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Introduction 
 
This appendix summarizes data on chemicals considered for examples in the present analysis.  These 
data can be used in a component-based approach to cumulative risk, particularly in developing an 
understanding of toxicokinetics relevant to determining the likelihood of an interaction.  For the data 
contained in this appendix, several points bear emphasis.   
 
1. No data on either of the two example chemical mixtures was located.  Thus, this report contains 

information only on each of 10 components chemicals (i.e., 6 component chemicals for Mixture 1 
and 4 component chemicals for Mixture 2). 

2. This summary of data is by no means an exhaustive review for each of these 10 component 
chemicals.  Only brief information is provided for each of the sections for each chemical.  We 
placed a great deal of emphasis on not repeating the effort of existing reviews; rather, we provide 
an update on each chemical with current information. 

3. We focused more on pharmacokinetics/pharmacodynamics with special emphasis on 
physiologically-based pharmacokinetic (PBPK) modeling. 

 
In this report, the toxicological and pharmacokinetic characteristics of ten chemicals are discussed.  The 
ten chemicals consist of two groups that can potentially form mixtures in drinking water.  The first 
mixture consists of the organophosphorus pesticides parathion, methyl parathion, chlorpyrifos, diazinon, 
fenthion, and fenitrothion.  The second mixture consists of the chlorinated hydrocarbons chloroform, 
trichloroethylene, tetrachloroethylene, and 1,1,1 trichloroethane.  Each chemical is discussed separately 
in one section of the report.  In each section, a brief description of the toxicology of the chemical is 
provided as a background to the selection of appropriate dose metrics for risk assessments that can be 
quantified using PBPK modeling.  Subsequently, available data describing the pharmacokinetics (PKs) 
of each chemical in laboratory animals and humans is provided.  Finally, available studies regarding 
potential PK interactions between the chemicals are provided. 
 
The studies incorporated in this review are necessarily limited.  The review is based on a detailed search 
of the open literature.  However, inevitably there are additional studies to be considered, especially those 
that are not published. 
 
The principal purpose of this review is to compile data that may be useful in performing a PBPK model-
based cumulative risk assessment (CRA) for the two groups of chemicals in drinking water.   
 
Literature Cited 
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Parathion 
1.0 Introduction 
 
Parathion (O, O-diethyl 4-nitrophenyl phosphothioate) is a phosphorothionate insecticide that has no 
registered uses in the U.S. but is widely used elsewhere in agriculture and is present in food and 
environments (Brack et al. 1999; Fenske et al. 2002; Leblanc et al. 2000; Lifshitz et al. 1999; Ripley et 
al. 2000; Simcox et al. 1995).  
 
1.1 Toxic effects  
 
Parathion exerts its toxicological effects via inhibition of acetylcholinesterase (Nigg and Knaak 2000; 
Thiermann et al. 1997). Metabolism of parathion exploits CYP450 as a metabolizing enzyme 
(Atterberry et al. 1997; Attia 2000; Attia et al. 1995; Besser et al. 1993; Halpert et al. 1980; Halpert and 
Neal 1981a, b; Howard and Pope 2002; Jett et al. 1994; Katz et al. 1997). Other toxicities such as 
reproductive toxicities, immunotoxicity, cytotoxicity, carcinogenicity, and other effects have also been 
shown (Bustos-Obregon and Diaz 1999; Bustos-Obregon et al. 2001; Cabello et al. 2001; Cao et al. 
1999; Carlson and Ehrich 2001; Carlson et al. 2000; Galloway and Handy 2003; Grellner and 
Glenewinkel 1997; Ivens et al. 1998; Levario-Carrillo et al. 2001; Li and Zhang 2001; Liu et al. 1999; 
Melendez Camargo and Lopez Hernandez 1998; Olivier et al. 2001a; Olivier et al. 2001b; Padungtod et 
al. 1999; Padungtod et al. 1998; Padungtod et al. 2000; Rojas et al. 1998; Saleh et al. 2003; Segura et al. 
1999; Selgrade et al. 1984; Senel et al. 2001; Tong et al. 1988; Undeger et al. 2000; Van Den Beukel et 
al. 1997; van den Beukel et al. 1998; Wagner et al. 2003; Zaidi et al. 2000). 
 
1.2 Pharmacokinetics 
 
There are a number of pharmacokinetic studies of parathion and its toxic metabolite, paraoxon, 
conducted both in non-mammalian and mammalian species such as mice, rat, pig and dog via many 
routes of exposure including intravenous, oral and dermal exposure (Braeckman et al. 1983; Brimer et 
al. 1994; Chang et al. 1997; Chang et al. 1994a; Chang and Riviere 1991, 1993; Chang et al. 1994b; 
Denga et al. 1995; Eigenberg et al. 1983; Hurh et al. 2000a; Hurh et al. 2000b, c; Lessire et al. 1996; 
Oneto et al. 1995; Pena-Egido et al. 1988a; Pena-Egido et al. 1988b). 
 
Parathion at the dose of 3 mg/kg was intravenously administered to a rat. From the pharmacokinetic 
analysis, the terminal half-life and clearance of parathion were 3.4 hr and 93 ml/min/kg respectively 
(Eigenberg et al. 1983). Similar results were obtained from another study in rats, where the terminal 
half-life, AUC and clearance of parathion were 321 min., 52.5 μg-min/mL and 57.1 ml/min/kg 
respectively (Hurh et al. 2000a; Hurh et al. 2000b, c). In these studies, paraoxon levels were lower than 
their detection limits. 
 
Parathion pharmacokinetics in dogs were somewhat different from that in rats. After 30 mg intravenous 
dosing, plasma clearance and terminal half-life were 21 ml/min and 8.5-11.2 hr respectively. The plasma 
clearance in dogs appeared to be less than one-third of the plasma clearance for the rats. 
 
1.2.1 Absorption 
 
In a pharmacokinetic study in dogs (Braeckman et al. 1983), parathion was administered at 5 mg/kg 
intravenously and 10 mg/kg orally to determine its absolute bioavialability (F). The fraction absorbed 
was high (57-98%). However, the bioavailability of parathion appeared to have a comparatively large 
variation because of its first pass metabolism and intersubject variation in parathion hepatic extraction 
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ratio (range = 63-97%) (Braeckman et al. 1983).  Oral absorption of parathion was also studied in rats 
(Beubler et al. 1985). 
 
Numerous dermal exposure studies have been performed (Antunes-Madeira and Madeira 1984; Bucks et 
al. 1990; Campbell et al. 2000; Carver and Riviere 1989; Carver et al. 1989; Fisher et al. 1985; Gyrd-
Hansen et al. 1993; Hawkins and Reifenrath 1986; Knaak et al. 1984; Murphy 1980; Qiao et al. 1996; 
Qiao et al. 1994; Reifenrath et al. 1984; Reifenrath et al. 1991; Riley and Kemppainen 1985; Shah and 
Guthrie 1983; Skinner and Kilgore 1982; Wester et al. 2000; Williams et al. 1990; Williams et al. 
1996).  After dermal application of 50 mg/kg parathion was performed along the midline of the entire 
back of pigs, the dermal bioavailability (F) was 0.0993. Tissue distribution of parathion in back skin, 
back fat, liver, kidney, muscle, adipose tissue was also determined. It appeared that 25.0-60.8% of the 
administered dose remained at the application site (Brimer et al. 1994). 
 
1.2.2 Distribution 
 
Protein binding in dog serum and in human serum were 99% and 98% respectively (Braeckman et al. 
1983).  Tissue distributions were also reported in some species (Brimer et al. 1994). 
 
1.2.3 Metabolism  
 
Parathion is metabolized into paraoxon and 4-nitrophenol by desulfuration and dearylation (Fig. 1), 
respectively. 4-Nitrophenol formation is considered as the inactivation pathway, whereas paraoxon 
formation is considered as an activation pathway (Benke GM 1975; Bulusu and Chakravarty 1986, 
1988; Butler and Murray 1993, 1997; Chambers and Forsyth 1989; Chambers et al. 1994; Chaturvedi et 
al. 1991; Contreras et al. 1999; Halpert et al. 1980; Halpert and Neal 1981a, b; Hou et al. 1996; 
Kulkarni and Hodgson 1982; Kuo and Perera 2000; Lapadula et al. 1984; Levi and Hodgson 1985; 
Martinez-Zedillo et al. 1979; Monnet-Tschudi et al. 2000; Morgan et al. 1994; Murray and Butler 1994, 
1995; Mutch et al. 1999; Mutch et al. 2003; Nadin and Murray 1999; Pond et al. 1995; Pond et al. 1998; 
Purshottam and Srivastava 1987; Ramos and Sultatos 1998; Rowland et al. 1991; Soranno and Sultatos 
1992; Sultatos 1986; Sultatos et al. 1984; Sultatos and Gagliardi 1990; Sultatos and Minor 1986; 
Sultatos et al. 1985; Sultatos and Murphy 1983; Tang and Chambers 1999; Vargas Loza et al. 1997; 
Venera et al. 1978; Vitarius et al. 1995; Wallace and Dargan 1987; Watson et al. 1994; Zhang and 
Sultatos 1991; Zhu and Liu 1994). The primary metabolizing organ is the liver by the enzyme 
cytochrome P450 3A4. 
  
In mouse liver microsomes, the apparent Km’s for the formation of paraoxon and p-nitrophenol were 
29.6 and 26.5 μM respectively, and the apparent Vmaxs were 5.8 and 6.7 nmols/100 mg liver/min 
respectively (Sultatos 1986; Sultatos et al. 1984; Sultatos and Gagliardi 1990; Sultatos and Minor 1986; 
Sultatos et al. 1985; Sultatos and Murphy 1983). 
 
In rat liver microsomes, the kinetic curve for desulfuration of parathion is baphasic with apparent Km’s 
of 0.23 and 71.3 μM and Vmaxs of 3.62 and 4.56 nM/min/mg protein. For the dearylation reaction, 
parathion has an apparent Km and Vmax of 56 μM and 1.49 nM/min/mg protein, respectively (Ma and 
Chambers 1994, 1995). 
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Figure 1. Metabolic pathway of parathion (adapted from Benke 1975). 

 
 
In a human microsomal study, parathion demonstrated biphasic behaviors in both individual microsomal 
and pooled samples.  Its apparent Km1 and Km2 in individual microsomes were 0.30 and 165.5 μM and 
Vmax1 and Vmax2 were 290 and 821 pmol oxon/mg protein/min respectively. In pooled liver 
microsomes, parathion’s apparent Km1 and Km2 were 9.0 and 69.6 μM and Vmax1 and Vmax2 were 
106.6 and 2,478 pmol oxon/mg protein/min, respectively (Buratti et al. 2003; Ma and Chambers 1994, 
1995). Another study in human liver microsomes indicated that CYP3A4 is the major enzyme 
responsible for catalyzing parathion oxidation to paraoxon (Butler and Murray 1993, 1997). 
 
In addition to the liver, the brain is also capable of metabolizing parathion in various regions such as 
cortex, olfactory bulb/hypothalamus, striatum, cerebellum, midbrain, medulla and pons, and 
hippocampus. However, the total activity appears to be highest in the cortex (Soranno and Sultatos 
1992). 
 
1.2.4 Pharmacokinetic studies in special population 
 
There have been a number of pharmacokinetic studies in specific populations (Benjaminov et al. 1992; 
Jaramillo and Reyes 1990). Neilsen et al. conducted a pharmacokinetic study in neonatal and young 
pigs. Intravenous parathion (0.5 mg/kg) was administered to newborn, 1 week and 8 weeks old piglets. 
The total body clearance was 7, 35 and 121 ml/min/kg, respectively. Tissue distribution in all groups 
was also presented. Interestingly, the newborn piglets seemed to retain parathion in significant amounts 
in many organs such as the liver, lung, brain, heart and muscle indicating that reduced total body 
clearance in the newborn markedly influenced tissue distribution (Nielsen et al. 1991). 
 
Pregnancy also affects parathion disposition and its toxicity. Concentrations of parathion were 
significantly higher in blood and brain of pregnant mice at most times after administration (5 mg of 
parathion/kg) of parathion when compared to non-pregnant mice (Weitman et al. 1983, 1986a, b). 
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1.3 Pharmacokinetic interaction between parathion and other compounds 
 
Due to its metabolic pathway via CYP450, there are many possibilities that parathion pharmacokinetics 
may be affected by certain compounds particularly drugs, CYP450 inducers, inhibitors, other 
environmental pollutants and foods (Agyeman and Sultatos 1998; Carr et al. 2002; Chakravarty and 
Sreedhar 1982; Costa and Murphy 1984; Delaunois et al. 1999; Gelal et al. 2001; Graziano et al. 1985; 
Guilhermino et al. 1998a, b; Hurh et al. 2000a; Hurh et al. 2000b, c; Joshi and Thornburg 1986; Karanth 
et al. 2001; Miranda et al. 1998; Mourelle et al. 1986; Murphy 1980; O'Shaughnessy and Sultatos 1995; 
Purshottam and Kaveeshwar 1982; Purshottam and Srivastava 1984; Ramos and Sultatos 1998; 
Sawahata and Neal 1982; Siller et al. 1997; Wester et al. 2000). 
 
Cimetidine, a non-specific inhibitor of CYP450, was capable of antagonizing methyl parathion toxicity 
but failed to decrease parathion-induced toxicity in mice and rats (Weitman et al. 1983). Rats pretreated 
with dexamethasone, a specific inducer of CYP3A23, showed faster clearance of parathion than control 
rats (Hurh et al. 2000a). 
 
