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Using In Vitro High-Throughput Screening Data for
Predicting Benzo[k]Fluoranthene Human Health Hazards

Lyle D. Burgoon,1,∗ Ingrid L. Druwe,2 Kyle Painter,2 and Erin E. Yost2

Today there are more than 80,000 chemicals in commerce and the environment. The poten-
tial human health risks are unknown for the vast majority of these chemicals as they lack
human health risk assessments, toxicity reference values, and risk screening values. We aim
to use computational toxicology and quantitative high-throughput screening (qHTS) tech-
nologies to fill these data gaps, and begin to prioritize these chemicals for additional assess-
ment. In this pilot, we demonstrate how we were able to identify that benzo[k]fluoranthene
may induce DNA damage and steatosis using qHTS data and two separate adverse outcome
pathways (AOPs). We also demonstrate how bootstrap natural spline-based meta-regression
can be used to integrate data across multiple assay replicates to generate a concentration–
response curve. We used this analysis to calculate an in vitro point of departure of 0.751 μM
and risk-specific in vitro concentrations of 0.29 μM and 0.28 μM for 1:1,000 and 1:10,000 risk,
respectively, for DNA damage. Based on the available evidence, and considering that only
a single HSD17B4 assay is available, we have low overall confidence in the steatosis hazard
identification. This case study suggests that coupling qHTS assays with AOPs and ontolo-
gies will facilitate hazard identification. Combining this with quantitative evidence integra-
tion methods, such as bootstrap meta-regression, may allow risk assessors to identify points
of departure and risk-specific internal/in vitro concentrations. These results are sufficient to
prioritize the chemicals; however, in the longer term we will need to estimate external doses
for risk screening purposes, such as through margin of exposure methods.
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1. INTRODUCTION

Today it is estimated that there may be over
80,000 chemicals in commerce and the environ-
ment.(1) Most of these chemicals lack authoritative
reference values or risk screening values, meaning
their hazards are not well understood, and they may
not be regulated. Although having authoritative
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reference values for as many chemicals as possible
would be ideal, risk assessment is a time-consuming
activity with need of data, methods, and models suf-
ficient to estimate hazard and dose response. With
so many chemicals lacking assessments and author-
itative reference values, the question turns to which
chemicals should an agency assess first? Risk screen-
ing and human health hazard prioritization values
provide regulatory agencies a means to prioritize
chemicals for further assessment based on potential
human exposure and human health hazards.

When combined with a margin of exposure
(MOE) approach, risk screening values may be used
for prioritizing chemicals based on real-world expo-
sure. Under the MOE approach, a risk screening
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value (in units of mg/kg-day or mg/m3 for oral or in-
halation, respectively) would be divided by a factor,
for instance, 100 in this example, to obtain a safe mar-
gin below which adversity is not expected to occur
within a population. Once a chemical exposure is es-
timated within the MOE (e.g., within 100× of the risk
screening value), that chemical would be prioritized
for further risk assessment.

Computational toxicology methods provide a
means to begin developing risk screening values. In
vitro quantitative high-throughput screening assays
(qHTS) provide concentration–response data. When
coupled with adverse outcome pathways (AOPs;
note that AOPs are not chemical-specific), these data
may be able to infer adverse outcomes. By using
concentration–response analysis, we can identify sur-
rogate internal concentration points of departure, or
we may be able to use the concentration–response
curve to calculate risk-specific concentrations (e.g.,
the dose at which 1:1,000 or 1:10,000 risk of adver-
sity occurs). Using reverse dosimetry we can con-
vert from these surrogate internal concentrations
to estimates of the external dose/concentration in
units such as mg/kg-day or mg/m3 (note that exter-
nal dose/concentration are environmental exposure
levels).

