspace prevalence and access?</li> <li>What are the specific mechanisms for certain health benefits, and can these be used to inform biologic plausibility of reported associations with greenspace?</li> <li>Considerations of community and individual level outcomes.</li> </ul> |                                              |                     |                     |            |
| 8:30-9:00                                                                                                                                                                                                                                                                                                                                                                                                                   | Arrival                                      |                     |                     |            |
| 9:00-9:45                                                                                                                                                                                                                                                                                                                                                                                                                   | Respiratory effects                          | P. Ryan             | G. Donovan          |            |
| 9:45-10:25                                                                                                                                                                                                                                                                                                                                                                                                                  | Reproductive effects                         | P. Hystad           | G. Donovan          | Y. Michael |
| 10:25-10:35                                                                                                                                                                                                                                                                                                                                                                                                                 | Break                                        |                     |                     |            |
| 10:35-11:15                                                                                                                                                                                                                                                                                                                                                                                                                 | Obesity and physical activity                | M. A. van den Bosch | A. Hipp             |            |
| 11:15-12:00                                                                                                                                                                                                                                                                                                                                                                                                                 | Cardiovascular disease and mortality         | P. Hystad           | M. Nieuwenhuijsen   |            |
| 12:00-1:00                                                                                                                                                                                                                                                                                                                                                                                                                  | Lunch                                        |                     |                     |            |
| 1:00-1:40                                                                                                                                                                                                                                                                                                                                                                                                                   | Neurological/neurodevelopmental effects      | M. Nieuwenhuijsen   | P. Ryan             |            |
| 1:40-2:40                                                                                                                                                                                                                                                                                                                                                                                                                   | Psychosocial effects                         | M. Kondo            | M. A. van den Bosch | J. Africa  |
| 2:40-3:20                                                                                                                                                                                                                                                                                                                                                                                                                   | Attention restoration/cognition effects      | A. Hipp             | L. Jackson          |            |
| 3:20-3:30                                                                                                                                                                                                                                                                                                                                                                                                                   | Break                                        |                     |                     |            |
| 3:30-4:10                                                                                                                                                                                                                                                                                                                                                                                                                   | Economic and community benefits              | M. Kondo            | G. Donovan          |            |
| 4:10-4:40                                                                                                                                                                                                                                                                                                                                                                                                                   | Specific populations, health considerations  | R. Mitchell         | P. Ryan             |            |
| 4:40-5:00                                                                                                                                                                                                                                                                                                                                                                                                                   | Refine conceptual diagrams of greenspace/CRA | T. Miller           |                     |            |
| 5:00-5:30                                                                                                                                                                                                                                                                                                                                                                                                                   | Key points for health; meeting wrap-up       | T. Miller           | R. Gernes           |            |

# **TECHNICAL PRESENTATIONS**

# Day 1–Mon 4 May

# **Greenspace Metrics and Exposure Assessment**

# EnviroAtlas is ...

An online decision support tool for viewing, analysing, and downloading geospatial data related to ecosystem services

- Maps, data, tools and information about the supply, demand, drivers, and social benefits of ecosystem services
- Population and climate scenarios
- Reference data (e.g., boundaries, land cover, soils, hydrography, impaired water bodies, wetlands, demographics)
- > Analytic and interpretive tools
- Free & open access



Developed through cooperative effort among multiple Federal agencies, universities, and other organizations

Version 1 Released May, 2014

### CONSTITUENTS OF WELL-BEING ECOSYSTEM SERVICES Security PERSONAL SAFETY SECURE RESOURCE ACCESS SECURITY FROM DISASTERS Provisioning WOOD AND FIBER Basic material for good life Freedon of choice and activ ADEQUATE LIVELIHOODS SUFFICIENT NUTRITIOUS FOOD Supporting Regulating nd action SHELTER ACCESS TO GOODS OPPORTUNITY TO BE ABLE TO ACHIEVE SOIL FO DISEASE REGULATION Health AND BE STRENGTH FEELING WELL ACCESS TO CLEAN AIR AND WATER Cultural EDUCATIONAL Good social relations ABILITY TO HELP OTHERS LIFE ON EARTH - BIODIVERSITY Source: Millennium Ecosystem Assess ARROW'S WIDTH Intensity of linkages between ecosystem services and human well-being ROW'S COLOR Itential for mediation by cloeconomic factors Low ------ Weak Medium Medium High Strong

International "Ecosystem Services" Framework

### **Related concepts:**

"benefits from nature," "green infrastructure," "our life-support system," "positive environmental exposures"

## Ecosystem Services & Health: Unrealized Assets = Unintended Consequences

### Approach: Demonstrate Multiple Benefits of Green Infrastructure,

- Clean air
- Clean & plentiful water
- Natural hazard mitigation
- Climate stabilization
- Recreation, culture & aesthetics
- Food, fiber & materials
- Biodiversity conservation

### ...and How They Relate to Human Health & Well-Being

- Air and water pollutants removed by neighborhood tree cover
- Homes and schools near busy roadways
- > Extreme heat events
- Opportunities for physical exercise, social engagement, outdoor experience, and play
- > Distributions of vulnerable populations

How Does EnviroAtlas Conceptualize Green Space as Ecosystem Services? (<u>Goods</u> not addressed today)

### **Buffers for Natural and Anthropogenic Hazards**

- Extreme heat mitigation
- Stormwater runoff absorption
- Polluted runoff filtration
- Storm energy dissipation
- Air pollutant reduction

### **Opportunities for Healthful Behaviors**

- Engagement with nature
- Social interaction
- Physical activity

### **Supporting Functions**

- Carbon sequestration and storage
- Soil retention
- Wildlife habitat provision

Ecosystem dis-services are not currently emphasized in EnviroAtlas

- Pests
- Disease
- Physical dangers
- Pollen

EnviroAtlas is Multi-Scaled 300+ map layers available online



National: Wall-to-wall coverage for coterminous US; summarized by ~90,000 drainage basins (12-digit HUCs). 160+ data layers



Community: High resolution component for 50 populated places; summarized by US census block group. 100+ data layers *Pictured: Greater Portland, ME* 

http://enviroatlas.epa.gov/





# **Community Information to Assist Decision-Making** e.g., health interventions, public infrastructure, social equity



Opportunities for physical activity, engagement with nature, & social interaction

Estimated reductions in adverse respiratory health events due to ambient air filtration by trees

Potential to improve school performance through cognitive restoration & stress reduction

Pictured: Greater Durham-Chapel Hill, NC

All Data are Downloadable & Accessible via Web Services (incl. fact sheets for general users and technical metadata)

Population High Low

Downscaled (30-meter) U.S. Census population grid



Precise maps of tree cover along local roads & streams



Heat maps

# Indicators of Public Health and Well-Being Types of EnviroAtlas-Community Metrics

- Green space, tree cover, & impervious surface measures
- Walking distance to park entrances
- · Air pollutants removed by tree cover
- Health & economic benefits of air pollutants removed
- Reduced runoff, water pollution from tree cover
- Temperature reduction, carbon storage by tree cover
- · Presence/absence of tree cover along walkable & major roads
- · Population living along busy roads
- Residences with limited window views of trees
- · Schools & day care centers with limited views of green space
- Intersection density, housing & employment metrics