1.4 PBPK modeling of parathion and Monte Carlo simulation 
 
A PBPK model of parathion was developed by Gearhart et al. In brief, the model describes the 
metabolism of parathion to paraoxon by the liver, the inhibition of acetylcholinesterase, 
butyrylcholinesterase, and carboxylesterase by paraoxon in the brain, liver, kidneys, rapidly perfused 
tissues and the arterial and venous blood (Gearhart 1994). Physiologic parameters are available in the 
literature. (Jepson et al. 1994; Kousba and Sultatos 2002). Due to the existence of paraoxonase 
polymorphisms (Costa et al. 2003; Diepgen and Geldmacher-von Mallinckrodt 1986; Eaton 2000; 
Furlong et al. 2000; Haber et al. 2002; Laplaud et al. 1998; Lee et al. 2003; Shih et al. 1998), a 
subsequent study was conducted by using this existing PBPK model with Monte Carlo simulation to 
elaborate the effect of polymorphic paraoxonase (PON1) on its toxicity (Gentry et al. 2002). 
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Methyl Parathion 
 
2.0 Introduction 
 
Methyl parathion (O,O-dimethyl O-4-nitrophenylphosphorothioate) is a highly toxic organophosphorus 
insecticide approved for specific agricultural crops. Its use is restricted by appropriately trained certified 
pesticide applicators (Garcia et al. 2003). However, it has been used illegally indoors in certain areas of 
the Southern and Midwestern parts of the United States due to its effectiveness and low cost (ATSDR 
2001; Rubin et al. 2002), leading to an increased health risk in non-workers, children and pregnant 
women.    
 
2.1 Toxic effects 
 
Neurotoxicity is the major toxic effect of methyl parathion (MP) or its metabolite, methyl paraoxon, in 
various species caused by inhibition of acetylcholinesterase (AChE) enzymes, resulting in acetylcholine 
accumulation at postsynaptic receptors and overstimulation of cholinergic systems (Chambers and Carr 
1993; Gupta et al. 2000; Hahn et al. 1991; Ma et al. 2003).   The median lethal dose (LD50) of MP in 
mice applied orally and dermally was 14.5 and 1200 mg/kg body weight, respectively, while the dermal 
median effective dose (ED50) that caused 50% reduction in AChE was 550 mg/kg at 24 hours after 
dosing (Haley et al. 1975; Skinner and Kilgore 1982).  The developing animals are more sensitive to 
acute toxicity of MP than adults, indicating the age-related differences in sensitivity to MP exposure 
(Liu et al. 1999; Pope and Chakraborti 1992; Pope et al. 1991). 
 
In humans, manifestations of exposure to MP such as shortness of breath, nose bleeding, vomiting, 
diarrhea, abdominal cramps, headache, eye pain, blurred vision, sweating, confusion, muscle 
contraction, contact burns and erythema multiforme eruption (following dermal exposure) were 
reported. The severe neurotoxic effects include loss of coordination, slurred speech, fatigue and death 
caused by respiratory or cardiac arrest (Azaroff and Neas 1999; Fisher 1986; Karki et al. 2001; Rehner 
et al. 2000). Cranial nerve palsies and intermediate syndromes have also been reported in certain 
patients (Karki et al. 2001; Narendra et al. 1989).   
 
Other effects reported include genotoxic and mutagenic effects (Bartoli et al. 1991; Breau et al. 1985; 
Chen et al. 1981; de Cassia Stocco et al. 1982; Degraeve and Moutschen 1984; Dolara et al. 1993; 
Griffin and Hill 1978; Grover and Malhi 1985; Lodovici et al. 1994; Lodovici et al. 1997; Mathew et al. 
1990; Mathew et al. 1992; Nehez et al. 1994; Rashid and Mumma 1984; Rupa et al. 1990; Rupa et al. 
1991; Singh et al. 1984; Tripathy et al. 1987; Undeger et al. 2000; Velazquez et al. 1990; 
Vijayaraghavan and Nagarajan 1994; Wiaderkiewicz et al. 1986), effects on calmodulin (Pala et al. 
1991), effects on liver and muscle enzymes (Della Morte et al. 1994; Gupta et al. 1994; Jabbar et al. 
1990), hematoxicity (Parent-Massin and Thouvenot 1993), immunotoxic effects (Crittenden et al. 1998; 
Institoris et al. 1995; Institoris et al. 1992; Lee et al. 1979; Sunil Kumar et al. 1993; Undeger et al. 
2000), hormonal effects (Asmathbanu and Kaliwal 1997; Fatranska et al. 1978; Lukaszewicz-Hussain et 
al. 1985; Sortur and Kaliwal 1999), reproductive and developmental effects (Basha and Nayeemunnisa 
1993; Desi et al. 1998; Dhondup and Kaliwal 1997; Garcia et al. 2003; Gupta et al. 1985; Gupta et al. 
1984; Kumar and Desiraju 1992; Mahaboob Basha et al. 2001; Mahaboob Basha and Nayeemunnisa 
1993; Nagymajtenyi et al. 1995; Nayeemunnisa and Begum 1992; Sortur and Kaliwal 1999), 
embryotoxicity (Tanimura et al. 1967; Uzokwu 1974), cardiac toxicity (Howard and Pope 2002), and 
behavioral effects (George et al. 1992; Liu et al. 1994; Schulz et al. 1990; Zhu et al. 2001). 
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2.2 Pharmacokinetics   
 
2.2.1 Absorption   
 
Because of its lipid solubility, MP can be absorbed through skin; therefore, the most likely route of 
human exposure is dermal, particularly from agricultural field reentry (Abu-Qare et al. 2000).  Oral 
exposure can also occur via contaminated food or water consumption and suicidal attempt (Garcia et al. 
2003) while exposure to MP via inhalation during spraying is questionable (Kummer and van Sittert 
1986). 
 
Oral absorption   
 
MP is well and rapidly absorbed through the gastrointestinal tract following oral gavage in mice 
(Hollingworth 1967), rats (Garcia-Repetto et al. 1997; Kramer and Ho 2002; Kramer et al. 2002; 
Miyamoto 1963), guinea pigs (Miyamoto 1963), dogs (Braeckman et al. 1983),  and humans (Morgan et 
al. 1977). However, the oral bioavailability is very low (5-20%), which can be explained by a significant 
hepatic first-pass effect.  The oral absorption rate constant after 1.5-2.5 mg/kg administration of MP in 
rats was 1.2 h-1 (Kramer and Ho 2002; Kramer et al. 2002).    
 
Dermal absorption   
 
An in vitro model using human skin in a static diffusion cell system demonstrated that 5.2% of the 
applied dose of MP from a commercial formulation was present after 24 h (Sartorelli et al. 1997).  In 
adult female rats and pregnant rats, 20-50% of administered dose was absorbed following a single 
dermal dose of 10-50 mg/kg MP with the absorption rate constant of 0.41 h-1 (Abu-Qare et al. 2000; 
Kramer and Ho 2002; Kramer et al. 2002). 
 
2.2.2 Distribution 
 
Following oral and dermal administration, MP is extensively bound to plasma protein and rapidly 
distributed to tissues including placenta and fetus. Then it is slowly redistributed to the central 
compartment (Abu-Qare et al. 2000; Garcia-Repetto et al. 1997).  The highest level of MP is found in 
adipose tissue.   Distribution coefficients of adipose tissue, liver and brain in rats and mice have been 
published (Garcia-Repetto et al. 1995; Sultatos et al. 1990). The terminal half-life varies from 7.2 h to 
15 days, depending on species and gender (Abu-Qare et al. 2000; Braeckman et al. 1980; Garcia-
Repetto et al. 1997; Kramer and Ho 2002; Kramer et al. 2002).  The volume of distribution is relatively 
high (9.6 l/kg in dogs and 10.1 l/kg in female rats) (Braeckman et al. 1980; Kramer and Ho 2002). 
 
2.2.3 Metabolism 
 
MP is metabolized by hepatic and extrahepatic phase I and phase II enzymes (Figure 2.1) (Abu-Qare et 
al. 2000; Garcia et al. 2003).  Phase I metabolism include dearylation of MP, leading to the formation of 
p-nitrophenol and dimethyl thiophosphoric acid, which promotes detoxification. On the other hand, 
desulfuration by cytochrome P450 can activate MP to methyl paraoxon, the neurotoxic metabolite 
(Yamamoto et al. 1983; Zhang and Sultatos 1991).   This oxidation process is the major metabolic 
pathway of MP in the liver (Anderson et al. 1992; Sultatos 1987).  Methyl paraoxon is also formed in 
the brain. CYP2B has been demonstrated to be responsible for MP activation in rat brain extracts 
(Albores et al. 2001).  The activities of dearylation and desulfuration of MP were reduced when a low 
dose of MP was given repeatedly in rats (Yamamoto et al. 1982). 
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Figure 2.1. Metabolic pathways of MP (Benke and Murphy 1975; Garcia et al. 2003). 
 
Methyl paraoxon is then hydrolyzed by liver and plasma paraoxonase to form p-nitrophenol and 
dimethyl phosphoric acid (Garcia et al. 2003).  The correlation between LD50 of MP in rats of several 
ages and reaction rates of metabolism of methyl paraoxon, both hydrolysis and GSH-dependent 
pathways, was reported, indicating that these pathways contributed to age-related differences in MP 
toxicity (Benke and Murphy 1975).  p-Nitrophenol further undergoes glucuronidation and sulfuric 
conjugation.   
 
MP is also conjugated by glutathione S-aryl transferase to form p-nitrophenyl mercapturic acid (Di Ilio 
et al. 1995; Huang and Sultatos 1993; Sultatos and Woods 1988) and by glutathione S-alkyl transferase 
to yield S-methyl glutathione (Radulovic et al. 1987; Radulovic et al. 1986).   Furthermore, a study has 
reported another non mixed-function oxidative pathway of MP in brain tissue subfractions that 
transformed MP to its isomer (de Lima et al. 1996).   
  
2.2.4 Excretion 
 
MP is rapidly eliminated after oral and dermal administration. Renal excretion is the major route of MP 
elimination.  In rats, 75-90% of administered dose was recovered in urine and less than 10% was found 
in feces (Abu-Qare et al. 2000; Abu-Qare and Abou-Donia 2000; Hollingworth 1967; Miyamoto 1963).   
In humans, the urinary metabolites of MP are p-nitrophenol, dimethylphosphate, and unidentified 
metabolites (Morgan et al. 1977).   Therefore, p-nitrophenol has been used as a biomarker of MP 
exposure in humans (Barr et al. 2002; Chang et al. 1997; Esteban et al. 1996; Hryhorczuk et al. 2002; 
Rubin et al. 2002). 
 
2.3 Interactions 
 
MP has been reported to produce behavioral alterations when given in combination with endosulfan 
(Castillo et al. 2002) or toxaphene (Crowder et al. 1980) and more likely to induce intermediate 
syndrome when combined with parathion (De Bleecker et al. 1992).  Conversely, the inhibition of 
cholinesterase enzyme activity was significantly lowered when MP was administered with either 
chlorpyrifos or diazinon, which could be due to competition for cytochrome P-450 enzymes, resulting in 
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inhibition of oxon formation (Abu-Qare et al. 2001; Abu-Qare and Abou-Donia 2001).  Moreover, 
cimetidine, chlordecone, mirex and linuron, gentamicin and rifamycin, polychlorinated biphenyls 
(PCBs), and permethrin have also been demonstrated to change the toxicity of MP (Carr et al. 2002; 
Joshi and Thornburg 1986; Ortiz et al. 1995; Tvede et al. 1989; Youssef et al. 1987). No interactions 
with acetaminophen and hexachlorocyclohexane (HCH) have been reported (Costa and Murphy 1984; 
Dikshith et al. 1991). 
 
 
2.4 PBPK models 
 
One- to three-compartment classical models has been used to fit the blood concentration data following 
intravenous, oral, and dermal administration (Abu-Qare et al. 2000; Braeckman et al. 1983; Braeckman 
et al. 1980; Kramer and Ho 2002; Kramer et al. 2002).  No PBPK models for MP have been published. 
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Chlorpyrifos 

 
3.0 Introduction 
 
Chlorpyrifos (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothiolate) is an OP pesticide with 
restricted uses in the U.S.  It is produced in the U.S. and marketed under various trade names, including 
Dursban®, Lorsban®, and other names (ATSDR 1997).   Chlorpyrifos (CP) has been used against pests 
in turfgrass, commercial agriculture, and in residential settings, although indoor uses have been 
restricted.  CP has been found in drinking water supplies, although often at low levels (ATSDR 1997). 
 
3.1 Toxic Effects 
 
Numerous systemic effects of CP have been reported, but the critical effect for risk assessment is 
inhibition of acetylcholinesterase by CP or CP-oxon (ATSDR 1997).  This can result in headache, 
diaphoresis, nausea, vomiting, diarrhea, epigastric cramping, bradycardia, blurred vision, miosis, 
bronchoconstriction and excess mucous secretions, pulmonary edema, dyspnea, muscle fasciculations, 
salivation, lacrimation, urination, tremors, anxiety, drowsiness, confusion, ataxia, abnormal gait, 
hypotension, and memory impairment (Ballantyne and Marrs 1992). 
 