One of the primary challenges associated with
using qHTS data to inform risk assessment is the lack
of reverse dosimetry data and models. Until this can
be rectified, we see little recourse except to use a rela-
tive ranking scheme based on in vitro surrogate inter-
nal concentration points of departure or risk-specific
concentrations (we term these human health hazard
prioritization values or H3PV). The downside is that
these surrogate values cannot be used in an MOE
analysis. However, it still allows for the chemicals to
be ranked relative to one another for prioritization
purposes. When combined with real-world exposure-
based ranking of chemicals (e.g., site-specific rank-
ing of chemicals based on concentrations in various
media), we can combine this information for ranking
and prioritization purposes.

We are focused on developing methods that fo-
cus on translating nascent data streams (e.g., omics,
qHTS, data mining of the vast biomedical database
universe, computational toxicology) into H3PV, risk
screening, risk assessments, and, ultimately, risk
management decisions. This will require efforts for
hazard identification, concentration–response analy-
sis, and reverse dosimetry.

In this article, we outline a case study fo-
cused on methods for using in vitro qHTS data
for hazard identification and concentration–response
analysis. Our case study is focused on benzo
[k]fluoranthene(B[k]F), a polycyclic aromatic hydro-
carbon.

This work was inspired in large part by other ef-
forts to perform high-throughput risk assessments.(2)

We concur with Judson et al. (2011) that pathways are
key in anchoring the qHTS assays, and that reverse
dosimetry is the key to moving from in vitro concen-
trations to external dose/concentration. However, we
differ in several respects that will be explored fur-
ther in this work. As illustrated here, we believe that
risk assessors need only be concerned with the min-
imal set of key events (and their associated assays)
that are sufficient to infer the adverse outcome. In
addition, our work is focused on moving towards
a semi-automated approach, where computers are
used to integrate and perform a first-pass analysis of
the data. Risk assessors then will utilize these anal-
yses to facilitate their own analyses, help tune the
algorithms to improve their performance, and ulti-
mately help risk assessors increase their assessment
efficiency and throughput. Furthermore, although we
agree with Judson et al. that utilizing qHTS data in
risk assessment is the ultimate goal, we have turned
our focus to the near-term goal of using in vitro qHTS
data for risk screening and hazard-based chemical
prioritization.

We utilize an AOP ontology we developed to fa-
cilitate the use of first-order logic to identify hazards
associated with B[k]F based on putative AOPs. We
then use the ontology to help us identify which assays
associated with AOP key events that are sufficient
to infer adversity to use for concentration–response
analysis, point of departure, and risk-specific in vitro
concentration estimation. Future case studies may
focus on reverse dosimetry to inform the generation
of a risk screening value.

2. MATERIALS AND METHODS

2.1. Adverse Outcome Pathway Construction

The focus of this study was on hepatic steato-
sis and oxidative DNA damage. The putative steato-
sis AOP (Fig. 1) and the putative DNA-damage-
induced cancer AOP (Fig. 2) were constructed based
on existing disease pathway data available from
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Fig. 1. Putative AOP for DNA damage leading to cancer. This AOP is a relatively well-known pathway. Each node is a key event, connected
by either an arrow (representing activation) or a dash (representing repression). The hexagonal nodes are key events where we have an
assay in the PubChem database. Based on the pathway and information from the literature, activation of p53 is sufficient to infer there is
DNA damage. Although this is not sufficient information to infer anything about tumorigenesis or carcinogenesis, per se, this is important
information when building an argument about the chemical’s mode of action.

Fig. 2. Putative AOP for steatosis via decreased fatty acid beta oxidation. This AOP demonstrates two pathways that lead to steatosis.
The HSD17B4 key event node is sufficient to infer steatosis based on its importance in fatty acid beta oxidation. In this case, deactivation
of HSD17B4 activity will lead to decreased fatty acid beta oxidation, which will lead to steatosis. Thus, decreased HSD17B4 activity is
sufficient to infer steatosis.
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sources listed in the National Library of Medicine’s
BioSystems Database.(3) BioSystems includes path-
way data from a multitude of sources, including
Reactome, the Kyoto Encyclopedia of Genes and
Genomes (KEGG), and others. This information was
augmented with data from literature sources to build
the putative AOPs.