# **The Eco-Health Relationship Browser**

### 4 ecosystems:

- Forests
- Urban Ecosystems
- Wetlands
- Agro-Ecosystems

### 6 Ecosystem Services:

### Health promotional services

- Aesthetics & Engagement with Nature
- Recreation & Physical Activity

### **Buffering services**

- Clean Air
- Clean Water
- Heat Hazard Mitigation
- Water Hazard Mitigation

Incl. extensive bibliography (n ~ 300)



Urban

Heat Haza Mitigation

Hampital

Ansiety

Plast Strake

### 30+ health outcomes:

- Asthma
- ADHD
- Cancers
- Cardiovascular diseases
- Heat stroke
- Healing
- Low birth weight
- Obesity
- Social relations
- Stress
- ... many more

Mortalit

| Landcover Composition in Residential Buffers<br>as Indicators of Healthful Exposures |                                             |                                                                                          |  |
|--------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------|--|
| Radius                                                                               | Indicates potential for                     | Mechanism(s)                                                                             |  |
| 50m                                                                                  | Window views and<br>peridomestic activities | Engagement w/ natural features;<br>Social interaction                                    |  |
| 500m                                                                                 | Walkable neighborhood                       | Promotion of physical activity;<br>Engagement w/ natural features;<br>Social interaction |  |
| 1-3 km                                                                               | Local green destinations                    | Promotion of physical activity;<br>Engagement w/ natural features;<br>Social interaction |  |

| Landcover Composition by City Block       |                                  |                                                                                          |  |
|-------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|--|
| 50m moving windows along road centerlines | Green views along walkable roads | Promotion of physical activity;<br>Engagement w/ natural features;<br>Social interaction |  |

| Landcover Composition in Residential Buffers<br>as Indicators of Effect Modification |                                             |                                                               |  |
|--------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|--|
| Radius                                                                               | Indicates potential for                     | Mechanism(s)                                                  |  |
| 50m                                                                                  | Window views and<br>peridomestic activities | Mitigation of extreme heat, air pollution, noise, night light |  |
| 300m                                                                                 | Near-roadway buffers                        | Absorption / dilution of vehicular pollutants                 |  |
| 400 -<br>1000m                                                                       | Walkable neighborhood                       | Mitigation of extreme heat, air pollution                     |  |

| Landcover Composition by City Block          |                            |                               |  |
|----------------------------------------------|----------------------------|-------------------------------|--|
| 8.5m width pedestrian zones along road edges | Shade along walkable roads | Mitigation of extreme<br>heat |  |







# The Parma Commitments, WHO 2010

"We aim to provide each child by 2020 with access to healthy and safe environments and settings of daily life in which they can *walk and cycle* to kindergartens and schools, and to *green spaces* in which to *play* and undertake *physical activity*."

1

2

# **Urban Green Space Indicator**

- Define urban green spaces
- Identify GIS-definition
- Specify population distribution data in GIS and specificity requirements (census or individual data)
- GIS-analysis, software, script





# Definition of urban green in Urban Atlas

### Included are:

- MinMU 0.25 ha, Minimum width: 10 m
- Recreational use such as gardens, zoos, parks, castle parks.
- Suburban natural areas that have become and are managed as urban parks.
- Forests or green areas extending from the surroundings into urban areas
- Urban areas when at least two sides are bordered by green urban areas and structures, and traces of recreational use are visible.

Not included are:

- Private gardens within housing areas →class 1.1;
- Cemeteries →class 1.2.1;
- Buildings within parks, such as castles or museums →class 1.2.1;
- Patches of natural vegetation or agricultural areas enclosed by built-up areas without being managed as green urban areas →class 1



# **Population data**

- Local, Malmö municipality
- Individual and aggregated (100x100m grids)

European population data:

Population density disaggregated dataset (EEA). Eurostat (2001) och CORINE (2000)





# UGSI

- •<300 m
- •>1ha
- or suffix, e.g. UGSI (200, 2.5)
- full script for use by urban planners and municipality officers
- policies and guidelines

# Issues

- Linear distance vs walking distance
- Optimal size
- Quality, amenities
- Comparability
- Non-EU countries



### PHENOTYPE

- FP7 Theme ENV.2011.1.2.3-2; Positive effects of natural environment for human health and well-being. Grant Agreement 282996
- 1st January 2012 31st December 2015
- EC contribution: € 3.499.403
- Beneficiaries:
  - Fundació Centre de Recerca en Epidemiologia Ambiental-Spain (C)
  - Rijksinstituut voor Volksgezondheid en Milieu Netherlands
  - Staffordshire University United Kingdom
  - Vytauto Didziojo Universitetas Lithuania
  - Université de Geneve Switzerland
  - Vereniging voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek en Patientenzorg Netherlands
  - Veiligheids- en Gezondheidsregio Gelderland Midden Netherlands
  - University of California, Berkeley Campus United States



### **Open Access**

### Protocol

# **BMJ Open** Positive health effects of the natural outdoor environment in typical populations in different regions in Europe (PHENOTYPE): a study programme protocol

Mark J Nieuwenhuijsen,<sup>1,2,3</sup> Hanneke Kruize,<sup>4</sup> Christopher Gidlow,<sup>5</sup> Sandra Andrusaityte,<sup>6</sup> Josep Maria Antó,<sup>1,2,3,7</sup> Xavier Basagaña,<sup>1,2,3</sup> Marta Cirach,<sup>1,2,3</sup> Payam Dadvand,<sup>1,2,3</sup> Asta Danileviciute,<sup>6</sup> David Donaire-Gonzalez,<sup>1,2,3</sup> Judith Garcia,<sup>1,2,3</sup> Michael Jerrett,<sup>8</sup> Marc Jones,<sup>5</sup> Jordi Julvez,<sup>1,2,3,7</sup> Elise van Kempen,<sup>4</sup> Irene van Kamp,<sup>4</sup> Jolanda Maas,<sup>9</sup> Edmund Seto,<sup>8</sup> Graham Smith,<sup>5</sup> Margarita Triguero,<sup>1,2,3</sup> Wanda Wendel-Vos,<sup>4</sup> John Wright,<sup>10</sup> Joris Zufferey,<sup>11</sup> Peter Jan van den Hazel,<sup>12</sup> Roderick Lawrence,<sup>11</sup> Regina Grazuleviciene<sup>6</sup>

### ABSTRACT

Kruize H, Gidlow C, et al. Positive health effects of the ratural outdoor environment in typical populations in different regions in Europe (PHENOTYPE): a study programme protocol. BMJ Open 2014;4:e004951. doi:10.1136/bmjopen-2014-004951

To cite: Nieuwenhuiisen MJ.