Neurodevelopmental effects have also been described (Auman et al. 2000; Campbell et al. 1997; Carr et 
al. 2001; Chakraborti et al. 1993; Chanda and Pope 1996; Crumpton et al. 2000; Dam et al. 1999; Dam 
et al. 1998, 2000, 2003; Das and Barone 1999; Garcia et al. 2002; Garcia et al. 2003; Gore 2001, 2002; 
Howard and Pope 2002; Jett et al. 2001; Lassiter et al. 1998; Levin et al. 2002; Levin et al. 2001; 
Olivier et al. 2001; Qiao et al. 2002; Qiao et al. 2001; Qiao et al. 2003; Raines et al. 2001; Richardson 
and Chambers 2003; Roy et al. 1998; Sachana et al. 2001; Slotkin et al. 2001; Slotkin et al. 2002; Song 
et al. 1998; Tang et al. 1999; Whitney et al. 1995; Won et al. 2001).  Some of these studies suggested 
that developmental neurotoxicity occurred at lower exposure levels than did acetylcholinesterase 
inhibition in adult animals, and developmental neurotoxicity may be worthy of consideration in future 
risk assessments (Abdel-Rahman et al. 2002). 
 
3.2 Pharmacokinetics 
 
3.2.1 Absorption 
 
CP is well absorbed through the gut after oral exposure to CP in drinking water or food.  In humans or 
rodents, 70-90% of the oral dose was absorbed (Ahdaya et al. 1981; Bakke et al. 1976; Nolan et al. 
1984; Smith et al. 1967).  Only 3% of the dermal dose was absorbed; (Nolan et al. 1984) however, this 
is dependant on the vehicle.  When acetone was used as vehicle in another study, 46-99% of the dose 
was absorbed (Shah et al. 1987).  Absorption rates through the gut (Cook and Shenoy 2003) and skin 
(Griffin et al. 2000; Sartorelli et al. 1998) have been quantified. 
 
3.2.2 Distribution 
 
CP rapidly distributes to tissues after absorption (Shah et al. 1987; Shah et al. 1981; Smith et al. 1967).   
 
3.2.3 Metabolism 
 

                                     C-25



USEPA Contract No. 3C-R102-NTEX                             Principal Investigator/Program Director (Last, first, middle): Yang, Raymond S. H.  

CP is primarily metabolized in the liver due to the high concentration of cytochrome (CYP) P450s in 
that organ (Ma and Chambers 1994; Sultatos and Murphy 1983b).  CP is rapidly bioactivated to CP-
oxon by multiple isoforms of CYP P450.  Both CP and CP-oxon are hydrolyzed by acetylcholinesterase 
to 3,5,6-trichloro-2-pyridinol (TCP), diethyl thiophosphate, and diethyl phosphate (Bakke et al. 1976; 
Nolan et al. 1984; Smith et al. 1967; Sultatos et al. 1985; Sultatos and Murphy 1983a, b).  The principal 
metabolic pathways are shown in Figure 3.1 below. 
 

Figure 3.1 
Principal Metabolic Pathways for Chlorpyrifos 
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For risk assessment or PBPK model development, studies of metabolism are often used, but further 
incorporation of pharmacodynamic responses such as acetylcholinesterase inhibition would improve the 
risk assessment or PBPK model development.  Therefore, either type of study is included in this review.  
Several human pharmacokinetic (PK) or biomonitoring studies have been conducted (Cocker et al. 
2002; Drevenkar et al. 1993; Fenske et al. 2002; Sams and Mason 1999).  
 
A number of animal studies have been conducted addressing PKs, binding, cholinestase inhibition, or 
other endpoints with CP (Abdel-Rahman et al. 2002; Atterberry et al. 1997; Bushnell et al. 1994; 
Bushnell et al. 1993; Carr and Chambers 1996; Carr et al. 2002; Carr et al. 1995; Chanda et al. 1997; 
Chiappa et al. 1995; Cowan et al. 2001; Hunter et al. 1999; Karanth and Pope 2000; Lassiter et al. 1999; 
Li et al. 2000; Li et al. 1995; Liu et al. 1999; Mattsson et al. 2000; Mortensen et al. 1996; Mortensen et 
al. 1998; Moser et al. 1998; Moser and Padilla 1998; Padilla et al. 2000; Padilla et al. 1994; Pond et al. 
1995; Pond et al. 1998; Stanton et al. 1994). 
 
Fetal transfer of CP or metabolites was assessed in several studies, including two recent ones (Abdel-
Rahman et al. 2002; Ashry et al. 2002). 
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In vitro PK studies with CP have been conducted.  These include studies using cell lines (Barber and 
Ehrich 2001; Ehrich et al. 1997; Monnet-Tschudi et al. 2000), microsomes (Buratti et al. 2003; Katz et 
al. 1997; Ma and Chambers 1994; Poet et al. 2003; Sams et al. 2000; Tang et al. 2001; Usmani et al. 
2003), antibodies (Buratti et al. 2003), tissue slices (Liu et al. 2002), or other systems (Amitai et al. 
1998). 
 
Genetic polymorphisms relevant to CP metabolism have been described (Brophy et al. 2000; Costa et al. 
1999; Costa et al. 2003; Dai et al. 2001; Furlong et al. 2000a; Furlong et al. 1998; Furlong et al. 2000b). 
 
3.2.4 Excretion 
 
Most metabolites are found as conjugated metabolites of TCP in the urine.  The half-life of elimination 
in rats was 10-16 hours in most tissues and 62 hours for fat (Smith et al. 1967).  The half life for 
elimination in humans was estimated at 27 hours (Nolan et al. 1984). 
 
3.3 Interactions with other OP pesticides 
 
Interactions of CP with other OP pesticides have been studied (Axelrad et al. 2002; Karanth et al. 2001; 
Richardson et al. 2001; Tang et al. 2002; Usmani et al. 2002). 
 
3.4 PBPK models for chlorpyrifos 
 
One group has developed PBPK models for CP (Timchalk et al. 2002a; Timchalk et al. 2002b).  These 
models were based on adult rat and human exposures in gavage, dietary, or dermal studies in a seven-
compartment model structure.  They included saturable metabolism of CP by CYP and “a-esterases,” 
and binding of CP-oxon to “b-esterases” as a second order process.  Regeneration of b-esterases was 
also included. 
 
A classical PK model for CP was also described (Rigas et al. 2001). 
 
The Timchalk et al. CP PBPK model could be adapted for use in a PBPK-model based risk assessment.  
Adaptation should include alteration for drinking water scenarios.  Also, during the process of 
determining the common mechanism of toxicity for a mixture of OP pesticides, if developmental 
neurotoxicity is an important part of the risk assessment, PBPK models for relevant endpoints in the 
fetus or neonates should be considered. 
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Diazinon 

 
 

4.0 Introduction 
 
Diazinon (O,O-diethyl O-2 isopropyl-6-methylpyrimidinyl phosphothiolate) is an organophosphate 
insecticide that is used in agriculture and as a topically applied pesticide in animal use (ATSDR 1996; 
Garfitt et al. 2002; USEPA 2003).  It is a colorless liquid and was available as granules, emulsifiable 
concentrate, dust, and wettable powder.  It is soluble in most organic solvents and is stable in neutral 
media but is slowly hydrolyzed in alkaline media and more rapidly in acidic media (HSDB 2003).   
 
4.1 Toxic effects 
 
Many effects have been determined to occur in chronic bioassays in laboratory animals.  Some of the 
target organs affected include the respiratory, kidney, cardiovascular, gastrointestinal, hematological, 
hepatic, endocrine, lymphatic, reproductive (ATSDR 1996), immune (Galloway and Handy 2003), and 
nervous systems (Gordon and Mack 2003). 
 
Acute oral LD50s in rats between 76 and 408 mg/kg have been reported (ATSDR 1996).  Dermal 
LD50’s in rats ranged between 455 and 1100 mg/kg (ATSDR 1996). 
 
Diazinon has been reported to cause genotoxicity in a number of assays, including in the S. 
typhimurium, mouse lymphoma cell forward mutation assay, and Chinese hamster cell chromosomal 
aberration assay, but was negative in several other assays (ATSDR 1996; Hatjian et al. 2000).   
 
Risk assessment for exposure to diazinon, however, has generally been based on inhibition of brain 
acetylcholinesterase (AChE) as the critical endpoint of toxicity (ATSDR 1996).  As with other OP 
pesticides, the mode of action of diazinon is inhibition of AChE in the central and peripheral nervous 
system.  Diazinon is a weak inhibitor of AChE while the oxon analog is much more potent.  Therefore, 
activation by mixed function oxygenases, primarily in the liver, is an important bioactivating step.  
Other metabolic pathways (see Figure 4.1 below) are generally detoxifying.  Symptoms of acute toxic 
exposure include vomiting, unconsciousness, giddiness, sweating, diarrhea, tachycardia, muscle 
fasciculations, abdominal pain, and bronchospasm (ATSDR 1996). 
 
ATSDR has published an oral Minimal Risk Level for intermediate term exposure to diazinon of 0.0002 
mg/kg/day (ATSDR 1996).  USEPA established a chronic reference dose (RfD) of 0.0002 mg/kg/day in 
the diet (USEPA 2000). 
 
 
4.2 Pharmacokinetics 
 
Diazinon pharmacokinetics are qualitatively similar to other organophosphate pesticides described in 
this report.   
 
4.2.1 Absorption 
 
Several oral absorption studies have been performed.  85% of the single oral dose of 4.0 mg/kg diazinon 
was absorbed by Beagle dogs in one study (Iverson et al. 1975).  Other oral absorption studies were 
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conducted in rats, goats, sheep and cows (Abdelsalam and Ford 1986; Janes et al. 1973; Machin et al. 
1974; Machin et al. 1971; Mount 1984; Wu et al. 1996a).  In a dermal study, human volunteers absorbed 
34% of the dose applied to the abdomen or forearm for 24 hours (Wester et al. 1993). 
 
4.2.2 Distribution 
 
Diazinon is found widely distributed in all tissues examined after oral absorption (Abdelsalam and Ford 
1986; de Blaquiere et al. 2000; Janes et al. 1973; Machin et al. 1974; Machin et al. 1971; Mucke et al. 
1970; Tomokuni and Hasegawa 1985; Tomokuni et al. 1985).  No studies of distribution after inhalation 
or dermal exposures are available.  After an i.v. dose of 0.2 mg/kg in ethanol, the terminal halflife was 
1.5 hours (Iverson et al. 1975).  Distribution coefficients for diazinon were reported (Garcia-Repetto et 
al. 1995). 
 
4.2.3 Metabolism 
 
The principal metabolic pathways of diazinon are shown in Figure 4.1.   
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Figure 4.1  Principal metabolic pathways for diazinon.  Adapted from Poet, 2003. 

P450 

 
Diazinon is subject to oxidative desulfurization and hydrolysis of the ester.  Hydrolysis of the ester can 
occur before or after desulfurization, i.e., either diazinon or diazoxon can be hydrolyzed to yield 2-
isopropyl-4-methyl-6-hydroxypyrimidine (IMHP) and either diethylphosphate or diethylthiophosphate 
(Iverson et al. 1975; Machin et al. 1975; Mucke et al. 1970); however, the P450 catalyzed oxidative 
cleavage of phosphorothioate (i.e., diazinon) triester bond is much more efficient (Yang et al. 1971).  
Desulfurization is mediated by cytochrome P450 isoenzymes while oxidative cleavage or hydrolysis is 
mediated by cytochrome P450 or various esterases, respectively (Poet et al. 2003b; Walker and 
Mackness 1987).  Diazinon and its metabolites may also be oxidized at alkyl carbons (Aizawa 1989; 
Yang et al. 1971). 
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In a human self-poisoning case, diazinon was found in serum and monoethyl phosphate, diethyl 
phosphate, and diethyl phosphorothioate were detected in the urine (Klemmer et al. 1978).  In rat liver 
microsomes, diazoxon hydrolysis occurred without NADPH (Yang et al. 1971).   
 
Rates of metabolism in rat liver and intestinal microsomes of diazinon and diazoxon were recently 
reported by Poet and coworkers.  The authors measured CYP450 mediated oxidative desulfurization (to 
form diazoxon) or hydrolysis (to form IMHP and diethylthiophosphate) as well as hydrolysis by esterase 
(PON1) in microsomes from both tissues.  Based on the measured rates, the authors conclude that 
intestinal metabolism may be important, especially for low level oral doses (Poet et al. 2003b).  Also in 
microsomes, Vittozzi et al. measured the activity of expressed cytochrome P450s for desulfurization and 
hydrolysis (Vittozzi et al. 2001).  Significant activity was obtained for all nine cytochrome P450s tested 
that varied over about one order of magnitude (CYP2C19, 3A4, 2B6, 1A2, 1A1, 2C8, 2C9, 2D6, and 
2A6).   A separate study by the same group indicated that CYP2C11, 3A2, and 2B1/2 were involved but 
that 2E1 and 1A1 were not (Fabrizi et al. 1999).  Kappers et al. indicated that CYP2C19 was the major 
isoform involved in diazinon metabolism, but that others such as CYP1A2 and CYP3A4 may also be 
showing some activity (Kappers et al. 2001).  However, using immunoinhibition and other techniques, 
Buratti and coworkers found that the principal isoforms involved in diazinon metabolism were CYP3A4, 
1A2, and 2B6 (Buratti et al. 2003), while Sams et al. felt that CYP 2D6 and 3A4 were the most 
important isozymes (Sams et al. 2000). 
 