2.2. In Vitro qHTS Data Acquisition

In vitro high-throughput screening data were ac-
quired from the National Library of Medicine’s Pub-
Chem Database (https://pubchem.ncbi.nlm.nih.gov/)
for all active, confirmatory assays for B[k]F under the
chemical ID: 9158. We narrowed the list of assays
down to just those that represented key events in our
putative AOPs. For concentration–response analysis,
these were narrowed to those assays that were linked
to key events that were sufficient to infer an adverse
outcome.

All key events within an AOP are, by defini-
tion, necessary. However, not all key events are suffi-
cient to infer the adverse outcome within an AOP.
Rothman(4) defined sufficient as “[a] cause which
inevitably produces the effect.” Under Rothman’s
sufficient-component cause model, there is at least
one, and possibly more components that jointly, are
sufficient to infer a disease or adverse outcome. This
means that removal of just one component is suffi-
cient to prevent the disease or adverse outcome.(4,5)

This can also be termed minimal sufficiency. By def-
inition, if a downstream key event in an AOP is af-
fected by a chemical (e.g., activated or deactivated),
then the upstream events had to occur. Thus, if we
have identified a sufficient key event and activation
of this key event is sufficient to infer adversity, then
we can infer that the adverse event will occur.

2.3. Concentration–Response Analysis

For the p53 putative AOP key event, we had
five replicates across largely similar doses under the
PubChem BioAssay IDs: 651631 (three replicates),
651743 (two different PubChem substance IDs). We
integrated the evidence/data (e.g., concentration–
response data) across these five replicates using a
bootstrap natural spline-based meta-regression. We
performed 5,000 iterations and calculated the boot-
strap median–concentration response curve and the
95% confidence region. Note that we could have
just as easily used a bootstrap loess meta-regression
method rather than the bootstrap natural spline-

based meta-regression. Our reason for choosing
the natural spline approach is one of convenience,
whereby the model will be linear at the edges (this is
useful if we had to perform low-dose/concentration
extrapolation). However, for the sake of interpola-
tion, we estimate the results would be similar be-
tween loess and the natural splines.

For the HSD17B4 putative AOP key event, we
had one replicate (AID: 893). We observed that at
the higher doses the response percentage dropped
below −100%, and at the highest dose dropped be-
low −400%. This assay is an in vitro enzymatic as-
say, meaning it is cell-free. The reference point in
this assay is an untreated control, where HSD17B4
enzyme is placed in a well with the electron donor
beta-hydroxybutryryl coenzyme A and the electron
acceptor NAD+. Thus, we find it difficult to believe
a response less than −100%.

Consider the following: the control fluorescence
when the HSD17B4 is placed in the well with the
beta-hydroxybutryryl coenzyme A and NAD+ is
1,000 units. A +50% increase in activity would be
equivalent to 1,500 units. Likewise, a −50% activity
response would be a decrease by 50%, for a total of
500 units. If after adding a chemical, the fluorescence
was 0 units that would be a −100% response rate (or
100% decrease in activity). Thus, to have a less than
−100% response rate, the fluorescence assay would
have to be reading negative values, which is likely if
the fluorescence values are extremely low, and likely
occurring after various data transformations are ap-
plied. Thus, as these values are biologically and an-
alytically impossible/improbable, we have censored
the data whose values are <−100% (i.e., −400%) to
be −100%.

2.4. Point of Departure Estimation

We estimated the point of departure as the con-
centration at which the upper 95% confidence inter-
val demonstrated deviation from the “background”
rate near the low-concentration asymptote. We an-
alyzed the slope to identify the point at which the
curve began to depart from the asymptote.