Introduction: Growing evidence suggests that close contact with nature brings benefits to human health and well-being, but the proposed mechanisms are still not well understood and the associations with health remain uncertain. The Positive Health Effects of the Natural Outdoor environment in Typical Populations in different regions in Europe (PHENOTYPE) project investigates the interconnections between natural outdoor environments and better human health and well-being.

### Strengths and limitations of this study

- The Positive Health Effects of the Natural Outdoor environment in Typical Populations in different regions in Europe (PHENOTYPE) project is the largest European project on green space and health.
- The PHENOTYPE project examines simultaneously the possible underlying mechanisms (stress reduction/restorative function, physical)



PHENOTYPE

# PHENOTYPE - WP2

The characterisation of natural environments is reported at three levels:

LEVEL 1 >> Basic Measures: Using Europe-wide, secondary data (e.g., Urban Atlas; NDVI)

LEVEL 2 >> Detailed Measures: Using locally held secondary data (City Council, etc.) for a more detailed classification of environments

**AUDITS** >> Environment Quality: Primary data collection using a Streetscape Audit and Neighbourhood Green Space Tool to report environment quality data.

### **Classification of Natural Environments**



## LEVEL 1 >> Basic Measures (I)

This is the broad distinction between 'green' and 'blue' environments.

- The basic indicators are being produced using routinely available data such as Urban Atlas and LandSat derived NDVI.
- These are designed to be generally representative of the amount of natural environment available within a neighbourhood and can also be applied in other cities in Europe for comparability.

### NDVI

| Source                                                                                                                | Indicator                                                    | Distance         |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------|
| NDVI<br>(Landsat 30m – representative of WP2<br>data collection period – best available<br>data from April to August) | Average NDVI within exposure buffer.                         | 100m, 300m, 500m |
|                                                                                                                       | Proportion of buffer area<br>classified within 6 NDVI ranges | 100m, 300m, 500m |

## LEVEL 1 >> Basic Measures (I)

Barcelona NDVI map Landsat 8 (2013)



# LEVEL 1 >> Basic Measures (I)

### NDVI EXPOSURES WITHIN CENSUS AREAS IN BARCELONA

Within census area





# LEVEL 1 >> Basic Measures (II)

## • URBAN ATLAS (green)

| Source                    | Indicator                                                                                           | Distance                                                     |
|---------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Urban Atlas – green space | Straight line distance to nearest space > 5,000m <sup>2</sup>                                       | Closest                                                      |
|                           | Street network distance to nearest space > 5,000m <sup>2</sup>                                      | Closest                                                      |
|                           | Number of spaces within a street network distance                                                   | 300m, 500m, 1000m                                            |
|                           | Total area of spaces (all) within buffer (network distance)                                         | 300m, 500m, 1000m                                            |
|                           | Network distance to nearest space by size - 0.5 to 2,<br>2 to 5, 5 to 20, 20 plus hectares          | 300m, 500m, 1000m<br>3000m, 5000m (5 to 20, 20<br>plus only) |
|                           | Number of spaces with street network distance by size - 0.5 to 2, 2 to 5, 5 to 20, 20 plus hectares | 300m, 500m, 1000m<br>3000m, 5000m (5 to 20, 20<br>plus only) |

# LEVEL 1 >> Basic Measures (III)

## • URBAN ATLAS (blue)

| Source                   | Indicator                                                      | Distance          |
|--------------------------|----------------------------------------------------------------|-------------------|
| Urban Atlas – blue space | Straight line distance to nearest space > 5,000m <sup>2</sup>  | Closest           |
|                          | Street network distance to nearest space > 5,000m <sup>2</sup> | Closest           |
|                          | Number of spaces within a street network distance              | 300m, 500m, 1000m |
|                          | Total area of spaces (all) within a (network distance)         | 300m, 500m, 1000m |
|                          | Presence of Blue (Y/N)                                         | 300m, 500m, 1000m |

# LEVEL 1 >> Basic Measures (III)

Barcelona Major Green and Blue space (> 0.5ha) Urban Atlas



AMOUNT OF MAJOR GREEN SPACES

Within census area

Within census area + 300m buffer





The detailed indicators are produced using locally held secondary data (City Council, etc.).

This data represents the best available data for each study area.

To make the data comparable a common classification of environments is applied to the local data in each study area.

This classification is used to assign spaces to subsets of environments that will be used to produce the indicators associated with a particular mechanism.

This is the level required to conduct the mechanism assessment in WP2. However, indicators are not produced for individual categories but are grouped together to form sub-groups appropriate to the mechanism being assessed:

- Stress reduction & restorative All natural environments are included apart from agricultural land not
  associated with urban areas and derelict urban space which is assumed not to be providing a 'pleasant'
  environment for people to access or to view.
- Physical Activity All natural environments that can be accessed and are large enough to support some level of physical activity. The minimum size required is 0.5 hectares unless the space provides a dedicated physical activity opportunity such as a playground or sports field.
- Social Interaction / Cohesion All natural environments that can be accessed are included. Size is not seen
  as important.
- **Exposure to Environmental Hazards** All natural spaces are important. There is insufficient data to attempt to match spaces to particular types of environmental hazard that they mitigate.

Barcelona Natural Environments map for Level 2



### LEVEL 2 >> Detailed Measures

Barcelona Natural Environments map for Level 2 (II)



| Level 1 I | Level 1.1         |                          |                                                                                                       |                                                | Mech                       | anism subset                         |                                                |
|-----------|-------------------|--------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|--------------------------------------|------------------------------------------------|
|           |                   | Level 2                  | Level 2.2                                                                                             | 1. Stress<br>reduction<br>&<br>restorativ<br>e | 2.<br>Physical<br>Activity | 3. Social<br>Interaction<br>Cohesion | 4. Exposure<br>to<br>Environment<br>al Hazards |
| Green     | Urban Green Space | Parks                    | Urban parks                                                                                           | Y                                              | Y                          | Y                                    | Y                                              |
|           |                   | Semi-natural / natural   | Biodiversity areas,<br>conservation areas,<br>nature reserves,<br>protected areas, heritage<br>sites? | Y                                              | Y -<br>access              | Y - access                           | Y                                              |
|           |                   | Formal Recreation        | Playgrounds and sports fields (not within parks)                                                      | Y                                              | Y                          | Y                                    | Y                                              |
|           |                   | Amenity space            | Squares, Gardens,                                                                                     | Y                                              | Y - size<br>>0.5ha         | Y                                    | Y                                              |
|           |                   | Functional               | Allotment, Cemetery,<br>Civic Spaces, Institutional<br>(school, hospital grounds<br>etc.)             | Y                                              | Y                          | Y                                    | Y                                              |
|           |                   | Natural / green corridor | Traffic free / natural:<br>Pathways, Trails and<br>cycle paths                                        | Y                                              | Y -<br>access              | Y - access                           | Y                                              |
|           |                   | Derelict / vacant        | Disused natural areas, no                                                                             |                                                |                            |                                      |                                                |