Toxicity and acetylcholinesterase inhibition was studied in PON1 knockout mice (Li et al. 2000). 
 
Rates of inhibition of acetylcholinesterase were measured in some studies (Kamal and Al-Jafari 2000). 
 
4.2.4 Excretion 
 
Most diazinon is excreted as metabolites in urine, while smaller amounts are excreted in feces or, after 
extensive metabolism, as CO2 in expired air.  Approximately 75% of a 4.0 mg/kg oral dose to rats was 
excreted as urinary metabolites, 20% in the feces, and about 6% as CO2 (Mucke et al. 1970).  
Approximately 85% of total label was recovered in a 24 hour urine sample from dogs receiving a single 
oral dose of diazinon. After an i.v. dose, the dogs excreted approximately 58% of the label in urine 
(Iverson et al. 1975).  In human volunteers, urinary excretion of diethyl phosphate and diethyl 
thiophosphate was reported after oral and dermal dosing (Cocker et al. 2002; Garfitt et al. 2002).  
Diazinon has been found in hair (of rabbits) as a potential biomarker of exposure (Tutudaki et al. 2003).  
Blood cholinesterase inhibition has also been used as a biomarker for diazinon exposure (Nigg and 
Knaak 2000). 
 
4.2.5 Special populations and variability 
 
Several studies have suggested high variability in human metabolism of diazinon (Buratti et al. 2003; 
Kappers et al. 2001).  Polymorphisms in PON1 have been described (Brophy et al. 2000; Cherry et al. 
2002; Costa et al. 2003; Davies et al. 1996; Mackness et al. 2003). 
 
4.3 Interactions with other chemicals 
 
The toxicity was increased and pharmacokinetics of diazinon were affected by cimetidine (Wu et al. 
1996b).  Interactions between diazinon and methyl parathion were reported in the blood and brain of 
pregnant rats and the fetus after a single dermal dose (Abu-Qare and Abou-Donia 2001).  Neurite 
outgrowth was assessed for mixtures of diazinon and chlorpyrifos (Axelrad et al. 2002). 

                                     C-36



USEPA Contract No. 3C-R102-NTEX                             Principal Investigator/Program Director (Last, first, middle): Yang, Raymond S. H.  

 
4.4 Diazinon PBPK models 
 
One PBPK model for diazinon has been published in abstract form (Poet et al. 2003a).  The model 
incorporated an oral exposure route, desulfurization and “hydrolysis” (an oxidation reaction actually) by 
a CYP450 enzyme, hydrolysis of the oxon by PON1 in liver and blood, and second order binding and 
inhibition and regeneration of B-esterases in the liver, blood, diaphragm, and brain.   
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Fenthion 

 
5.0 Introduction 
 
Fenthion [O,O-dimethyl O-(4-(methylthio)-m-tolyl) phosphorothioate, (DMTP), Figure 1] is an 
organophosphorus insecticide used against mosquitoes, pests and bugs (EXTOXNET 1996).  It is 
available in dust, emulsifiable or liquid concentrate, and granular and wettable powder formulations.  
Fenthion is soluble in organic solvents such as DMSO, acetone, methanol and ether, but not in water 
(NTP 2003). 
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Figure 5.1: Chemical structure of fenthion 
 

 
5.1 Toxic effects 
 
Fenthion is moderately toxic to laboratory animals (mice, rats, guinea pigs and rabbits). The acute oral 
and intraperitoneal LD50’s varied from approximately 125 to >1000 mg/kg body weight (DuBois and 
Kinoshita 1964; IPCS 1971; Ma 1995).  Mortality of rats orally treated with fenthion in subchronic 
studies (30 mg/kg for 13 weeks, or 5.0 mg/kg for 3 months) was reported (NIH 1979). 
 
Fenthion predominately causes cholinergic toxicity in animals and humans.  Its oxon inhibits plasma, 
erythrocyte and brain cholinesterase activity (Bai et al. 1990; De Bleecker et al. 1994; Dellinger and 
Mostrom 1988; Ma 1995; Misra et al. 1985; Misra et al. 1994; Tsatsakis et al. 2002; Tsatsakis et al. 
1998).  An acute no-observed-adverse –effect-level (NOAEL) of 0.07 mg/kg/day was determined in a 2-
year oral monkey study (USEPA 1999a, 2001).  Other effects unrelated to cholinergic mechanisms, 
however, were also reported (Bagchi et al. 1995; Bagchi et al. 1996; Cova et al. 1995; Kojima et al. 
1992). 
 
Fenthion did not show mutagenic effect in the bacterial reverse mutation test or the in vitro chromosome 
aberration test in Chinese hamster ovary cells, but did in unscheduled DNA synthesis study and mouse 
micronucleus assays (USEPA 1999a).  In a 103-week chronic feeding study, no elevated incidence of 
tumor was observed in both sexes of F344 rats and female B6C3F1 mice; a slightly increased incidence 
of sarcomas, fibrosarcomas, and rhabdomyosarcomas of the integumentary system in male B6C3F1 
mice was observed (NIH 1979).  Fenthion is not considered a carcinogen (Ma 1995; USEPA 1999a). 
 
5.2 Pharmacokinetics 
 
5.2.1 Absorption 
 
Depending on application, fenthion may be absorbed from the gastrointestinal tract, skin and respiratory 
tract. The former two pathways, however, have been more intensively studied. Generally, fenthion is 
readily absorbed from GI tract. Blood levels peak a few hours after oral dosing in rats (Ma 1995), rabbits 
(Emteres et al. 1985) and lactating goat (Ma 1995). Absorption was almost complete (96-100% at 72 
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hours) and not dose-dependent (at 10 or 100 mg/kg) in Wistar rats fasted for 16-24 hour before gavage 
(Ma 1995). 
 
Dermal absorption of fenthion is slow and incomplete. Eighteen hours after a single dermal dose, 
prepared as an application formulation, in pigs or lactating cows, the tissue residue levels were generally 
low, whereas at the application site the levels were much higher (Ma 1995).  USEPA set a dermal 
absorption factor as 20% in 1996 and re-set it as 3% in 1999 based on the LOAEL’s (lowest observed 
adverse effect level) of cholinesterase inhibition from an oral development toxicity study and a 21-day 
dermal toxicity study in rabbits (USEPA 1999b). 
 
5.2.2 Distribution 
 
From the limited information on its distribution in body, fenthion and its metabolites had relatively high 
concentration in fat, liver and kidney (EXTOXNET 1996).  In milk from fenthion-treated dairy cows, 
the fenthion level was 50 times higher in the “fat” fraction than that in the “non-fat” fraction (O'Keeffe 
et al. 1983). 
 
5.2.3 Metabolism 
 
Principal metabolic pathways are shown in Figure 5.2.  Fenthion has several possible oxidative 
metabolites in body such as sulfoxide (SO), sulfone (SO2), oxygen analogue (P=O), oxygen analogue 
sulfoxide (P=O, SO) and sulfone (P=O, SO2) (Wright and Riner 1979).  Of them, the oxygen analogues 
are bioactivated forms with higher anti-cholinesterase activity (IPCS 1971, 1976). 
 
Incubated with rat liver microsomes, fenthion was oxidized to oxygen analogue and fenthion sulfoxide.  
Fenthion sulfone, however, was not detected.  The main enzymes involved were cytochrome P450s 
(especially CYP1A1) and flavin-containing monooxygenase (Kitamura et al. 2003; Venkatesh et al. 
1991).  In liver cytosol of rats, fenthion sulfoxide was reduced to fenthion catalyzed by aldehyde oxidase 
(Kitamura et al. 2003). 
 
14C-Fenthion was extensively metabolized in rats (Ma 1995).  No unchanged parent compound was 
detected in the urine and very little (< 2%) in the feces.  The major group of metabolites (about 60% of 
the total label) was composed of the three phenols (phenol fenthion, phenol sulfoxide and phenol 
sulfone) and their glucuronide and sulfate conjugates.  Four demethyl metabolites accounted for about 
30% of the label, whereas the oxygen analogue sulfoxide constituted only 1-4%. The metabolite profiles 
were not affected by dosing route, dose, sex or pre-treatment with fenthion. 
 
In pigs, fenthion was oxidized to fenthion sulfoxide, fenthion sulfone, oxygen analogue and oxygen 
analogue sulfoxide and sulfone.  These metabolites were further hydrolyzed and excreted via urine in 
conjugated forms (Ma 1995). 
 
No data from human studies is available. 
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Figure 5.2: Proposed metabolism pathways of fenthion in the rats.   
Adapted from Ma, 1995. 

 
 
5.2.4 Excretion 
 
Fenthion was rapidly eliminated after a single dose in Wistar rats, over 90% of the administered 
radiolabel being excreted within 48 hours, and less than 1% retained 72 hours after treatment (Ma 1995).  
In pigs and dairy cows rapid elimination and low bioaccumulation were also observed (Ma 1995).  In 
New Zealand white rabbits, the halflife of a single dose (20mg/kg) was about 11-12 hours regardless the 
route of administration (Emteres et al. 1985). 
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The polar metabolites of fenthion are mainly excreted via urine in rats, pigs and dairy cows (Ma 1995).  
Milk is a significant pathway for the elimination of the parent compound from lactating dairy cows 
(IPCS 1971; O'Keeffe et al. 1983; Wright and Riner 1979).  
 
5.3 Interactions of fenthion with other OP pesticides 
 
Fenthion potentiated the acute intraperitoneal toxicity of malathion, dioxathion, and coumaphos in rats, 
but intraperitoneal administration of 13 other organophosphate or carbamate insecticides to rats in 
combination with fenthion did not result in greater than additive toxic effects (Ma 1995).  Dietary 
combination of equitoxic doses (2 mg/kg) of fenthion with coumaphos, neither of which alone affected 
cholinesterase activity when fed to dogs for six weeks, was found to potentiate the anticholinesterase 
activity in serum and erythrocytes by 75 and 30%, respectively.  The potentiation was less evident with 
malathion, and no potentiation was noted with dioxathion (Ma 1995).  Pretreatment with fenthion 
significantly potentiated the acute toxicity of 2-sec-butylphenyl N-methycarbamate (BPMC) in mice and 
dogs, which may be a result of the inhibited detoxification of the carbamate (Ma 1995; Miyaoka et al. 
1984; Miyaoka et al. 1987). 
 
5.4 PBPK models 
 
No PBPK models on fenthion have been reported yet. 
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Fenitrothion 

 
6.0  Introduction 
 
Fenitrothion (O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorodithioate), also commonly called 
Sumithion™, is an organophosphorus insecticide and was registered for use in ant and roach bait. There 
are no approved domestic food or feed uses for fenitrothion, and exposure to fenitrothion in the U.S. is 
minimal. However, fenitrothion is used in countries to control pests on crops, stored grains, and cotton. 
Fenitrothion is also used elsewhere in forest spraying and public health campaigns. As a result, the 
human health effects associated with exposure to fenitrothion remain a concern, especially among 
pesticide workers and applicators whose acute exposure to organophosphorus pesticides can sometimes 
occur at levels high enough to inhibit blood acetylcholinesterase activity (Nigg and Knaak 2000; Ohayo-
Mitoko et al. 2000; Satoh and Hosokawa 2000). 
 
Degradation rates reported for fenitrothion are as follows: 
• Soil and groundwater → T1/2 < one week (Meister 1994; U.S.EPA 1987)  
• Surface water → T1/2  = 1.5-2 days (Novathion 1987)  
• Surface water in dark → T1/2  = 21.6 - 49.5 days (Novathion 1987)  
• Plants → T1/2  = 1-2 days (Möllhoff 1968)  
• Plants (fenitrooxon) →T1/2  = few hours  (Möllhoff 1968)  
 
6.1  Toxic effects 
 
Like other organophosphorus compounds, fenitrothion acts in the organism as a cholinesterase inhibitor,  
after conversion to fenitrooxon. Some evidence indicates that acetylcholinesterase inhibition in brain 
depends more on the rate of penetration than on the rate of oxidation and decomposition of fenitrothion 
(JMPR 1988; Miyamoto 1969). Fenitrothion appears to affect cytochrome P450 enzyme activity in the 
liver and testes of rats (Clos et al. 1994; Gradowska-Olszewska et al. 1984).  
 
Fenitrothion has anticholinesterase activity and moderate acute toxicity with oral LD50 values in rats and 
mice ranging from 330 to 1,416 mg/kg body weight (Miyamoto et al. 1963b). Acute dermal toxicity in 
rodents is reported to range from 890 to more than 2,500 mg/kg body weight (WHO 1992). The LC50 
value in rats exposed for 8 h is estimated to be more than 186 mg/m3 (WHO 1992). In short-term studies 
on rats and dogs, no-observed-adverse-effect levels (NOAELs) based on brain cholinesterase activity 
were 10 mg/kg diet and 50 mg/kg diet, respectively. Long-term studies on rats and mice indicated a 
NOAEL of 10 mg/kg diet (WHO 1992). An acceptable daily intake (ADI) of 0.003 mg/kg body weight 
was established in 1984 (WHO 1986), but no occupational exposure limits (OEL) have been published.  
No carcinogenic effects were found in any of the long-term fenitrothion studies (WHO 1992). 
Fenitrothion was not found to be mutagenic in in vitro and in vivo studies or teratogenic at doses of up to 
30 mg/kg body weight in rabbits and up to 25 mg/kg body weight in rats (Benes et al. 1975; WHO 
1992).  Other toxicity studies have been conducted (Chevalier et al. 1982; Groszek et al. 1995; Khan et 
al. 1990; Misu et al. 1966; Myatt et al. 1975; Trottier et al. 1980; Yoshida et al. 1987). Fenitrothion has 
also been shown to be neurotoxic, immunosuppressive, a pulmonary toxicant, and cause disturbances of 
prenatal development (Berlinska and Sitarek 1997; Kunimatsu et al. 1996; Khan et al. 1990; Lehotzky 
and Ungvary 1976).  
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In a field spraying operation in Nigeria and Kenya, humans exposed to fenitrothion exhibited depressed 
plasma cholinesterase activity (Ohayo-Mitoko et al. 2000; Vandekar 1965; Wilford et al. 1965). A study 
of fenitrothion on 24 human subjects was also conducted and showed that both plasma and 
cholinesterase activity was not depressed in all but one case (Nosal and Hladka 1968). Fenitrothion has 
been reported as causing “intermediate syndrome” due to acute poisoning (Groszek et al. 1995). 
 