2.5. Risk-Specific In Vitro Concentration
Estimation

We assumed that the maximal asymptote repre-
sents maximal risk, and that the minimal asymptote
represents the baseline risk. For instance, if a risk
assessor were interested in identifying the dose that
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causes a risk of 1:1,000 (where maximal response is
considered 100% risk), we would identify the maxi-
mum response and divide that by 1,000, to yield the
response factor. We then analyzed the region of the
curve less than the point of departure to identify the
maximum value for the upper 95% confidence inter-
val using a small interval (i.e., we would focus in on
a narrow concentration range less than the point of
departure with a small interval between the concen-
trations that were input to the model). We identified
the risk-specific in vitro concentration as the concen-
tration from the model that yielded the value closest
and less than the response factor (in other words, if
the response factor is 10%, then we would identify a
concentration that yields a response as close to and
less than 10% as possible). If the sum were between
two concentrations, we used the lower concentration
in order to be public health protective.

2.6. Analysis Environment

All statistical analyses and modeling were per-
formed in R (version 3.1.1). The ontology is encoded
using the Web Ontology Language (OWL). We
chose to utilize OWL as it supports necessary, suf-
ficient, and necessary and sufficient conditions. Com-
putational reasoners can be used to draw these same
conclusions using the ontology, and to automate the
process. Because of the simplicity of the AOPs and
the sufficiency relationships, we did not need to use a
computational reasoner to make inferences.

3. RESULTS

3.1. Adverse Outcome Pathways

We constructed two putative AOPs based largely on
existing disease knowledge. The p53-tumorigenesis
and cancer putative AOP is based on existing path-
way information, including WikiPathway RB in
Cancer (http://www.wikipathways.org/index.php?title
= Pathway:WP2446&oldid = 76353), KEGG Cell
Cycle (http://www.genome.jp/kegg-bin/show_pathway?
hsa04110), and the Reactome Cell Cycle Checkpoints
(http://www.reactome.org/PathwayBrowser/#DIAGRAM
= 69620&PATH = 1640170) pathways (Fig. 1). Fig. 2
depicts the HSD17B4-steatosis putative AOP, based on
the Reactome Peroxisomal Lipid Metabolism Pathway
(http://www.reactome.org/PathwayBrowser/#DIAGRAM
= 390918), and other articles.(6,7) Note that the pathway
data sources are curated based on the literature.

3.2. Identification of Sufficient Key Event–Adverse
Outcome Relationships

We identified key events upstream of the adverse
outcome that are sufficient to infer the adverse out-
come. If we consider the p53-tumorigenesis putative
AOP (Fig. 1), activation of p53 is sufficient to infer
DNA damage. Tumor protein p53 is a protein criti-
cal in cell-cycle regulation and thus functions as a tu-
mor suppressor. In a normal healthy cell, inactive p53
is tagged for ubiquitylation by the E3 ubiquitin lig-
ase, MDM2, and degraded by the 26S proteasome,(1)

making baseline protein levels of the p53 protein low.
When there is DNA damage, p53 is phosphorylated,
preventing ubiquitination, and activated, leading to
cell-cycle arrest and allowing the damaged DNA to
be repaired.(8)

Although having a nonfunctional p53 may be
necessary for tumorigenesis in some cases, it is not
sufficient to infer that tumorigenesis will occur, as
that would also require cell-cycle activation. Thus,
for our purposes, we will focus on the inferential re-
lationship where p53 activation infers DNA damage.

In consideration of the HSD17B4-steatosis pu-
tative AOP, we know HSD17B4 is a key protein in
fatty acid beta oxidation and that a lack of HSD17B4
activity is sufficient to infer steatosis.(7)

3.3. Hazard Identification Using In Vitro
qHTS Data

We obtained assay data from PubChem for
the hexagonal AOP key events (Figs. 1 and 2).
In the p53 putative AOP, these include assays
for AhR/ARNT, Nrf2, NF-κB, and p53. For the
HSD17B4-steatosis putative AOP, we have assay
data for Nrf2, FXR, PPAR-alpha, and HSD17B4.
However, based on the sufficiency arguments we
have encoded into the ontology, we will only focus
on the p53 and HSD17B4 assays. Thus, based on
the sufficiency relationships, we infer that there is
DNA damage present if p53 is activated, and we in-
fer that steatosis occurs when HSD17B4 activity is
decreased.