# LEVEL 2 >> Detailed Measures

| Mechanism Subset                          | Indicator                                                                                           | Distance                                                     |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1. Stress reduction & restorative - Green | Straight line distance to nearest space                                                             | Closest                                                      |
|                                           | Street network distance to nearest space                                                            | Closest                                                      |
|                                           | Number of spaces within a street network distance                                                   | 300m, 500m, 1000m                                            |
|                                           | Total area of spaces (all) within<br>buffer (network distance)                                      | 300m, 500m, 1000m                                            |
|                                           | Network distance to nearest<br>space by size - <0.5, 0.5 to 2, 2<br>to 5, 5 to 20, 20 plus hectares | 300m, 500m, 1000m<br>3000m, 5000m (5 to 20, 20 plus<br>only) |
| 1. Stress reduction &                     | Straight line distance to nearest                                                                   | Closest                                                      |
| restorative - Blue                        | space                                                                                               |                                                              |
|                                           | Street network distance to<br>nearest space                                                         | Closest                                                      |
|                                           | Number of spaces within a street network distance                                                   | 300m, 500m, 1000m                                            |
|                                           | Total area of spaces (all) within a (network distance)                                              | 300m, 500m, 1000m                                            |
|                                           | Presence of Blue (Y/N)                                                                              | 300m, 500m, 1000m                                            |

| 2. Physical Activity - Green | Street network distance to nearest space                       | Closest                                 |
|------------------------------|----------------------------------------------------------------|-----------------------------------------|
|                              | Number of spaces within a street network distance              | 300m, 500m, 1000m                       |
|                              | Total area of spaces (all) within<br>buffer (network distance) | 300m, 500m, 1000m                       |
|                              | Network distance to nearest                                    | 300m, 500m, 1000m                       |
|                              | space by size - 0.5 to 2, 2 to 5, 5<br>to 20, 20 plus hectares | 3000m, 5000m (5 to 20, 20 plus<br>only) |
| 2. Physical Activity - Blue  | Street network distance to nearest space                       | Closest                                 |
|                              | Number of spaces within a street network distance              | 300m, 500m, 1000m                       |
|                              | Total area of spaces (all) within<br>a (network distance)      | 300m, 500m, 1000m                       |
|                              | Presence of Blue (Y/N)                                         | 300m, 500m, 1000m                       |

# LEVEL 2 >> Detailed Measures

| Mechanism Subset                          | Indicator                                                            | Distance                                |
|-------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|
| 3. Social Interaction<br>Cohesion - Green | Street network distance to nearest space                             | Closest                                 |
|                                           | Number of spaces within a street network distance                    | 300m, 500m, 1000m                       |
|                                           | Total area of spaces (all) within<br>buffer (network distance)       | 300m, 500m, 1000m                       |
|                                           | Network distance to nearest                                          | 300m, 500m, 1000m                       |
|                                           | space by size - <0.5, 0.5 to 2, 2<br>to 5, 5 to 20, 20 plus hectares | 3000m, 5000m (5 to 20, 20 plus<br>only) |
| 3. Social Interaction                     | Street network distance to                                           | Closest                                 |
| Cohesion - Blue                           | nearest space                                                        |                                         |
|                                           | Number of spaces within a street network distance                    | 300m, 500m, 1000m                       |
|                                           | Total area of spaces (all) within<br>a (network distance)            | 300m, 500m, 1000m                       |
|                                           | Presence of Blue (Y/N)                                               | 300m, 500m, 1000m                       |

| Mechanism Subset                          | Indicator                                                     | Distance          |
|-------------------------------------------|---------------------------------------------------------------|-------------------|
| 4. Exposure to<br>Environmental Hazards - | Straight line distance to nearest space                       | Closest           |
| Green                                     | Number of spaces within a straight distance                   | 300m, 500m, 1000m |
|                                           | Total area of spaces (all) within straight-line buffer        | 300m, 500m, 1000m |
| 4. Exposure to<br>Environmental Hazards - | Straight line distance to nearest space                       | Closest           |
| Blue                                      | Number of spaces within a straight-line distance              | 300m, 500m, 1000m |
|                                           | Total area of spaces (all) within<br>a straight-line distance | 300m, 500m, 1000m |

# **AUDITS** >> Environment Quality

In PHENOTYPE, for every selected neighborhood, we have audited:

- the streets/streetscape, and
- -natural outdoor spaces in these neighborhood

Nat Env audit tool was comprised of 59 items grouped into eight main domains:

| Domains                              | Items (summarised)                                                                                                                                                                                                                                                                                          | Items |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. Access                            | Entrance points; busy/minor surrounding roads; pedestrian crossings; links areas;<br>walking paths (amount and quality); car parking                                                                                                                                                                        | 7     |
| 2. Recreational<br>Facilities        | Playground equipment; Grass pitches; Courts; Skateboard ramp(s); Other sports or fitness facilities                                                                                                                                                                                                         | 7     |
| 3. Amenities                         | Seating/benches; Litter bins; Dog mess bins (or equivalent); Public toilets; Cafe /<br>kiosk; Shelter/shade - man-made; Shelter/shade - from trees; Barbeques; Picnic<br>tables; Drinking fountains                                                                                                         | 10    |
| 4a. Aesthetics<br>(Natural features) | Area on the foreshore of a beach, river or large lake; OTHER water features WITHIN area; % area occupied by the water feature(s); Good view points, vistas, scenic views; %of area occupied by trees; Primary surface quality; Flower beds / planters / wild flowers; Other planted trees / shrubs / plants | 8     |
| 4b. Aesthetics<br>(Non-natural)      | Water fountain (decorative); Other public art; Historic/attractive buildings/structures; Public attractions (e.g., zoo, other)                                                                                                                                                                              | 4     |
| 5. Incivilities                      | General litter; Evidence of alcohol use' Evidence of drug taking; Graffiti; Broken glass;<br>Vandalism; Noise (e.g., traffic, industry); Unpleasant smells                                                                                                                                                  | 9     |
| 6. Safety (social)                   | Lighting within area; Visibility of surrounding roads (from centre of area);<br>Visibility of surrounding houses (from centre of area)                                                                                                                                                                      | 3     |
| 7. Useage<br>(suitability for)       | Sport, Informal games; Walking/running; Children's play; Conservation/biodiversity;<br>Enjoying landscape/visual qualities; Meeting, socialising; Relaxing/unwinding;<br>Cycling; Water sport; Fishing                                                                                                      | 11    |
|                                      | TOTAL                                                                                                                                                                                                                                                                                                       | . 59  |