The presence of chemicals in the environment that have antiandrogenic activity and thus the ability to 
disrupt the endocrine system is a source of concern. In several studies fenitrothion has been shown to be 
a competitive androgen receptor antagonist both in vivo and in vitro (Curtis 2001; Sohoni et al. 2001; 
Tamura et al. 2001; Turner et al. 2002). One study, however, exhibited fenitrothion not having 
significant androgenic or antiandrogenic activity in vivo (Sunami et al. 2000).  Fenitrothion might also 
alter estradiol metabolism by inhibition of certain P450 enzymes and produce changes in adrenal 
function (Berger and Sultatos 1997; Yamamoto et al. 1982b). 
 
6.2 Pharmacokinetics 
 
Various studies in mouse, rat, guinea pig, and humans have dealt with the pharmacokinetic and 
biochemical aspects of fenitrothion and its metabolites (Aprea et al. 1999; Douch et al. 1968; Hladka 
and Nosal 1967; Hollingworth et al. 1967; Meaklim et al. 2003; Miyamoto 1964a; Miyamoto 1964b; 
Miyamoto and Sato 1969; Miyamoto 1969; Miyamoto et al. 1963a; Nishizawa et al. 1961; Vandanis and 
Crawford 1964).  

 
6.2.1  Absorption 
 
Fenitrothion is presumably rapidly absorbed from the mammalian intestinal tract when given orally. 
Additionally, it can also be absorbed by the intact skin and by inhalation. (Kohli et al. 1974; Moody and 
Franklin 1987; Moody et al. 1987). 

 
6.2.2  Distribution 
 
The presence of the oxygen analogue was demonstrated in all tissues examined (brain, heart, lung, liver, 
kidney, spleen, and muscle), and it was detectable in blood one min after intravenous injection of 
fenitrothion (Muller 2000).  

 
6.2.3  Metabolism 
 
The oxygen analogue is the most important metabolite with respect to toxicity. It is formed in the 
microsomal fraction of the cell, the main organs responsible for the transformation being the liver and 
kidney. The major excretion product found is 3-methyl-4-nitrophenol which can be oxidized further to 
3-carboxyl-4-nitrophenol. Other metabolites are the dimethyl derivatives, which, with increasing dose, 
are excreted in increasing amounts. Nine metabolites have been isolated, most of which have also been 
identified. In vitro, formation of the oxygen analogue depended on the availability of reduced nicotine 
adenine dinucleotide phosphate (NADPH2) and oxygen (Miyamoto et al. 1963a; Miyamoto 1969). Liver 
slices incubated with fenitrothion did not produce measurable amounts of fenitrooxon, while liver 
homogenates and the supernatant fraction of such homogenates appreciably activated added fenitrothion 
(Miyamoto et al. 1963a; Miyamoto 1969). No correlation between the toxicity and rate of formation of 
fenitrooxon could, however, be demonstrated (JMPR 1988; Miyamoto et al. 1963a; Miyamoto 1969). 
No observations were made in these studies on the distribution into fatty tissues, but studies of residues 
in milk, meat, and fat from cattle indicated the presence of approximately 0.001 mg/kg in these samples 
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(JMPR 1988; Miyamoto and Sato 1969). Other studies involving the metabolism of fenitrothion have 
been described (Anjum and Qadri 1986; Kasagami et al. 2002; Sultatos 1991; Yamamoto et al. 1983; 
Yamamoto et al. 1982; Yoshida et al. 1975).  
 

Figure 6.1: Metabolic pathway of fenitrothion in vivo (Kumar et al. 1993). 
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6.2.4  Excretion 
 
Fenitrothion and its metabolites are excreted mainly in the urine (90-95%) (Aprea et al. 1999; 
Hollingworth et al. 1967). Up to 10% was recovered in feces (Hollingworth et al. 1967). Within three 
days nearly complete recovery of an orally administered dose (15 mg/kg) could be obtained 
(Hollingworth et al. 1967). The ratios between the amounts of metabolites was dependent upon the dose 
given (Hollingworth et al. 1967). Other urinary excretion studies have been described (Aprea et al. 
1999; Hladka and Nosal 1967; Kojima et al. 1989; Nosal and Hladka 1968). 
 
6.3  Interactions of fenitrothion with other chemicals 
 
Interactions of fenitrothion with other compounds such as malathion (Hladka et al. 1974), diethyl 
maleate (Sultatos et al. 1991), 2-sec-butylphenol methylcarbamate (BPMC) (Takahashi et al. 1984), and 
N,N-diethyl-m-toluamide (DEET) (Moody et al. 1987) have also been studied. 
 
6.4 PBPK models 
 
To date there are no published PBPK models for fenitrothion; however, there are numerous 
pharmacokinetic data that could be used in model development (Aprea et al. 1999; Douch et al. 1968; 
Hladka and Nosal 1967; Hollingworth et al. 1967; Kojima et al. 1989; Meaklim et al. 2003; Meaklim 
and McNeil 1999; Miyamoto 1964a; Miyamoto 1964b; Miyamoto and Sato 1969; Miyamoto 1969; 
Miyamoto et al. 1963a; Muller 2000; Nishizawa et al. 1961; Nosal and Hladka 1968; Vandanis and 
Crawford 1964). 
 
6.5  Literature Cited 
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Chloroform 

 
7.0 Introduction 
 
Chloroform (trichloromethane, CHCl3) is a dense liquid that is insoluble in water and volatile under 
environmental conditions (McCulloch 2003).  The major domestic use for chloroform is in the 
manufacture of refrigerant HCFC-22 (Chemical Marketing Reporter 1995).  Chloroform is also used as 
a laboratory reagent and extraction solvent for pharmaceuticals.  A significant amount of chloroform has 
been released to the environment as a by-product of the treatment of drinking and waste waters and 
through reactions of chlorine with organic chemicals (Meek et al. 2002). 
 
7.1 Mechanisms of toxicity 
  
Oral and inhalation exposures to chloroform cause toxicity to the liver, kidney, and nasal epithelium 
(USEPA 2001).  Chloroform can also cause reproductive or developmental toxicity, although most of 
the effects are secondary to maternal toxicity (USEPA 2001).  Increased incidences of liver and kidney 
tumors have been observed in several animal species after exposures to chloroform via several routes, 
although there is no adequate human data for carcinogenicity (USEPA 2001).  The mode of toxicity of 
chloroform is probably through oxidative metabolism to form phosgene (Pohl et al. 1977), which can 
react to form covalent bonds with microsomal proteins (Corley et al. 1990; Rosenthal 1987).  
 
7.2 Pharmacokinetics 
 
7.2.1 Absorption 
  
Chloroform is generally absorbed rapidly in humans and animals.  It is easily absorbed into the blood 
from the lungs after inhalation exposures.  Human inhalation studies include exposures via surgical 
anesthesia (Smith et al. 1973), indoor swimming pools (Aggazzotti et al. 1993; Cammann and Hubner 
1995; Levesque et al. 1994; Levesque et al. 2000), and shower air (Jo et al. 1990; Levesque et al. 2002).  
Chloroform can also be absorbed through the skin easily.  Dermal exposures were considered in 
conjunction with inhalation exposures in some of the indoor swimming pool studies (Cammann and 
Hubner 1995; Levesque et al. 1994; Levesque et al. 2000)  and shower air studies (Jo et al. 1990; 
Levesque et al. 2002).  Other human studies of dermal-only exposures include showering with facemask 
(Corley et al. 2000; Gordon et al. 1998) and topical administration of chloroform to volunteers (Dick et 
al. 1995).  Dermal absorption in animals was studied in guinea pigs (Jakobson et al. 1982) and hairless 
rats (Islam et al. 1995). Gastrointestinal absorption of chloroform is also fast and extensive (USEPA 
2001).  Oral exposure studies of humans were done in volunteers using 13C-labeled chloroform (Fry et 
al. 1972) and additional information is available from an accidental chloroform poisoning case (Rao et 
al. 1993).  Animal studies via oral exposure were reported in mice and rats by Withey et al. (Withey et 
al. 1983) and Pereira (Pereira 1994), respectively.   
 
7.2.2 Distribution 
 
Chloroform is widely distributed throughout the body after being absorbed.  Radiolabeled chloroform in 
mice was reported to distribute to the liver, kidney, lungs, spleen, body fat, muscle, and nervous tissue 
(Bergman 1979; Cohen and Hood 1969).  The highest levels of chloroform detected in human 
postmortem samples are in the body fat (5–68 µg/kg) and lower levels (1–10 µg/kg) were detected in the 
kidney, liver, and brain (McConnell et al. 1975).  In a study with 14C-chloroform injected in male mice 
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intraperitoneally, the maximum radioactivity levels were observed in the liver, kidney, and blood within 
10 minutes of dosing (Gemma et al. 1996).  It was also found that the presence of testosterone affected 
chloroform accumulations in mouse kidney (Ilett et al. 1973; Pohl et al. 1984; Smith et al. 1973) and 
resulted in higher nephrotoxicity in male mice. 
 
7.2.3 Metabolism 
 
The major metabolic pathway of chloroform in humans and animals (Figure 7.1) is oxidative 
metabolism that produces reactive phosgene and the minor pathway is reductive metabolism that forms 
dichloromethyl free radical (USEPA 2001).  In the presence of oxygen, chloroform is converted to 
trichloromethanol, which spontaneously dehydrochlorinates to produce phosgene (Pohl et al. 1981; 
Stevens and Anders 1981).  These reactions are catalyzed by cytochrome P450 in liver and kidneys (Ade 
et al. 1994; Branchflower et al. 1984; Smith and Hook 1984).  Phosgene can in turn react with 
nucleophilic groups in cellular macromolecules and form covalent adducts (Noort et al. 2000; Pereira 
and Chang 1981; Pereira et al. 1984; Pohl et al. 1977; Pohl et al. 1981; Pohl et al. 1980).  Phosgene can 
also undergo hydrolysis to form carbon dioxide and hydrochloric acid, or react with glutathione to form 
diglutathionyl dithiocarbonate, gluathione disulfide, and carbon monoxide (Pohl et al. 1981; USEPA 
2001).  In the absence of oxygen, chloroform is converted to dichloromethyl free radical, which can 
form covalent adducts with microsomal enzymes and can also cause lipid peroxidation (USEPA 2001).  
Metabolic pathways of chloroform overlapping with the other three volatile organics in Mixture 2 are 
shown in Figure 8.1 under trichloroethylene. 
 
 

 
 
 
Figure 7.1  Major metabolic pathways of chloroform (adapted from USEPA (2001))  
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7.2.4 Excretion 
 
Chloroform is excreted through the lungs either unchanged or as carbon dioxide, with small amounts 
detected in urine after inhalation (Corley et al. 1990; Fry et al. 1972; Gordon et al. 1988), oral (Fry et al. 
1972), and dermal (Dick et al. 1995) exposures. 
 
7.3 Physiologically based pharmacokinetic (PBPK) models 
 
The first PBPK model for chloroform was developed by Corley and colleagues (Corley et al. 1990) to 
describe the fate of chloroform in several species via numerous exposure routes.  Several subsequent 
PBPK models (Chinery and Gleason 1993; Corley et al. 2000; Gearhart et al. 1993; Levesque et al. 
2000; McKone 1993; Roy et al. 1996) were developed based on the Corley model to include a variety of 
exposure scenarios.  A schematic representation of a general PBPK model for chloroform is shown in 
Figure 7.2. 
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Figure 7.2  PBPK model for chloroform in rats, mice, and human (adapted from (Corley et al. 2000)) 
 
In the Corley model (Corley et al. 1990), the exposure routes include oral, inhalation, and 
intraperitoneal. Liver and kidney were both sites of metabolism for chloroform.  The amount of 
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metabolite binding to cellular macromolecules was used as the indicator for chloroform toxicity.   Due 
to the lower rates of metabolism, ventilation, and cardiac output in larger species than in smaller species, 
the relative potency of chloroform was predicted as mice > rats > humans in the Corley model (Corley et 
al. 1990). 
 
Reitz and colleagues (Reitz et al. 1990) extended the Corley model to include pharmacodynamic 
endpoints for cancer risk assessment.  Two dose metrics were used for the liver compartment, while the 
kidney compartment was not considered.  The first type of dose metric used was the average daily 
macromolecular binding.  The other type of dose surrogate was cytotoxicity due to the formation of 
reactive chloroform metabolite, phosgene.  It was concluded that cytotoxicity is the dose metric best 
reflecting carcinogenicity (Reitz et al. 1990).  These two dose metrics were later analyzed for 
interindividual variability and parameter uncertainty by Allen and colleagues (Allen et al. 1996).  The 
cytotoxicity dose metric was much more sensitive to interindividual variability than the average daily 
macromolecular binding was.   
 