For the p53 activation key event, we identified
five replicates from the PubChem database (three
are from the same data set). Based on the results of
our bootstrap natural spline-based meta-regression
(Fig. 3), we have identified that the replicates are
in good agreement, demonstrating a concentration-
dependent activation of p53. The data are approach-
ing a plateau near 100 μM. Based on the assay data,
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Fig. 3. Bootstrap natural spline-based meta-
regression of the concentration–response
curve for the p53 qHTS assay data. The
concentration–response data from five assays
were integrated using bootstrapping (5,000
iterations) and natural splines to perform
meta-regression. The line represents the
median concentration response across the 5,000
iterations. The shaded region surrounding the
median line represents the 95% confidence
interval.

it appears that there is a threshold below which p53
is not likely to be activated. Thus, there is evidence
that DNA damage is occurring following B[k]F expo-
sure; however, there appears to be a threshold below
which DNA damage is not inferred, based on lack of
p53 assay activation. We have moderately high confi-
dence in this conclusion, based on concordance be-
tween multiple replicates of the p53 assay for this
chemical.

We identified only one replicate from the Pub-
Chem database for HSD17B4 activation/inhibition.
The concentration–response curve is depicted in
Fig. 4. The data appear to show a threshold below
which HSD17B4 activity remains relatively steady.
At higher doses of B[k]F, the HSD17B4 activity
rapidly declines. This suggests that at higher concen-
trations of B[k]F exposure, HSD17B4 activity has de-
creased, and that steatosis is likely. Thus, we have ev-
idence of steatosis following B[k]F exposure, with a
threshold below which steatosis is unlikely. We have
low confidence in this conclusion, and low confidence
with regards to the threshold at which effects are un-
likely to occur, because only a single replicate of the
HSD17B4 assay was available.

3.4. Point of Departure and Risk-Specific
Concentration Estimation

We define the point of departure as that con-
centration where one can reasonably anticipate de-
viation from the control response, as measured by a
marked deviation of the curve away from the asymp-
tote. This is the point at which the slope of the
curve increases (decreases) markedly and denotes
the curve’s departure from the asymptote in a mono-
tonically increasing (decreasing) curve. For p53 we
estimate an internal concentration point of depar-
ture of 0.751 μM based on the deviation of the slope
from baseline. This method for point of departure es-
timation is based on the fact that at low doses the
concentration–response curve approaches an asymp-
tote. We define baseline responses as those that occur
where the slope has minimal changes, typically asso-
ciated with measurement/assay noise. In other words,
this region that approaches the asymptote is not ex-
pected to be discernable from control responses.

This point can be easily seen in a plot of the slope
(Fig. 5), where 0.751 μM exhibits the first largest
slope increase (44.4% response ratio units/μM).
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Fig. 4. Concentration–response curve for the
HSD17B4 qHTS assay. Only a single assay was
available for this analysis, so no bootstrapping
or regression was performed. This plot depicts the
concentration–response for the only available replicate.

Fig. 5. Concentration–response slope graph for
the p53 qHTS assay data. This plot can be helpful
in determining the point of departure when used
with the concentration–response plot. Based on
this plot, it would appear that the concentration–
response curve is beginning to deviate from the
baseline from 0.337 to 0.751 μM (boxed area).
The slope has definitely increased by 0.751 μM,
followed by a sharp decrease in slope at 0.782 μM
(due to an unusually small difference in the con-
centrations in the denominator). Matching this
with the concentration–response plot in Fig. 3, it
becomes clear that the slope increase from 0.337
to 0.378 μM is within the normal variation for the
baseline; however, the slope increase from 0.378
to 0.751 μM is large, and helps support the case
that 0.751 μM is a reasonable point of departure.
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Because of the use of secant lines (i.e., lines
intersecting two points on the curve) to calcu-
late the slope, there is an anomalous, sharp de-
crease in slope at 0.782 μM. This is due to the
small increment in the denominator gaining greater
weight over the small decrease in response ra-
tio. However, by analyzing the curve (Fig. 3) and
the slope (Fig. 5) simultaneously, it is clear that
this is a small anomalous blip in the slope curve
that holds little weight in the overall interpretation.