# AUDITS >> Environment Quality

Distribution of Natural Environment tipology audited by city

| Typology* |                             |           | City       | ı                  |        | Total |
|-----------|-----------------------------|-----------|------------|--------------------|--------|-------|
|           |                             | Barcelona | Doetinchem | Stoke-on-<br>Trent | Kaunas |       |
|           | Park                        | 37        | 63         | 56                 | 4      | 160   |
|           | Natural/semi-natural        | 14        | 15         | 10                 | 12     | 51    |
|           | Amenity/public open space   | 8         | 4          | 6                  | 1      | 19    |
|           | Natural/green corridor      | 0         | 0          | 10                 | 0      | 10    |
|           | Lake, reservoir, pond, pool | 0         | 0          | 2                  | 0      | 2     |
|           | River, stream, canal        | 0         | 2          | 6                  | 0      | 8     |
| Total     |                             | 59        | 84         | 90                 | 17     | 250   |

# **AUDITS** >> Environment Quality

Bar graph showing the relative contribution of Mechanism scores to each Typology



# **AUDITS** >> Environment Quality

### Next steps:

Derive final scores for all audited spaces and •Calculate neighbourhood-level aggregate scores

•Link individual space scores to relevant survey items about specific spaces visited

# Initial results WP3

| PH | IEN         | <b>OTY</b> | 'PE   |
|----|-------------|------------|-------|
| н  | iealth from | moutsk     | de in |

### **Birth outcomes**

| Articles       | Population and outcome  | NDVI                 | Access (Distance)    | Use |
|----------------|-------------------------|----------------------|----------------------|-----|
| Dadvand et al  | 2393                    | 500 m IQR            | nd                   | nd  |
| 2012           | 4 Spanish birth cohorts |                      |                      |     |
|                | Birth weight            | 44.2 (20.2-68.2)*    |                      |     |
|                | Gestational age         | 0.0 (–0.9, 0.9)      |                      |     |
| Dadvand et al  | 8246 births Barcelona   | 100 m in low SES:    | 500 m in low SES:    | nd  |
| 2012           | Birth weight g          | 436.3 (43.1, 829.5)* | 189.8 (23.9, 355.7)* |     |
|                | Gestational age d.      | -19.8 (-67.6, 28.1)  | -15.8 (-36.3, 4.8)   |     |
|                | 20.01                   | -0.3 (-1.9, 1.4)     | -0.4 (-1.1, 0.3)     |     |
| Dadvand et al  | 10780 births            | 250 m IQR            | 300 m                | nd  |
| 2014           | Bradford                | in white British     | 4.8 (-12.5, 22.1)    |     |
|                | Birth weight g          | 26.2 (3.1- 49.3)*    | - 39 20 22           |     |
|                | A 200 - 2000            | Pakistani            |                      |     |
|                |                         | 6.5 (-16.4- 29.5)    |                      |     |
| Grazuleviciene | 3292 births             | 100 m                | 1000 m park          | nd  |
| et al 2015     | Kaunas                  |                      |                      |     |
|                | Birth weight, g         | 13.2 (-3.7–30.2)     | -6.43 (-45.2–32.4)   |     |
|                | Gestational age d.      | -0.2 (-0.77-0.35)*   | -0.21 (-0.390.04)    |     |

30

### PHEN@TYPE

# Children health

| Articles           | Population and outcome     | NDVI                       | Access (Distance)           | Use                  |
|--------------------|----------------------------|----------------------------|-----------------------------|----------------------|
| Dadvand            | 3178 9-12 yrs Sabadell     | 100 m IQR                  | Parks 300m                  | Nd                   |
| et al 2014         | Sedentary behaviour        | 0.85 (0.77, .93)**         | 0.91 (0.76, 1.09)           |                      |
|                    | Obesity                    | 0.83 (0.75, .93)**         | 0.90 (0.74, 1.09)           |                      |
|                    | Asthma                     | 1.00 (0.82, 1.21)          | 1.60 (1.09, 2.36)**         |                      |
|                    |                            |                            | Forest                      |                      |
|                    |                            |                            | 0.61 (0.45, 0.83)**         |                      |
|                    |                            |                            | 0.75 (0.54, 1.03)*          |                      |
|                    |                            |                            | 1.02 (0.56, 1.87)           |                      |
| Amoly et al 2014   | 2,111 7-10 years           | NDVI 100m                  | Distance 300 m              | Playing time         |
| 0.22               | Barcelona                  |                            |                             | Green/Blue spaces    |
|                    | Total difficulties         | -3.6 (-6.6-0.6)**          | -1.3 (-8.2-6.2)             | -4.8 (-8.69)**       |
|                    |                            |                            |                             | /-3.9 (-7.2, -0.4)** |
|                    | Emotional symptoms         | -1.4 (-5.9-3.2)            | 1.9 (-8.7-13.8)             | -8.2 (-13.9 -2.2)**  |
|                    | 12 10                      |                            | the line estimate selected  | /-3.9 (-9.1, 1.6)    |
|                    | Peer relationship problems | -2.4 (-8.7-4.3)            | -5.1 (-19.1-1.3)            | -15.4 (-22.74)**     |
|                    | AND STREET                 | and a company start and a  |                             | /-16.8 (-23.4-9.7)** |
|                    | Hyperactivity              | -6.0 (-11.30.2)**          | 1.8 (-11.6-17.3)            | -1.6 (-9.0-6.4)      |
|                    |                            |                            |                             | /-0.1 (-6.7-6.9)     |
| Balseviciene et al | 1468 4- 6 years Kaunas     | 300m (beta coefficient) in | Parks (beta coefficient) in | nd                   |
| 2014               | (Low SES 296) SDQ          | high SES                   | low SES                     |                      |
|                    | Total Difficulties         |                            | 0.069*                      |                      |
|                    | Peer problems              |                            | 0.023*                      |                      |
|                    | Conditional problems       | 0.901*                     | 0.026*                      |                      |
|                    | Hyperactivity              |                            | 0.026*                      |                      |
|                    | Prosocial behavior         | -1.104*                    | -0.029                      |                      |

31

PHEN@TYPE Health from outside in

# Adults mental health

| Articles    | Population and outcome | NDVI               | Access (Distance)  | Use              |
|-------------|------------------------|--------------------|--------------------|------------------|
| Reklaitiene | 6944 45-72 yrs         | Nd                 | >300 m parks       | Use <4 h/week    |
| et al 2014  | Kaunas                 |                    |                    |                  |
|             | Depressive             |                    | 1.04 (0.91–1.19)   | 1.17 (1.01–1.37) |
|             | symptoms               |                    |                    |                  |
| Triguero-   | 8793 adults            | 300 m              | 300 m              | nd               |
| Mas et al   | Catalonia              |                    |                    |                  |
| 2015        | Perceived              | 0.79 (0.71, 0.88)* | 0.86 (0.76, 0.98)* |                  |
|             | depression             |                    |                    |                  |
|             | General health         | 0.80 (0.71, 0.91)* | 0.87 (0.72, 1.05)  |                  |