Gearhart and colleagues (Gearhart et al. 1993) adjusted partition coefficients, rate of metabolism, 
cardiac output, and minute ventilation according to body temperature.  These adjustments strengthened 
the Corley model (Corley et al. 1990) according to the fitting of gas uptake data of mice by loosening 
the assumption of enzyme loss and resysthesis. 
 
Chinery and Gleason (Chinery and Gleason 1993) further included the skin compartment to describe the 
fate of chloroform after adsorption through dermal exposure.  The skin compartment was further divided 
into three subcompartments: the aqueous solution, stratum corneum, and viable skin.  The model was 
able to predict the concentration of chloroform in the exhaled air from humans exposed while showering 
through inhalation only and the combination of dermal and inhalation routes.  
 
In a PBPK model similar to Chinery and Gleason’s, McKone (McKone 1993) assumed skin to be only 
one compartment.  It was demonstrated that chloroform metabolism by the liver was not linear with 
respect to higher exposure concentrations (60-100 mg/L). 
 
Based on the Corley model (Corley et al. 1990), Levesque and colleagues (Levesque et al. 2000) used a 
PBPK model to predict the fate of chloroform for individuals exposed while swimming through dermal 
and inhalation routes.  Dermal exposure was described using an overall skin permeability constant.  The 
levels of macromolecular binding in swimmers calculated from the model are much lower than the 
smallest no-observed-effect level for liver tumors in animals. 
 
Corley and colleagues (Corley et al. 2000) added a single skin compartment to the original Corley 
model (Corley et al. 1990) and described the kinetics of human dermal exposure to chloroform while 
bathing.  With the adjustment of model parameters according to temperature, the model can predict the 
relationship between water temperature (30-40°C) and exhaled chloroform observed from experiments 
(Gordon et al. 1998). 
 
Constan and colleagues (Constan et al. 2002) used cytolethality and regerative cell proliferation as 
pharmacodynamic endpoints to perform a chloroform inhalation cancer risk assessment.  The NOAEL 
for chloroform-induced hepatotoxicity in humans was estimated to be 110 ppm using experimental data 
from B6C3F1 mouse and PBPK-PD model calculations. 
 
Meek and colleagues (Meek et al. 2002) recently performed an assessment of exposure-response 
analyses and risk characterization using PBPK models.  Inhalation, oral, and dermal exposures were 
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considered from ten-minute shower, discrete periods of water and food consumption, as well as 
inhalation of chloroform at a variety of concentrations.  Dose metrics used for carcinogenicity were the 
maximum rate of metabolism per unit kidney cortex volume and mean rate of metabolism per unit 
kidney cortex volume during each dose interval.  For non-neoplastic effects, the dose metrics used were 
the mean rate of metabolism per unit centrilobular region of the liver and the average concentration of 
chloroform in the non-metabolizing centrilobular region of the liver.  
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Trichloroethylene 

 
8.0 Introduction 
 
Trichloroethylene (TCE) is one of the most important industrial chemicals of our time.  It is an organic 
solvent that has been used widely in dry cleaning, metal degreasing, and as a solvent for oils and resins.  
Because of the large production volume and its wide applications, TCE is one of the top, if not the top, 
environmental pollutants in ground water.  Recently, an entire supplemental volume (Volume 108, 
Supplement 2, May 2000) of Environmental Health Perspective was devoted to Trichloroethylene 
Health Risks.  This volume contains many excellent review articles which cover the areas of toxicology 
and risk assessment extensively.  The USEPA, in its re-assessment of TCE health risks, devoted a great 
deal of effort to publishing a document on Trichloroethylene Health Risk Assessment: Synthesis and 
Characterization (EPA/600/P-01/002A; quoted in this write-up as USEPA, 2001).  This document and 
its related Science Advisory Board review (www.epa.gov/science1/pdf/ehc03002.pdf) also provided an 
excellent source of information on TCE.  Thus, the summary below represents a brief update of the 
current information. 
 
8.1  Toxic effects 
  
8.1.1    Noncancer effects  

 
Neuro- or neuro-behavioral (Boyes et al., 2000; Ohta et al., 2001; USEPA, 2001; Waseem et al., 2001; 
Kilburn, 2002; Moser et al., 2003), male reproductive (Kumar et al., 2000; 2001; Forkert et al., 2002; 
2003), developmental (Boyer et al., 2000; Rodenbeck et al., 2000; USEPA, 2001; Johnson et al., 2003), 
liver (USEPA, 2001), renal (USEPA, 2001; Mensing et al., 2002), immuno- (Griffin et al., 2000a,b,c; 
Kaneko et al., 2000; USEPA, 2001) toxicities in experimental animals and/or humans are reported or 
implicated.  In vitro studies using isolated cell cultures have demonstrated and reconfirmed many of the 
species-, sex-, and tissue-dependent differences in hepato- and renal- toxicities observed in vivo 
(Cummings et al., 2000a,b; Lash et al., 2001). 

 
Halogenated hydrocarbons such as TCE are among the most common water supply contaminants in the 
U.S. and elsewhere.  Epidemiological studies have found an association, but not a cause-and-effect 
relation, between halogenated hydrocarbon contamination and increased incidence of congenital cardiac 
malformations or other defective birth outcomes.  However, some animal studies in birds and rats as 
well as in tissue cultures had demonstrated statistically significant increased incidence of congenital 
cardiac malformations or other defective birth outcomes (Boyer et al., 2000; Johnson et al., 2003) while 
others turned out negative (Fisher et al., 2001).  The most recent study (Johnson et al., 2003) reported 
that maternal rats exposed to more than 250 ppb TCE, a very low dose study, showed an associated 
increased incidence of cardiac malformations in their developing fetuses. 
 
8.1.2 Cancer effects  
 
TCE causes liver, lung tumors and lymphomas in mice and kidney and testicular tumors in rats (Bull, 
2000; Green, 2000; Lash et al., 2000a; USEPA, 2001).  In humans, TCE was implicated to be a 
carcinogen (Wartenberg et al., 2000; USEPA, 2001).  It is well established that two metabolites of TCE, 
dichloroacetic acid (DCA) and trichloroacetic acid (TCA) are important contributors to carcinogenicity 
of TCE (Bull, 2000; Tao et al., 2000; Bull et al., 2002). 
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Regarding renal cancer in humans, German epidemiological studies of prevalence of renal cancer 
following high exposure of TCE in workers have been the subject of considerable scientific debate, re-
evaluation, and repeated studies (Brauch et al., 1999; Bruning et al., 1999; Green and Lash, 1999; 
Schraml et al., 1999; Brauch et al., 2000; Bruning and Bolt, 2000; Green, 2000; Lash et al., 2000a; 
Wartenberg et al., 2000; USEPA, 2001; Bruning et al., 2003).     
 
8.2 Pharmacokinetics 
 
The pharmacokinetics of TCE has been reviewed thoroughly (ATSDR, 1997; Fisher, 2000).  More 
recent updates are provided below. 
 
8.2.1 Absorption 
 
Dose-dependent gastrointestinal absorption of TCE and its kinetics in male Sprague-Dawley rats over a 
wide range of oral bolus doses were characterized by Lee et al. (2000b).  Dietary incorporation of guar 
gum, a thickener and stabilizer in foods and pharmaceuticals, was found to decrease TCE accumulation 
in the body by reducing absorption and fat tissue mass (Nakashima and Ikegami, 2001). 
 
8.2.2 Distribution 
 
PBPK models for the systemic transport of TCE to various tissues and organs with a special emphasis to 
fat tissues were established by Albanese et al. (2002). 
 
8.2.3 Metabolism 
 
Human and animal studies   
 
The principal metabolic pathways for TCE and metabolic steps where interactions with chloroform 
(CHL), tetrachloroethylene (PERC), and/or 1,1,1 trichloroethane (MC) may occur are denoted in Figure 
8.1.  The metabolism of TCE has been reviewed thoroughly (Lash et al., 2000b; USEPA, 2001); more 
recent updates are provided below. 

 
Lash et al. (1999a) reported direct, in vivo, evidence of GSH conjugation of TCE in human volunteers 
exposed to 100 ppm TCE and demonstrated markedly higher amounts of S-(1,2-dichlorovinyl) 
glutathione (DCVG) in males than females.  However, Bloemen et al. (2001) studied urinary 
concentrations of metabolites from GST-dependent pathway in human volunteers exposed to 50 and 100 
ppm TCE for 15 min or occupationally exposed (0.4 to 21 ppm TWA) workers.  They found little or no 
such metabolites and suggested the glutathione-mediated metabolism is of minor importance in humans. 

 
There were evidences suggesting that TCE is metabolized in the reproductive tract of the mouse and 
monkey; the fact that TCE and its metabolites accumulated in seminal fluid in human diagnosed with 
clinical infertility also suggested associations between production of TCE metabolites, reproductive 
toxicity, and impaired fertility (Forkert et al., 2003). 
 
In vitro studies   

 
Extensive in vitro biotransformation studies have been published on a variety of enzyme preparations 
and cell culture systems ranging from cell free tissue preparations (Lipscomb et al., 1997, 1998; 
Lipscomb and Garrett, 1998; Lash et al., 1999b; Cai and Guengerich, 2000; Snawder and Lipscomb, 
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2000; Cummings et al., 2001; Lipscomb et al., 2003a) to highly purified human enzymes (Cai and 
Guengerich, 2001), to primary and other cell cultures (Lash et al., 1999b; Cummings and Lash, 2000; 
Cummings et al., 2000a,b; Walgren et al., 2000; Cummings et al., 2001) including collagen gel 
sandwich cultures of rat hepatocytes (De Smet et al., 2000).   
 
 

H

ClCl

Cl

SG

ClCl

H S

ClCl

H NH3+
H

COO-

S

ClCl

H NHCOCH3

H
COOH

CCl3 H
OH

OH

Fe
O

Cl
H C

+
Cl

Cl
 

Ogluc
CCl3

OH
Cl2CH

O

OH
Cl3C

O

SG

HCl

Cl S

HCl

Cl NH3+
H

COO-

S

HCl

Cl NHCOCH3

H
COOH

C C S
Cl

H
 SH

ClCl

H

H
Cl2HC

S

OH CCl3

Thioketene

S-1,2-DCVC

CYP450

CYP450

TCOH TCOG

DCATCA

CHO

S-1,1-DCVC

GSH

GSH

β-Lyase

β-Lyase
Cytotoxicity
Mutagenicity

Cytotoxicity
Mutagenicity

1,2-DVT

Excretion
in Urine

Excretion
in Urine

1

2

2

1

1

1

3

3

Potential interaction between PCE and TCE

Potential interaction between MC and TCE

Potential interaction between CHL and TCE

1

1

3

3

3

3

Figure 8.1

Figure 8.1 Superimposed on a metabolic 
schematic for TCE (Dobrev, et al., 2001), 
metabolic steps where pharmacokinetic 
interactions could occur are denoted by 
symbols.  Identification of additional 
potential interactions should occur during 
CRA Steps 3 and 6.

 
 
 
Cai and Guengerich (2001) demonstrated that the direction reaction of TCE oxide with either human 
P450 2E1, P450 2B1, or NADPH-P450 reductase was shown to lead to enzyme inactivation, and no 
recovery of either enzyme occurred. 

 
8.2.4 Elimination and Excretion 
 
Presystemic elimination of TCE has been shown by Lee et al. (1996) to be inversely related to dose.  
When relatively high doses were administered to rats via the portal vein, first-pass hepatic extraction 
became negligible.  This phenomenon could result not only from metabolic saturation, but from suicidal 
destruction of cytochrome P450 and hepatocellular injury as well (Lee et al., 2000a).  Subsequent 
pharmacokinetic analysis by Lee et al. (2000b) indicated that TCE was eliminated by capacity-limited 
hepatic metabolism, no evidence for P450 2E1 destruction, with incursion into nonlinear kinetics with 
bolus doses greater or equal to 8 to 16 mg/kg. 
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8.3 Interactions of TCE with other chemicals  
 
Interaction studies reported in the recent literature covered diverse subject areas.  Each of the relevant 
papers is discussed briefly below.  
 
Dobrev et al. (2001; 2002) studied “Interaction Thresholds” in rats and humans using interactive PBPK 
modeling of a ternary mixture of TCE, tetrachloroethylene, and 1,1,1-trichloroethane.  Because of 
competitive inhibition of the primary metabolic system, P450 2E1, an alternative pathway, the GST 
conjugation system, becomes important.  It was demonstrated that at or below the current threshold limit 
values (TLVs) for these three chemicals, the coexposure to these chemicals would result in significant 
interactions.  
 
Very high doses (2000 to 5000 mg/kg, ip) of TCE induced anticonvulsive effect of a number of drugs 
(Shih et al., 2001); it was suggested that this effect might be predominantly mediated by GABA 
receptors. 
 
A full-factorial design for neurobehavioral evaluations of mixtures of TCE, heptachlor, and di (2-
ethylhexyl) phthalate in F344 rats was carried out by Moser et al. (2003).  In general, significant overall 
interactions that deviated from response additivity were detected for most endpoints (11 of 14).  Most of 
the interactions are antagonistic in nature.  
 