We can use the modeled concentration–response
curves to also calculate risk-specific in vitro concen-
trations. A risk-specific in vitro concentration is a
concentration at which a certain percentage of re-
sponse, compared to maximal response, will occur.
In the p53 example, we assume that maximal risk
(near 100%) is equivalent to the increasing response
asymptote (higher concentrations). We also assume
that background risk is equivalent to the decreasing
response asymptote (i.e., the response at lower con-
centrations near the asymptote is assumed to be at
background levels for an activator). We recognize
that this is a simplifying assumption, and that the
in vitro cells in culture likely replicate a single geno-
type. This assumption is important as it means that
we are not able to account for population variability.

The 1:10,000 and 1:1,000 risk in vitro concentra-
tions are approximately concentration 0.28 μM and
0.29 μM, respectively. These concentrations are ap-
proximately 40% lower than the point of departure,
within the asymptote.

For HSD17B4, we were not able to calculate a
reliable point of departure or risk-specific concentra-
tion. With essentially a single replicate, we do not feel
comfortable calculating these estimates.

4. DISCUSSION

Rapid risk screening methods are necessary to
begin to tackle the risk assessment challenges posed
by the more than 80,000 chemicals in commerce and
the environment. Risk screening will help prioritize
chemicals for future research and assessment efforts.
By focusing resources in this way, we can begin to
take more reasonable steps to address this challenge.

In addition, risk screening assessments can pro-
vide critical toxicological information for emergency
response when a more traditional risk assessment
is lacking. Even in an emergency situation, a data
limited case, such as our B[k]F steatosis case study,
can be helpful. Although in the steatosis case study

we only had one replicate concentration–response
curve, this information is far more helpful in estab-
lishing a potentially safe level as compared to hav-
ing no data at all. For instance, consider a case like
the 4-methylcyclohexanemethanol (MCHM) spill in
West Virginia in January 2014. There, environmental
public health agencies lacked an authoritative tox-
icological assessment of MCHM. Eventually a sub-
acute study from the manufacturer was identified.
However, what if no values were found that could be
used? Risk managers would welcome a single repli-
cate qHTS assay, such as our steatosis case for B[k]F,
over no data whatsoever.

Rapid risk screening will require rapid toxicity
and hazard assessments, which includes rapid hazard
identification and rapid dose–response assessments.
In this article, we describe a case study that lays
out our methods to perform the rapid hazard iden-
tification and rapid concentration–response analysis.
Our approaches are readily amenable to automation.
For instance, we can automate the hazard identifica-
tion process by (1) leveraging an ontology that maps
assays to AOP key events with hand-curated suffi-
ciency relationships that allow us to infer adverse
outcomes from one or more sufficient key events,
(2) statistical methods that can determine if an as-
say is active at various concentrations, and (3) com-
bineing the statistical information with the ontology
and utilizing first-order logic to identify those con-
centrations where an adverse outcome is likely. The
concentration–response analysis is a semi-automated
approach, where the bootstrap spline-based meta-
regression can be easily fully automated, and we an-
ticipate humans would make the final decision on
points of departure and risk-specific concentrations.