32

# **Cardiovascular health**

| Articles       | Population and outcome                      | NDVI | Access (Distance)    | Use               |
|----------------|---------------------------------------------|------|----------------------|-------------------|
|                |                                             |      |                      |                   |
| Grazuleviciene | 3416 women                                  | nd   | >1000 m park         | nd                |
| et al 2014     | Kaunas, blood pressure                      |      |                      |                   |
|                | mmHg                                        |      |                      |                   |
|                | High normal <139/89                         |      | 1.74 (1.14-2.66)*    |                   |
|                | Hypertension $\geq 140 \text{ or } \geq 90$ |      | 1.18 (0.79-1.77)     |                   |
| Tamosiunas et  | 5112 45-72 yrs                              | nd   | Distance 3rd tertile | Total sample      |
| al 2014        |                                             |      |                      |                   |
|                | Kaunas                                      |      |                      |                   |
|                | Cardiovascular morbidity                    |      | Total CVD            | Non- fatal CVD    |
|                | and mortality                               |      | 1.36 (1.03-1.80)*    | 1.66 (1.01-2.73)* |
### GREEN SPACE MANAGEMENT INDICATORS

Indicators

-Quantitative

-Qualitative

1. Ownership





### 2. Size/shape



3. Biological characteristics



#### 4. Functional uses



5. Localisation



### 6. Management



### 7. Community identity





8. Climate/Weather



### NDVI and Tree Cover Measurements

Geoff Donovan and Perry Hystad



A number of different GIS methods can be used to assess NDVI and tree cover for large populations/areas





# **Satellite Vegetation Indices**

- Chlorophyll strongly absorbs visible light (from 0.4 to 0.7 μm) for use in photosynthesis.
- The cell structure of the leaves strongly reflects near-infrared light (from 0.7 to 1.1 μm).
- The more leaves a plant has, the more these wavelengths of light are affected.

Visible Light (AVHRR Channel 1, .58-.68 µm)





## NDVI

- Most common index using in health research is the Normalized Difference Vegetation Index (NDVI).
- NDVI ranges from -1 to 1 (however, no green leaves gives a value close to zero).



# Landsat NDVI

- Landsat NDVI (1972 onwards)
  - Daily measurements
  - Some processing/calculations of NDVI needed



## Landsat NDVI





- Walkable network area rather than circular buffer
- Mean or Variation in Greenness?



Pereira et al. (2012). The association between neighborhood greenness and cardiovascular disease: an observational study

# **MODIS NDVI or EVI**



Spatial Resolution 250m, 500m, 1km Temporal Resolution Daily, 8-day, 16-day, monthly, quarterly, yearly (2000-present) Data Format Hierarchal Data Format - Earth Observing System Format (HDF-EOS)



### **Spectral Coverage**

36 bands (major bands include Red, Blue, IR, NIR, MIR) Bands 1-2: 250m Bands 3-7: 500m Bands 8-36: 1000m

# EVI

- Enhanced Vegetation Index (EVI) was designed to improve upon the quality of the NDVI product (available from the MODIS sensor).
- Corrects for some distortions in the reflected light caused by the particles in the air as well as the ground cover below the vegetation.
- Improves on the saturation of NDVI at very high greenness levels.







### U.S. Forest Change Assessment Viewer (ForWarn)

Three types of products:

- Forest Change Products
- Basic Phenology Products
- Derivative Phenology Products



http://forwarn.forestthreats.org

### Use of ForWarn: 2013 Gypsy Moth Defoliation in New York and Pennsylvania



## **Leaf Area Index**

- Ratio of leaf area to ground area.
- Computed daily at 1km from MODIS spectral reflectance's for all vegetated land surface globally.



### Land Cover Maps



Landsat Image of Lake Tahoe

Landcover map of Lake Tahoe

### Landsat Derived Land Cover Products

### United States

- National Land Cover Database (NLCD)
- GAP Analysis
- LANDFIRE
- Global
  - Global Land Cover Network (FAO)
  - Forest Change Products (Amazon Basin, Central Africa, Paraguay) and Landsat Tree Cover (GLCF)







## **Assessing Change**

 Land cover change from 1992 to 2010 in the Pacific Northwest.



### Landsat Tree Cover



- Landsat Tree Cover layers estimate the percent of tree cover per 30m pixel area (includes stems, branches, leaves greater than 5 meters in height)
- Derived from all seven bands of Landsat 5-TM and Landsat ETM
- Landsat Tree Cover product represents 2000, 2005

# Lidar

- LIDAR (Light Detection and Ranging) is a remote sensing method that uses light in the form of a pulsed laser to measure distances to the Earth.
- Generates precise, three-dimensional information about the shape of the Earth and its surface characteristics.

### Example of LiDAR data – Canopy Cover



### Day 1-Tree cover measurements (NDVI, regional-local UTC)



Figure 2.2.2: A city block in study area that displays a) resulting building polygons from the LiDAR extraction technique, and b) resulting building polygons after post-processing to simplify polygon shapes, remove secondary structures, and separate buildings by land parcel boundaries.



created by Stephen Hendrickson

# **Other Applications Applications**





- Integrate cooling impacts of vegetation.
- Cost distance.



### **Cost Distance**



### Enhancing NDVI and Tree Cover "Exposure" Assessment

• Start with the specific exposure construct in which we want to examine:



## Enhancing NDVI and Tree Cover "Exposure" Assessment

- Include both objective and subjective measurements.
- Collect information on use of greenspace.
- Assess greenspace using GPS and accelerometer data with momentary assessments of greenspace?
- Greenspace and tree exposure assessment from a human view (rather than birds eye view).
- Etc...





### Scotland's greenspace map

- The Map was compiled in 2011 from greenspace data provided by all 32 Scottish Councils.
- The local datasets were produced using greenspace mapping characterisation.
- This involved using GIS maps and aerial photography to categorise greenspaces into 23 different open space types; these include public parks, play areas, allotments, amenity greenspace, private gardens.
  Primary and secondary codes are used to capture multi-functional greenspaces, for example, play areas or woodland within larger public parks

5





Google imagery © Google. GUA data © EEA, Copenhagen, (2001) OS 150000 map, © Crown Copyright. An Ordnance Survey / EDINA supplied service

# Or the proportion of land cover within an areal unit that is green can be calculated





CORINE data © EEA, Copenhagen, (2001). Google imagery © Google. OS 150000 map, © Crown Copyright. An Ordnance Survey / EDINA supplied service







Richardson EA, Mitchell R, Hartig T, de Vries S, Astell-Burt T, Frumkin H. Green cities and health: a question of scale? Journal of Epidemiology and Community Health. 2011 doi:10.1136/jech.2011.137240





### **Day 1–Access to greenness**



But if you look at how 'green' that part of the city is, different data sets tell you different things



CORINE & GUA data © EEA, Copenhagen, (2001).150000 OS map © Crown Copyright. An Ordnance Survey / EDINA supplied service

### More problems

- Distance/walking time or % coverage are not the same as exposure in at least two more important ways
- We don't know if the space is *accessible* to our population of interest
- We don't know if the space is *accessed* by our population of interest
- Co-location or spatial proximity ≠ exposure

This lovely park in Dowanhill is private





Google Imagery © Google





Estimates of the % land area in a neighbourhood that is green space <u>www.cresh.org.uk</u>

(1) Relate the health of everyone in a neighbourhood to how much green space there is (comparing neighbourhoods)

Mortality data from GROS & ONS (2001-2005)













- Much research is focused on natural spaces, outside.
- Good evidence that indoor nature, pictures of nature, viewing nature in other ways has health benefits (esp mental health)

23

• We are very bad at capturing this kind of exposure at a population level.