Pretreatment of TCE in Sprague-Dawley rats altered drug kinetics of theophylline, quinidine, and 
pentobarbital (Kukongviriyapan et al., 2001). 
 
Dietary incorporation of guar gum, a thickener and stabilizer in foods and pharmaceuticals, was found to 
decrease TCE accumulation in the body by reducing absorption and fat tissue mass (Nakashima and 
Ikegami, 2001). 
 
8.4 PBPK models 
 
TCE is undoubtedly one of the chemicals, which were most extensively studied using PBPK modeling 
technique.  The initial development of PBPK models was reported by Andersen et al. (1987).  This 
initial PBPK model for TCE was followed by a number of variations by others for different goals 
(Fisher et al., 1989; 1990; Koizumi, 1989; Dallas et al., 1991).  As the science advances, more and more 
sophistication were incorporated into the later PBPK models.  Thus, PBPK models with incorporation of 
TCE metabolites, as well as reproductive physiology and toxicology (Fisher et al., 1989; 1990; 1991; 
Abbas et al., 1996; Abbas and Fisher, 1997; Fisher et al., 1998; Greenberg et al., 1999), and 
pharmacokinetic and pharmacodynamic interactions (Elmasri et al., 1996; Byczkowski et al., 1999) were 
seen in the literature.  Furthermore, the application of PBPK modeling in risk assessment received 
progressively more emphasis (Allen and Fisher, 1993; Fisher and Allen, 1993; Gearhart et al., 1993; 
Clewell et al., 1995; Cronin et al., 1995; Bogen and Gold, 1997; Simon, 1997).  The 2000 Monograph in 
EHP and more recent PBPK modeling efforts included its application in risk assessment (Clewell et al., 
2000; Fisher, 2000), statistical analyses for variability and uncertainty (Bois, 2000a,b), further 
toxicological interaction studies to define “Interaction Thresholds” (Dobrev et al., 2001; 2002).  PBPK 
modeling studies for other specific purposes or toxic endpoints are also seen.  Thus, Poet et al. (2000) 
utilized PBPK modeling for assessing percutaneous absorption of TCE in rats and humans.  PBPK 
models for the transport of TCE in adipose tissues were reported by Albanese et al. (2002) and PBPK 
modeling for male Long-Evans rats to aid in evaluation of neurotoxicity data was published by Simmons 
et al. (2002).  
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8.5 Risk assessment related 
 
Because TCE is a very important industrial chemical and a prevalent environmental pollutant, the risk 
assessment, particularly cancer risk assessment became an area of much scientific debate.  
Consequently, quite a number of publications, review articles, and documents are available specifically 
dealing with mechanisms of toxicity of TCE and PBPK modeling in relation to risk assessment, as well 
as the process of risk assessment of TCE (Allen and Fisher, 1993; Fisher and Allen, 1993; Gearhart et 
al., 1993; Clewell et al., 1995; Cronin et al., 1995; Bogen and Gold, 1997; Simon, 1997; Brauch et al., 
1999; Bruning et al., 1999; Green and Lash, 1999; Motohashi et al., 1999a,b; Schraml et al., 1999; 
Barton and Clewell, 2000; Bois, 2000a,b; Bruning and Bolt, 2000; Bull, 2000; Chen, 2000; Clewell et 
al., 2000; Fisher, 2000; Green, 2000; Lash et al., 2000a,b; Moore and Harington-Brock, 2000; Pastino et 
al., 2000; Rhomberg, 2000; Wartenberg et al., 2000; Ruden, 2001a,b; Stewart, 2001; USEPA, 2001; 
Ruden 2001a,b; 2002a,b; Bruning et al., 2003; Lipscomb et al., 2002; 2003b; Ruden, 2003).  
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Tetrachloroethylene 

 
 
9.0 Introduction 
 
Tetrachloroethylene is made by direct chlorination or oxychlorination of certain hydrocarbons. 
Tetrachloroethylene is used as a chemical intermediate, as solvent for metal cleaning and vapor 
degreasing, and for dry-cleaning and textile processing. (Aggazzotti et al. 1994)  It is found in many 
household products, including paint removers, water repellents, silicone lubricants, spot removers, 
adhesives, and wood cleaners (ATSDR 1997).   
 
9.1  Toxic effects  
 
Liver, kidney, blood, and the central nervous system are the target organs for systemic effects (Calabrese 
1983; Chen et al. 2002; Echeverria et al. 1995; Ferroni et al. 1992; Umezu et al. 1997; Utzinger and 
Schlatter 1977; Zavon 1967). Exposure to high concentrations of tetrachloroethylene induces dizziness, 
headache, sleepiness, confusion, nausea, unconsciousness, and death.  Irritation could occur when skin is 
exposed to tetrachloroethylene.  Breathing the vapor may irritate the lungs, causing coughing and/or 
shortness of breath (Stewart et al. 1961).  Animal studies showed that tetrachloroethylene can cause 
liver and kidney damage (Schimmelpfennig et al. 1987; Kylin et al. 1963; Kylin et al. 1965; Lash et al. 
2002).  The developing fetus and children may be particularly susceptible to the toxic effects of 
tetrachloroethylene (Ahlborg 1990; Fredriksson et al. 1993; Motohashi et al. 1993; Spector et al. 1999).  
Exposure to pregnant rodents induces behavioral deficits in pups (Mattsson et al. 1998; Seeber 1989).  
 
The neurotoxicities of tetrachloroethylene may result from the alterations of fatty acid patterns in the 
brain (ATSDR 1997; Burger et al. 1991).  In contrast to the nervous system, the effects on the liver 
including cancer are thought to be a result of the metabolite, trichloroacetic acid (ATSDR 1997).  It is 
believed that trichloroacetic acid may play a role in inducing hepatocellular peroxisomes, resulting in 
the production of hydrogen peroxide as a by-product (Bentley et al. 1993).  The increased hydrogen 
peroxide may increase DNA damage.  Kidney cancer may in part be a result of the formation of the 
genotoxic metabolites from S-(1,2,2-trichlorovinyl) glutathione by β-lyase (Birner et al. 1997; Cooper et 
al. 2002; Green et al. 1990).  Tetrachloroethylene is classified as a group 2A carcinogen (probably 
carcinogenic to human) (Aschengrau et al. 1993; Aschengrau et al. 1998; Aschengrau et al. 2003; 
Wartenberg et al. 2000). 
 
9.2 Pharmacokinetics 
 
Tetrachloroethylene is readily absorbed through oral, skin, and inhalation exposure (Ward et al. 1988).  
Once it is absorbed, tetrachloroethylene is distributed to fatty tissues because of high lipophilicity 
(fat/blood partition coefficient is about 140) (Dallas et al. 1994c).  The half-life of tetrachloroethylene in 
fat tissues is 55 hours (ATSDR 1997).  One to three percent of absorbed tetrachloroethylene is 
metabolized to trichloroacetic acid in the liver (ACGIH 1991).  Unmetabolized tetrachloroethylene is 
exhaled (ATSDR 1997).  This is the primary route of excretion.  Trichloroacetic acid is excreted in the 
urine (ATSDR 1997). 
 
9.2.1 Absorption 
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Tetrachloroethylene is readily absorbed in the G.I. tract and lungs.  Pulmonary uptake is proportional to 
ventilation rate, duration of exposure, and the concentration in the inspired air (ATSDR 1997).  In rats, 
the proportion absorbed was approximately 55-70% after 1 minute, gradually declining to 40-50% after 
2 hours (Dallas et al. 1994b).  Dermal absorption has been studied in guinea pigs (Bogen et al. 1992). 
 
9.2.2 Distribution 
 
Tetrachloroethylene is preferentially stored in fat tissues.  In rats, distribution to brain, liver, and kidneys 
has also been demonstrated (Frantz and Watanabe 1983; Dallas et al. 1994a; Dallas et al. 1994b).  In 
animal studies, transplacental and lactational transport of unchanged tetrachloroethylene has been 
reported (Byczkowski et al. 1994; Hamada and Tanaka 1995). 
 
9.2.3 Metabolism 

 
The metabolic pathways of tetrachloroethylene are summarized in Figure 9.1.  The overlapping 
pathways with the other three volatile organics in Mixture 2 can be seen in Figure 8.1 under 
trichloroethylene. 

 

 
 

Fig 9.1 Metabolic pathways 
of tetrachloroethylene 

(ATSDR, 1997) 

 
Human pharmacokinetic studies have been performed in volunteers and workers.  The pharmacokinetics 
of tetrachloroethylene by inhalation exposure has been described (Ikeda 1977; Monster et al. 1979; 
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Ohtsuki et al. 1983; Imbriani et al. 1988). One study described the pharmacokinetics of 
tetrachloroethylene in a boy who ingested the chemical (Koppel et al. 1985). 
 
The pharmacokinetics of tetrachloroethylene following inhalation exposure have been described for 
rodents (Pegg et al. 1978; Schumann and Watanabe 1979). The dermal pharmacokinetics of 
tetrachloroethylene in hairless guinea pigs was also studied (Bogen et al. 1992).  Pharmacokinetics of 
tetrachloroethylene following oral exposure were reported in several studies including rats, mice, and 
dogs (Frantz and Watanabe 1983; Dallas et al. 1994c). 
 
In vitro metabolic studies of tetrachloroethylene have been conducted using rat hepatic microsome and 
other subcellular systems (Huang et al. 2001; Costa and Ivanetich 1980; Reitz et al. 1996; Dekant et al. 
1998).  Some studies focused on the interaction of tetrachloroethylene with rat hepatic microsomal P450 
enzymes (Hanioka et al. 1995a; Hanioka et al. 1995b; Hanioka et al. 1997). 
 
9.2.4 Excretion 
 
In humans and animals, the major part of the absorbed amount is exhaled unchanged.  In humans, 80-
100% of the amount was exhaled as parent compound.  In rats, about 70% was exhaled in same 
conditions (ATSDR 1997).  Excretion of metabolites in urine is 2% of exposed dose with a half-life of 
75-80 hours (Ikeda et al. 1972; Imbriani et al. 1988; ATSDR 1997). In rats, elimination via maternal 
milk was high (Byczkowski et al. 1994; Byczkowski and Fisher 1995). 
 
9.3 Interactions with other chemicals 
 
The hepatic monooxygenase system is mainly responsible for oxidation of tetrachloroethylene.  Thus, 
chemicals that affect the monooxygenase system could affect the metabolism and toxicity of 
tetrachloroethylene.  Two papers were published dealing with pharmacokinetic interactions between 
tetrachloroethylene and other chlorinated contaminants (Dobrev et al. 2001, 2002).  Toxicological 
interactions between tetrachloroethylene and ethanol or other chemicals were also reported (Koizumi et 
al. 1982; Dobrov and Poluekto 1971; Kobayashi et al. 1982; Seiji et al. 1989; Giovannini et al. 1992). 
 
9.4 PBPK models 
 
Several PBPK models for the disposition of tetrachloroethylene were presented in animals and humans 
(Gelman et al. 1996; Haddad et al. 2000; Ward et al. 1988; Koizumi 1989; Bois et al. 1990; Gearhart et 
al. 1993; Dallas et al. 1994b; Dallas et al. 1994c; Wilson and Knaak 1994; Dallas et al. 1995; Reitz et 
al. 1996; Poet et al. 2000; Loizou 2001; Poet et al. 2002).  The majority of the available PBPK models 
are concerned with the carcinogenesis of tetrachloroethylene.  One model has been developed to predict 
brain concentrations following exposure to tetrachloroethylene during showering (Rao and Brown 
1993).  PBPK models for the lactational transfer of tetrachloroethylene through breast milk were 
developed to estimate the risk of tetrachloroethylene exposure to infants (Byczkowski et al. 1994; 
Byczkowski and Fisher 1995). 
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1, 1, 1-Trichloroethane 

 
10.0  Introduction 
 
1, 1, 1-Trichloroethane (TCA; Figure 10.1) is a common organic solvent, often used commercially for 
industrial degreasing as well as dry-cleaning.  The 2001 Comprehensive Environmental Response, 
Compensation, and Liability Act (CERCLA) Priority List of Hazardous Substances includes TCA in the 
top 100 hazardous substances based upon its environmental distribution, especially at hazardous waste 
sites (ATSDR, 2001a).  Furthermore, TCA ranks 13th in the CERCLA Completed Exposure Pathway; 
therefore, humans are frequently exposed to TCA (ATSDR, 2001b). Because of its ability to induce 
central nervous system depression, TCA has been abused, and thus purposeful human exposure also 
occurs.  TCA is considered to be a group III carcinogen due to lack of adequate evidence of 
carcinogenicity in rodents and humans (IARC, 1999).  
 

Cl H 

C C 

Cl H 
Cl H 

 
Figure 10.1. Structure of 1, 1, 1-trichloroethane. 

 
10.1 Toxic effects  
 
TCA has various systemic effects, most notably central nervous system (CNS) depression, 
hepatotoxicity, and cardiovascular complications. Central nervous system depression is the principal 
CNS effect observed in individuals and animals following exposure to TCA (Hall and Hine, 1966; Stahl 
et al., 1969; Jones and Winter, 1983; Bowen and Balster, 1998; Bowen et al., 1998; Bruckner et al., 
2001). Descriptions of plausible mode(s) of action for CNS depression are given in numerous reports 
(Rosengren et al., 1985; Nilsson, 1986b; Nilsson, 1986a; Nilsson, 1987; Fernicola et al., 1991; 
Beckstead et al., 2000; Warren et al., 2000; You and Dallas, 2000; Beckstead et al., 2001; Okuda et al., 
2001; Beckstead et al., 2002; Wiley et al., 2002; Lopreato et al., 2003).  
 