In applying these approaches, we have begun to
discuss our confidence in the results. Creating a con-
fidence framework is still an ongoing process for us.
As risk assessors, we feel it is important to articulate
our confidence in our conclusions using these data.
Given our experience with data-poor chemicals, and
real-world situations where risk management deci-
sions need to be made in the absence of good-quality
data, we feel it is important to be able to use all data
that are available to us. Thus, to us, confidence is
a continuum from low to high. We have the lowest
confidence in data from a single replicate. We have
the highest confidence in data from multiple orthog-
onal assays where each has multiple replicates. We
have significantly fewer reservations broadcasting
low-confidence hazard identification calls than low-
confidence point of departure calculations, reserving
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low-confidence point of departure calculations for
those cases where it is absolutely necessary.

In our p53 case study, we were able to inte-
grate evidence from five assays. Based on our se-
mantic/ontology analysis, we were able to identify
that B[k]F likely causes DNA damage. This is based
on the semantic relationship between p53 and DNA
damage, such that p53 activation is sufficient to in-
fer DNA damage has occurred. We estimated a POD
for DNA damage, as measured by the p53 assays, of
0.751μM, with a 1:1,000 and 1:10,000 risk at 0.29 μM
and 0.28 μM, respectively.

Our confidence in the results would have been
increased had orthogonal assays (i.e., assays measur-
ing the same key event in different ways) been avail-
able, and if different groups had performed the as-
says. However, given the reproducibility across the
five assays, across different spans of time, we feel
moderately confident in these results.

There are limitations and assumptions associated
with basing the 1:1,000 and 1:10,000 risk levels on
maximal response. For instance, this assumes that
maximal risk is equated to maximal response, which
may or may not be true. It also assumes that all re-
sponse rates in any given assay have some inherent
risk, which may not be true in all cases. Furthermore,
for risk to be equated to response, we would have
to presume that cellular and molecular responses
in these assay systems are binary in nature—where
graded responses are the result of some percentage
of cells being active (e.g., 90% response is equivalent
to 90% of the cells in a system being active). This
is why it is important that decisionmakers and inves-
tigators understand the strengths and limitations of
the assay systems, and that assessments be developed
by people who understand the analysis approaches
and assays. The 1:1,000 and 1:10,000 risk analyses are
demonstrated here as a proof of concept for a more
quantitative risk approach than the POD method;
however, the results should be taken with care when
using them in a risk screening environment.

We also assessed the ability of B[k]F to
cause steatosis through decreased HSD17B4 activ-
ity. Based on our semantic/ontology analysis, we
were able to identify that B[k]F could cause steato-
sis, by decreasing HSD17B4 activity. We have lit-
tle confidence in this result due to having only one
data set available. Because we lacked additional as-
say data, we were not comfortable calculating a
point of departure or risk-specific concentrations.
This represents a case where risk assessors might re-
quest additional assays be run to increase the con-

fidence in the HSD17B4 results. As our ontology
and literature analysis identified HSD17B4 as being
sufficient to infer steatosis, we would only need ad-
ditional data for HSD17B4, preferably with orthogo-
nal assays. Requesting data for additional key events,
which were not sufficient to infer steatosis, would
have very little value for our hazard identification
and concentration–response analyses.

Leveraging Rothman’s idea of minimal
sufficiency(4) allows us to quickly hone in on
those AOP key events that are the most important
and informative for risk assessment. Under minimal
sufficiency, we need only monitor and test those
key events that are sufficient to infer an adverse
outcome. Ideally, orthogonal assays would be avail-
able. This means that only a small number of key
events across the AOP universe will actually require
testing/monitoring, further driving down the number
of required tests, while maximizing the information
gain.

What we have described here is just the first step
in a more comprehensive risk screening paradigm.
Using these approaches, we can rank and priori-
tize chemicals for further research and assessment
in a semi-automated fashion (Fig. 6). This semi-
automated work would serve as the input to a gat-
ing function, where chemicals would be continuously
prioritized/reprioritized by regulatory agency deci-
sionmakers based on the identified hazards, PODs,
or risk-specific concentrations. Prioritization could
also be based on the availability of data. For in-
stance, we currently lack the information and models
required for reverse dosimetry for many chemicals.
We could perform reverse dosimetry for chemicals,
based on priority order, for those chemicals where
the data are available. In other words, chemicals that
have data that can be used for reverse dosimetry
would be allowed through the gate before chemi-
cals with higher priority that lack these data. Fol-
lowing reverse dosimetry, we would have PODs and
risk-specific dose/concentration levels in mg/kg-day
or mg/m3. This information could be used in a risk
screening context to further prioritize chemicals for
additional research and risk assessment.