### Vacant lot greening

- 2003: Pennsylvania Horticultural Society & City of Philadelphia launched **Philadelphia LandCare**
- 2015: PLC has "cleaned and greened" ~7,600 of Philadelphia's approximately 40,000 vacant parcels
- Studies document influence of vacant lot greening on physiology (heart rate; South et al 2015) & social life (violent crimes; Branas et al. 2011; Kondo et al in review) in neighborhoods





25

### Vacant lot survey: Do residents access greened lots?

- Physical survey of random 300 lots
- (Pre-greening) focus groups and (postgreening) interviews



Heckert, M., Kondo. M. Surveyed Uses and Perceptions of "Cleaned-and-Greened" Vacant Lots (under review)

26

### Are greened lots used by residents?

- 10% of lots showed signs of use
- Few noticed the greening, or were not sure how to interact with the lots, remaining vacant lots remained problems
- Signs-of-use lots not statistically different in terms of density, playground proximity



Heckert, M., Kondo. M. Surveyed Uses and Perceptions of "Cleaned-and-Greened" Vacant Lots (under review)

27

### Vacant lot greening & greenspace exposure

- Definition of greenspace:
  - Do overgrown lots count as green space?
- Exposure effects for who?
  - For nearby residents or outsiders?
- How should accessibility be measured and does it equate to health effect?
  - Can we have health benefits without accessibility?
- Does community involvement modify effect?





28

### Built Environment and Open Space: Key Concepts and Metrics

Perry Hystad, Yvonne Michael May 4, 2015

### **Built Environment and Health**





Copyright © American Heart Association, Inc. All rights reserved.

## Built Environment and Natural Amenities

- Built environment determined by implementation of local land use plans through zoning and design guidelines.
- Increasing interest in policies to promote urban development that includes access to natural amenities and limits "grey space"
  - From parks, trails, and open space to green roofs and green storm water infrastructure

## Zoning

- Zoning ordinances commonly include designations for:
  - Public
  - Open Space
  - Agricultural
  - Residential
  - Commercial
  - Industrial
  - Mixed Use



3

Courtesy of: public health law & policy

**Urban Parks** 

Green roof



www.facilities.upenn.edu



Green Storm water infrastructure



http://www.uswaterallia nce.org/

## **Urban Open Space**



Blighted urban vacant land to be transformed into green space.



http://www.na.fs.fed.us/

http://axisphilly.org/
# Health, Safety, and Greening Vacant Urban Space in Philadelphia

- Across 4 sections of Philadelphia, 4,436 vacant lots totaling over 7.8 million square feet (about 725,000 m<sup>2</sup>) were greened from 1999 to 2008.
- "Before" and "after" outcome differences among treated vacant lots compared with matched groups of control vacant lots that were eligible but did not receive treatment.
- Outcomes assessed through Household Health Survey conducted 1998-2008.

# Methods



# Results

- Vacant lot greening was associated with:
  - Reductions in gun assaults across all 4 sections of the city
  - Consistent reductions in vandalism in 1 section of the city
  - Residents' reporting less stress and more exercise

# Measurement of Green Space in Built Environment Studies

#### **Objective measures**

- Residential proximity to natural environment
  - Distance to closest open space, park
- Percent green space
  - Land use data
  - NDVI
  - Google Earth may also be useful for evaluating quality with trained assessors
- Street-level audits, including tree audits

#### Perceived measures via survey

 Quality and presence of amenities including parks and other public/private recreation facilities

# **Complex Relationships!**

 Can we examine greenspace and health without controlling for other built environment factors?



James et al. (2015)



# Urban trees and the risk of poor birth outcomes (Portland)

#### Table 1

Selected individual and neighborhood characteristics overall and by tree canopy within 50 m.

| Variable                                    | Overall | Tree canopy within 50 m<br>below median | Tree canopy within 50 m above median |
|---------------------------------------------|---------|-----------------------------------------|--------------------------------------|
| 2007 real market value (\$)                 | 268 000 | 260 000*                                | 276 000*                             |
| Mother did not graduate high school (%)     | 9.7     | 10.0                                    | 9.4                                  |
| Mother non-Hispanic white (%)               | 71.1    | 73.3*                                   | 69.0*                                |
| Mother's age (years)                        | 30.3    | 30.1*                                   | 30.6*                                |
| Married (%)                                 | 78.1    | 77.1                                    | 79.0                                 |
| Total births                                | 1.80    | 1.76*                                   | 1.83*                                |
| Gestational age (weeks)                     | 39.0    | 39.0                                    | 39.1                                 |
| Birth weight (g)                            | 3425    | 3407                                    | 3443                                 |
| Delivery cost paid by private insurance (%) | 74.2    | 73.6                                    | 74.8                                 |
| House age (years)                           | 66.3    | 64.9*                                   | 67.7*                                |
| Distance to nearest private open space (m)  | 3008    | 2948*                                   | 3070*                                |
| Distance to nearest public transit stop (m) | 679     | 682                                     | 676                                  |
| Violent crimes within 200 m (2006 and 2007) | 1.59    | 1.60                                    | 1.59                                 |

\* Overall p-value < 0.05 comparing characteristics by level of tree canopy within 50 m of mother's residence.

# Miro-Features of the Built Environment

 Architectural features that facilitate visual and social contacts may be a protective factor for elders' physical functioning.



Brown et al. 2008 http://ehp.niehs.nih.gov/11160/

# **Objective vs. Subjective Measures**



http://urbangems.org/

# Findings

- Analyzed the scenes with ratings using image processing tools.
- Amount of greenery in any given scene is associated with all the three attributes.
- Urban design elements that increase human interactions were associated with all three attributes, especially happiness.



# **Key Questions**

- How is the built environment and open space conceptualized and evaluated across disciplines?
- How is greenspace characterized within the definition of the built environment?
- What is being measured, and what needs to be measured for accurate estimates of the quality of the built environment?
- What are accepted methods for quantifying exposures related to the built environment?
- Consideration of the <u>intersection</u> of socioeconomic context and social behavior with built environment features, quality and public use.