Various reports cite changes in serum enzyme chemistry, which serve as indicators of hepatotoxicity for 
both humans and animals (Halevy et al., 1980; Hodgson et al., 1989). Another marker for hepatotoxicity 
observed following exposure to TCA is accumulation of fat in the liver (Hall and Hine, 1966; Caplan et 
al., 1976; Hodgson et al., 1989). However, many contradictory studies on both humans and animals 
report failure of serum enzymes to change or extremely mild changes, indicating no apparent 
hepatotoxic effects (Domette and Jones, 1960; Carlson, 1973; Kramer et al., 1978; Kelafant et al., 1994; 
Wang et al., 1996). Although observed hepatic alterations are reversible, they tend to indicate mild 
hepatotoxicity induced by TCA and/or a metabolite (Halevy et al., 1980; Bruckner et al., 2001). Cardiac 
sensitization to epinephrine, resulting in arrhythmia, has been linked with exposure to TCA in both 
humans and animals (Clark and Tinston, 1973; Guberan et al., 1976; Macdougall et al., 1987).  
Additionally, cardiac depression, resulting in decreased blood pressure, is caused by exposure to TCA. 
Toraason and coworkers demonstrated decreases in contractility of cultured cardiac cells occurred in a 
dose-dependent manner following treatment with TCA (Toraason et al., 1990).  Some reproductive 
effects have also been reported, ranging from increased mammary adenocarcinomas to decreases in 
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sperm motility, however effects were usually slight and in some cases confounded by exposure to 
chemical mixtures (Rudolph and Swan, 1986; Swan et al., 1989; Yang, 1993; Coleman et al., 1999; 
Lemasters et al., 1999; NTP, 2000; Wang et al., 2002). Other studies found no association between TCA 
exposure and reproductive effects (George et al., 1989; Wrensch et al., 1990a; Wrensch et al., 1990b) 
 
10.2 Pharmacokinetics 
 
10.2.1 Absorption  
 
Exposure to TCA primarily occurs through inhalation, and has been described in both humans and 
animals (Morgan et al., 1972a; Morgan et al., 1972b; Monster et al., 1979; Hobara et al., 1982; 
Jakobson et al., 1982; Hobara et al., 1983; Koizumi et al., 1983; Nolan et al., 1984; Dallas et al., 1989; 
Boman et al., 1995). Dermal and gastrointestinal exposures are plausible as TCA is a groundwater 
contaminant, though due to the volatility of TCA, the most common exposure route is inhalation 
(ATSDR, 1995). Alternative routes of TCA exposure have been explored by many researchers, as TCA 
is efficiently and rapidly absorbed via the lung, skin, and gastrointestinal tract of humans and animals 
(Stewart and Dodd, 1964; Riihimaki and Pfaffli, 1978; Mitoma et al., 1985; RTI, 1987; Reitz et al., 
1988; Morgan et al., 1991; Yoshida et al., 1998; Giardino et al., 1999; Kezic et al., 2000; Poet et al., 
2000; Kezic et al., 2001). Steady-state blood levels in rats exposed to 50 or 500 ppm TCA were 
approached at 2 hours following initiation of continuous exposure (Dallas et al., 1989). Reitz and 
colleagues noted achievement of maximal blood levels of TCA at 10-15 minutes following 
administration of a 14.2 mg/kg dose of TCA in water via gavage (Reitz et al., 1988). Following the 
initial phases, absorption rates plateau as steady-state levels are approached in blood and tissues; 
generally, blood levels approach steady-state within a few hours following onset of exposure (Monster 
et al., 1979; Nolan et al., 1984). 
 
10.2.2 Distribution 
 
TCA is widely distributed, with preferential distribution to fatty tissues due to its lipophilic nature, 
regardless of exposure scenario (Takahara, 1986; RTI, 1987; Shimada, 1988; Katagiri et al., 1997; You 
and Dallas, 1998). Detectable levels of TCA are found in the fat, liver, kidney, spleen, blood, lung, 
heart, brain, placenta, and fetus following inhalation exposure (Danielsson et al., 1986; Takahara, 1986; 
Shimada, 1988). In mice exposed for 1 hour to 1,000 ppm TCA, tissue concentrations of TCA 
immediately following exposure resulted in preferential accumulation of TCA (in descending order) in 
the fat, liver, kidney, spleen and blood, followed by lung, heart and brain (Takahara, 1986). Schumann 
and coworkers supported these findings, as they reported significantly higher TCA concentrations in 
fatty tissues than in the liver and kidneys following exposure of mice and rats to either 150 or 1,500 ppm 
TCA for 6 hours (Schumann et al., 1982b). Distribution of TCA is regulated by various factors, 
including tissue blood flow rate, tissue volume and tissue:blood partition coefficients, the latter likely 
being most influential (ATSDR, 1995). 
 
10.2.3 Metabolism 
 
Metabolism of TCA has been studied extensively (Carlson, 1973; Ivanetich and Van den Honert, 1981; 
Casciola and Ivanetich, 1984; Takano et al., 1985; Takano et al., 1988; Kawai et al., 1991; Durk et al., 
1992; Baker and Ronnenberg, 1993). Regardless of exposure route, TCA is metabolized at low rates 
(<10%), mainly to four metabolites: trichloroethanol, trichloroethanol glucuronide, trichloroacetic acid, 
and carbon dioxide (Monster, 1979; Schumann et al., 1982a; Nolan et al., 1984; Mitoma et al., 1985; 
Reitz et al., 1988; Dallas et al., 1989; Kawai et al., 1991); Figure 10.2). Oxidative metabolism of TCA 
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by the cytochrome P-450 mixed-function oxidase system combined with other metabolic dehydrogenase 
enzymes forms trichloroethanol and trichloroacetic acid; trichloroethanol may be further metabolized 
via conjugation to form a glucuronide derivative. Cytochrome P450 2E1, specifically, is believed to play 
a role in TCA metabolism (Nakajima and Sato, 1979; Guengerich et al., 1991; Kaneko et al., 1994).  
Monster and coworkers found in humans exposed to 70 or 145 ppm of TCA for 4 hours, trichloroethanol 
and trichloroacetic acid excreted in the urine only accounted for 2 and 0.5%, respectively, of absorbed 
TCA (Monster et al., 1979). Another byproduct, acetylene, may also be formed from TCA in mammals 
via reductive dechlorination, though only under hypoxic conditions (Durk et al., 1992).  The metabolic 
pathway of TCA is shown in Figure 10.2, as well as in Figure 8.1 where interactive reaction network 
with the other three volatile organics is evident.  
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Figure 10.2. Metabolism of 1, 1, 1-Trichloroethane, reproduced from Agency for Toxic Substances  
and Disease Registry’s toxicological profile (ATSDR, 1995). 

 
 
10.2.4 Elimination 
 
The primary route of TCA elimination is exhalation of the parent compound, which occurs fairly rapidly 
following exposure due to TCA’s highly volatile nature (Monster, 1979; Monster et al., 1979; Hobara et 
al., 1982; Schumann et al., 1982c; Schumann et al., 1982a; Schumann et al., 1982b; Nolan et al., 1984). 
In humans exposed to 35 or 350 ppm for 6 hours, more than 91% of TCA absorbed was eliminated, 
unchanged, in exhaled air (Nolan et al., 1984). Similarly, in animals given 20 daily doses of TCA by 
gavage in vegetable oil followed by a single 14C-labeled bolus, 85.1 and 92.3% of TCA was excreted as 
parent compound via exhalation, from rats and mice, respectively, (Mitoma et al., 1985).   Both 
acetylene and carbon dioxide are excreted in expired air (Durk et al., 1992; ATSDR, 1995).  The other 
major metabolites, trichloroethanol, trichloroethanol glucuronide, and trichloroacetic acid are mainly 
eliminated via urinary excretion, though fecal excretion has also been observed (Caperos et al., 1982; 
Mitoma et al., 1985; Ghittori et al., 1987; Imbriani et al., 1988; Kawai et al., 1991).  
 
10.2.5 Species variations 
 
Because physiologically based pharmacokinetic (PBPK) modeling attempts to extrapolate between 
various species for risk assessment purposes, variations among species can affect model precision and 
accuracy.  Most aspects of TCA pharmacokinetics are similar among species, including absorption and 
elimination route. However, quantitative differences in blood:air partition coefficients as well as 
metabolism rates have been noted (Schumann et al., 1982b). Specifically, mice tend to have higher rates 
of TCA metabolism compared to rats and humans. Furthermore, blood:air partition coefficients, which 
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dramatically effect inhalation absorption differ: 2.53, 5.76, and 10.8 for humans, rats, and mice 
respectively (Reitz et al., 1988). 
 
10.3 PBPK modeling 
 
Attempts to construct PBPK models appropriate for TCA’s disposition have commonly used approaches 
similar to those developed in 1984 by Ramsey and Andersen (Ramsey and Andersen, 1984; Reitz et al., 
1988).  Based upon the Ramsey and Andersen model (RAM), a modified model was used to estimate 
metabolic kinetic constants using a closed, recirculated atmosphere representative of those used for gas 
uptake studies (Gargas et al., 1986). This study found that to adequately describe TCA disposition, its 
metabolism required only a first-order pathway, which was abolished when oxidative microsomal 
metabolism is inhibited. Reitz and colleagues utilized a model similar to the RAM to simulate exposure 
to TCA via inhalation, intravenous administration, bolus gavage, and in drinking water, and 
demonstrated the plausibility of using PBPK models in TCA risk assessment, based upon successful 
interspecies extrapolation (Reitz et al., 1988).  
 
Bogen and Hall used a derivation of the RAM with an additional compartment for skin to assess risk 
associated with TCA in drinking water, and found PBPK modeling predicted nontoxic TCA 
concentrations lower than the existing NOAELs (Bogen and Hall, 1989). Attempts to determine 
metabolic constants via PBPK modeling concluded that, due to low metabolism of TCA, gas uptake 
study techniques were too insensitive to sufficiently form a TCA PBPK model (Gargas and Andersen, 
1989). Absorption and elimination of TCA across time following an inhalation exposure was measured, 
and a PBPK model was built to predict TCA levels in blood and expired air (Dallas et al., 1989). As 
TCA contaminates both water and soil, percutaneous absorption has been modeled in rats and humans, 
including simulations specific for exposure to children (Poet et al., 2000). Notably, combination of 
quantitative structure-property relationships with traditional PBPK modeling has successfully predicted 
inhalation pharmacokinetics for TCA, as well as other volatile organic chemicals (Beliveau et al., 2003).  
 
Within the context of utilizing biological monitoring to assess exposure, especially in a work 
environment, PBPK models of TCA have been applied. Droz and coworkers first developed a 
population physiological model to investigate variability in biological monitoring, then applied the 
model to assess how alterations in components such as workload, organ function, and body build 
affected the model’s ability to accurately determine TCA exposure (Droz et al., 1989a,b). Comparison 
of various exposure scenarios on alterations in biological monitoring using PBPK modeling has been 
used to determine which biological indices, i.e., parent compound versus metabolite in various 
biological media, are best suited to assess exposure to TCA (Lapare et al., 1995). A linear four-
compartment mass-balance model was used to not only assess uptake and elimination of TCA in human 
subjects at environmentally feasible levels, but also predict exhaled TCA concentrations in another 
human study (Wallace et al., 1997). Analysis of various PBPK models for a series of chemicals, 
including TCA, has allowed analysis of pharmacokinetic model output sensitivity to variability in both 
biochemical and metabolic input parameters (Hetrick et al., 1991).  
 
Because exposure to a single chemical compound in industrial or environmental exposure settings is 
unlikely, examination of chemical in mixtures is necessary. Koizumi and coworkers performed 
inhalation studies to investigate co-exposure of TCA with perchloroethylene, and found significant 
decreases in formation of TCA metabolites due to co-exposure with perchloroethylene (Koizumi et al., 
1983). Further, Tardif and Charest-Tardif noted decreases in excretion of TCA metabolites following 
co-exposure with m-xylene (Tardif and Charest-Tardif, 1999). Dobrev and associates successfully 
modeled competitive inhibition of trichloroethylene by TCA and tetrachloroethylene, likely due to a 
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shared metabolic pathway with limited enzymatic capacity, specifically the cytochrome P450s (Dobrev 
et al., 2001).  Further work by Dobrev and associates also used a combination of tetrachloroethylene, 
perchloroethylene, and TCA to assess possible interactions which might change observed toxicity 
(Dobrev et al., 2002). The findings indicated that co-exposure to the three chlorinated hydrocarbons lead 
to a nonlinear increase in toxic conjugative metabolites of tetrachloroethylene (which are associated 
with renal toxicity and/or carcinogenicity), possibly indicating a greater than additive risk associated 
with exposure to the chemical mixture. Although metabolism of TCA is relatively low (<10%), its 
ability to interact with essential metabolic enzymes may confer TCA the ability to inhibit or decrease 
metabolism/detoxification of other chemicals, especially other organic solvents. Alternatively, because 
of comparatively low affinity for the cytochrome P450s, formation of TCA metabolites (especially 
trichloroethanol and trichloroacetic acid) may be reduced due to enzymatic inhibition caused by co-
exposure with other chemicals.  
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