In addition, because risk assessors will likely lack
the ability to perform reverse dosimetry for most
chemicals, we believe that relative ranking of chem-
icals based on the surrogate internal concentration
may be the best alternative for chemical priori-
tization at this time. By combining these relative
rankings with site-specific or nationwide exposure-
based chemical rankings, we can calculate a relative
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Fig. 6. Overview of rapid hazard and rapid risk screening. This graphical overview illustrates the information flow starting at chemicals
in the environment, and ending at a screening assessment. This overview is specific for in vitro qHTS data. We envision using the semi-
automated methods described in our case study in the rapid hazard (in vitro) step. By making this process semi-automated, we anticipate
being able to prioritize hundreds to thousands of chemicals in the relatively near future (less than three years). The principal bottleneck at
this stage is the availability of putative AOPs, “ontologizing” them, and identifying sufficiency relationships. As chemicals are prioritized,
we can identify those that have the most value in having additional research performed. As data and models become available to perform
reverse dosimetry, we can move chemicals out of the gate, perform reverse dosimetry, and develop screening assessments.

risk prioritization based on either the rank order of
the sums or products of the ranks. In other words,
the overall risk prioritization would be the product
of the chemical’s relative ranking based on surrogate
internal concentration and the chemical’s relative
ranking based on site-specific or nationwide expo-
sure. Although this lacks the elegance of an MOE
approach, it still has utility in prioritizing chemicals
for further assessment. Our case study demonstrates
that quantitative evidence integration can be accom-
plished using fairly routine methods (e.g., bootstrap
natural spline-based meta-regression), but that we
require criteria for determining our level of confi-
dence in the data in a transparent way. In addition,
criteria for determining causality of an adverse out-
come will be helpful to ensure we are making clear,
logical, and transparent arguments. For instance, we
have little doubt others would disagree that there is
little confidence in stating that B[k]F causes steatosis
based on the available qHTS data. However, without
clear and transparent criteria one could easily make
an argument that there is strong/moderate/weak
evidence concerning DNA damage based on the p53
assays at varying doses without providing a clear,
convincing, and logical case. Use of a confidence
framework would allow all involved (e.g., stake-
holders, risk assessors, policymakers) to understand
the criteria that were applied, and how they were
applied.

5. CONCLUSIONS

We have developed a case study that lays out
a framework to move qHTS data into risk screen-
ing. In the near future we will migrate our case-

study-specific code into semi-automated methods to
facilitate our analyses in R. We feel it is important
to keep risk assessors active at the most important
steps—determining a point of departure, or identify-
ing risk-specific concentrations. We anticipate that by
adopting a semi-automated process we will be able to
facilitate transparency throughout the analysis pro-
cess, from data acquisition and screening through
risk screening assessment.

We learned several lessons in the development
of this case study. For instance, we have identified
that a confidence framework needs to be created to
guide assessors in describing the level of confidence
that the data confer for specific adverse outcomes. In
addition, a causal framework will facilitate the anal-
ysis of causal relationships between chemical expo-
sure and adverse outcome using these emerging and
nascent data streams (e.g., qHTS, omics, computa-
tional toxicology, data mining). These are but a few
of the future directions we are currently engaged in.

Overall, we feel confident that as more qHTS
data become available we will be able to translate
these into risk assessment research needs and risk
screening assessments. We are equally confident that
transparency can be enhanced over time, as we con-
tinue to migrate toward more computationally effi-
cient, semi-automated methods.
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