Context: etiology and pathology of stress



Cohen et al 1995

Theory: Introducing Biophilia



Biophilia was released in 1984, and has since generated a design ethos (including much of what underlies Biomimicry). E. O. Wilson defines *biophilia* as 'the innate tendency [in human beings] to focus on life and lifelike process. To an extent still undervalued in philosophy and religion, our existence depends on this propensity, our spirit is woven from it, hopes rise on its currents.'

What does a restorative environment feel like?



#### movement, variability, periodicity, and stimuli for the five senses

Restorative landscapes rapidly evoke positive emotions and hold attention, displacing or restricting negative thoughts and allowing a reduction in arousal that had been heightened by stress.







Why do we like what we like? Who says we like what we like?



Natural Soundscapes



"The argument here is that the ambient sounds of an environment mimics a modern-day orchestra: the voice of each creature has its own frequency, amplitude, - mbre, and dura-on, and occupies a unique niche among the other musicians. This "animal orchestra" or biophony represents a unique sound grouping for any given biome and sends a clear acous- cal message".



Singapore's Nature Pyramid: nature at every scale

Frequency, Duration Intensity of Immersion





HOK/Biomimicry Institute: Nature as mentor, model and measure



- 1. What is the function of the design?
- 2. In nature, whose survival depends on solving a similar problem?
- Identify operating parameters of the biome:

-dimate conditions (wet, cold, hot, low/high pressure, high/low UV)

- Nutrient conditions (poor, rich)
  Social conditions (competitive, cooperative)
- Temporal conditions (dynamic, static, aging)

4. Through pattern recognition, emulate these relevant species-or biome-specific design principles for literal, abstracted or conceptual applications.

Recognizing that the fluid mechanics of a bird's bill in water and bullet train in air are similar

h8p://bit.ly/11W5h97







Designing with nature and natural design cues









### Socio-economic position / race

- Many studies looking at inequitable access to nature, where access is defined by proximity or landcover
- Dominated, numerically at least, by studies on race and nature from the USA. European and Australasian studies have tended to focus more on socio-economic position
- Typically use conventional measures of access / availability & then explore whether these vary by SEP / ethnic group (either at neighbourhood or individual level)
- Mixed results, but generally evidence for environmental injustice in terms of proximity & quality, some suggestion of differences in terms of biodiversity too
- Also evidence for lower levels of use among more deprived, vulnerable and non-white groups, even where green spaces are available
- Evidence that spaces are perceived differently (as being for white or dominant groups for example)
- Do we need to measure exposure differently for these groups?
  - · Again, questions the 'proximity=exposure' relationship
  - We must better understand that proximity/exposure relationship!

6







#### Day 1–Specific populations, exposure considerations



Source: K Ord, PhD thesis 2014

× n





# Age Cohort and Green space

- Differential exposure/access
  - Children's independent mobility to local urban green space is limited by distance to closest park, perceived safety, and parenting social norms
  - Mobility limitations may keep older adults homebound, with limited access to green space
  - Older adults and teens less frequent users of green space
- Differential susceptibility
  - Allergic sensitization may vary by age
  - Risk of chronic conditions and co-existing geriatric impairments increase with age

Christian et al, Journal of Physical Activity & Health, 2015; Rosso et al, Journal of Aging Research 2011





### Some general weaknesses

- We know very little about how / whether susceptibility to the benefits (harms) of contact with nature varies by population sub-group (more on this tomorrow)
- This is because few experimental studies are designed to explore these differences
- The conventional measures of exposure particularly those based on proximity to green spaces or distance, rarely include measures of actual visits!
  - Yet, to work at a population level (i.e. millions of people), we need those conventional measures.
- We know that some groups live further from, or appear to have worse access to, natural spaces, but we tend not to know how this affects their use of those spaces.

16

### **Discussion Questions**

- Do we need to measure *exposure* differently for specific populations, e.g., by gender, SEP/race, age?
  - Does relevant type of exposure vary by group?
  - Is duration or frequency different?
  - Is exposure pathway different?
- How do we incorporate a life course perspective into our exposure assessment?

17

Day 1–Specific populations, exposure considerations









### Day 1–Specific populations, exposure considerations





CRESH

Experimental evidence: field



Park 8, Tsunetsugu 11, Kasetani T, Kagawa T, Miyazaki Y. The physiological effects of Shinvin-yoku (taking in the forest atmosphere or forest bathing): evidence from field experiments in 24 forests across Japan. Environmental Health and Preventive Medicine 2010; 15(1):18-26.



### Experimental evidence: field



(c) Walking in the City Area



(d) Watching the Landscape in the City Area



Fig. 2 Change in salivary coefficient concentration after forest viewing and walking. Mean  $\pm$  standard deviation (SD); \*\* p < 0.01; p-value by i test



Environ Health Prev Med (2010) 15:18-26

### Day 1–Specific populations, exposure considerations







Why aren't rural areas, where nature is pervasive, superhealthy? Is it the *change* in environment that matters?



#### **Day 1–Exposure metrics, links to health** (*Attention restoration example*)







| _       | THEORY |
|---------|--------|
| Attenti | on     |
|         |        |
|         |        |





### **Day 1–Exposure metrics, links to health** (Attention restoration example)

| ٦                              | THEORY |  |
|--------------------------------|--------|--|
| Attention                      | Effort |  |
| Involuntary                    |        |  |
| Directed<br>(Paying Attention) |        |  |

| THEORY                         |        |  |
|--------------------------------|--------|--|
| Attention                      | Effort |  |
| Involuntary                    | No     |  |
| Directed<br>(Paying Attention) |        |  |





| THEORY                         |        |  |
|--------------------------------|--------|--|
| Attention                      | Effort |  |
| Involuntary                    | No     |  |
| Directed<br>(Paying Attention) | Yes    |  |



### Day 1-Exposure metrics, links to health (Attention restoration example)

| THEORY                        |        |         |
|-------------------------------|--------|---------|
| Attention                     | Effort | Fatigue |
| Involuntary                   | No     |         |
| Directed<br>Paving Attention) | Yes    |         |

| THEORY                         |        |         |
|--------------------------------|--------|---------|
| Attention                      | Effort | Fatigue |
| Involuntary                    | No     | No      |
| Directed<br>(Paying Attention) | Yes    |         |



| THEORY                         |        |         |
|--------------------------------|--------|---------|
| Attention                      | Effort | Fatigue |
| Involuntary                    | No     | No      |
| Directed<br>(Paying Attention) | Yes    | Yes     |



#### **PAYING ATTENTION**

- Matters for everything we care about
- Learning
- Problem solving
- Planning, initiating & carrying out tasks
- Self monitoring & self regulation
- Effective social functioning

#### **Day 1–Exposure metrics, links to health** (*Attention restoration example*)









### **Day 1–Exposure metrics, links to health** (*Attention restoration example*)











### Day 1-Exposure metrics, links to health (Attention restoration example)









- · Digits forwards
- · Digits backwards
- · Stroop color word




















# PARTICIPANTS • [60 healthy adults • Age [8-3] years old, M=2] • Gender: 8] females, 79 males







































