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Uncertainties in Biologically-Based Modeling 
of Formaldehyde-Induced Respiratory Cancer Risk: 
Identification of Key Issues 

Ravi P. Subramaniam,1∗ Chao Chen,1 Kenny S. Crump,2 Danielle DeVoney,1 John F. Fox,1 

Christopher J. Portier,3 Paul M. Schlosser,1 Chad M. Thompson,1 and Paul White1 

In a series of articles and a health-risk assessment report, scientists at the CIIT Hamner Insti­
tutes developed a model (CIIT model) for estimating respiratory cancer risk due to inhaled 
formaldehyde within a conceptual framework incorporating extensive mechanistic informa­
tion and advanced computational methods at the toxicokinetic and toxicodynamic levels. Sev­
eral regulatory bodies have utilized predictions from this model; on the other hand, upon de­
tailed evaluation the California EPA has decided against doing so. In this article, we study 
the CIIT model to identify key biological and statistical uncertainties that need careful eval­
uation if such two-stage clonal expansion models are to be used for extrapolation of cancer 
risk from animal bioassays to human exposure. Broadly, these issues pertain to the use and 
interpretation of experimental labeling index and tumor data, the evaluation and biological 
interpretation of estimated parameters, and uncertainties in model specification, in particular 
that of initiated cells. We also identify key uncertainties in the scale-up of the CIIT model to 
humans, focusing on assumptions underlying model parameters for cell replication rates and 
formaldehyde-induced mutation. We discuss uncertainties in identifying parameter values in 
the model used to estimate and extrapolate DNA protein cross-link levels. The authors of 
the CIIT modeling endeavor characterized their human risk estimates as “conservative in the 
face of modeling uncertainties.” The uncertainties discussed in this article indicate that such 
a claim is premature. 
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the selection of model structure and identification 

1. INTRODUCTION	 replacing default methods with appropriate data. 
These models often require various assumptions in 

Biologically-based models have the potential to 
reduce scientific uncertainties in risk assessment by 

of key parameters that influence model predictions. 
Even where data are available to inform a param­
eter or model component, normal variability and 
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placement of a model within this hierarchy is cru-
cial. Recently, scientists at the CIIT Hamner Insti­
tutes developed a mathematical model to predict 
respiratory cancer risk at environmental exposures 
due to inhaled formaldehyde with emphasis on us-
ing available mechanistic information and using mul­
tiple computational models to interpret bioassay data 
(CIIT, 1999; Conolly et al., 2000, 2003, 2004; Kimbell 
et al., 2001a, 2001b; Overton et al., 2001). We refer 
to these efforts collectively as the CIIT model. The 
purpose of this article is two-fold: 

1. to identify issues	 that need careful evalua­
tion when BBDR models such as the CIIT 
formaldehyde model are used for risk extrap­
olation purposes and 

2. to identify various biological inferences and 
hypotheses that can be generated using this 
model, but that have not been indicated in 
previous publications related to the CIIT 
model, and to discuss their plausibility in the 
context of the biological information at hand. 

The CIIT risk assessment utilized data from two 
long-term bioassays that found increased incidence 
of nasal squamous cell carcinomas (SCC) in rats ex­
posed to formaldehyde by inhalation (Kerns et al., 
1983; Monticello et al., 1996). The resulting tumor 
occurrence was modeled using an approximation 
of the two-stage clonal growth model (Moolgavkar 
et al., 1988) and allowing formaldehyde to have di­
rectly mutagenic action. The model was initially cali­
brated to the tumor data in rats (Conolly et al., 2003) 
and subsequently extended to predict tumor risk in 
humans (Conolly et al., 2004). The inputs to the two-
stage modeling consisted of: 

1. Regional uptake of formaldehyde in the res­
piratory tract predicted using computational 
fluid dynamics (CFD) modeling in the F344 
rat and humans (Kimbell et al., 2001a, 2001b; 
Overton et al., 2001; Subramaniam et al., 
1998); 

2. Concentrations of DNA protein cross-links 
(DPX) in F344 rats and rhesus monkeys 
predicted by a physiologically-based phar­
macokinetic (PBPK) model (Conolly et al., 
2000); and 

3. Cell division rates inferred from labeling in­
dex data on rats exposed to formaldehyde 
(Monticello et al., 1990, 1991, 1996). 

A novel contribution of the CIIT model is that 
cell division rates and DPX concentrations are driven 

by the local concentration of formaldehyde. This 
was achieved by partitioning the nasal surface by 
formaldehyde flux to the tissue, resulting in 20 “flux 
bins” (Fig. 1). Each bin comprises elements (not nec­
essarily contiguous) of the nasal surface that receive 
a particular interval of formaldehyde flux per ppm of 
exposure concentration (Kimbell et al., 2001a). The 
spatial coordinates of elements comprising a particu­
lar flux bin are fixed for all exposure concentrations, 
with formaldehyde flux in a bin scaling linearly with 
exposure concentration (ppm). The number of cells 
at risk varies across the bins, as shown in Fig. 2. 
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Fig. 1. Flux bins in the model for formaldehyde dosimetry in the 
F344 rat nose. Y-axis is average formaldehyde flux per ppm of ex­
posure concentration in a given flux bin. In the model, flux scales 
linearly with exposure concentration (ppm). 
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Fig. 2. Distribution of cells at risk across flux bins in the F344 rat 
nasal lining. 
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The modeling effort in Conolly et al. (2003) 
inferred that the tumorigenicity of formaldehyde 
in Fisher’s 344 (F344) rats could be optimally 
(in the statistical sense) explained on the ba­
sis of cytotoxicity-driven regenerative cell prolif­
eration, without any contribution from a direct 
formaldehyde-induced mutagenic component. Ex­
trapolation of the cancer risk to humans with a scale­
up of this model produces a deminimis added risk 
due to mutagenicity at environmental exposure lev­
els using a statistical upper bound on the estimated 
parameter associated with this mutagenic compo­
nent (Conolly et al., 2004). Predictions from the CIIT 
model have been utilized by several regulatory bod­
ies in either deriving or as further evidence support­
ing exposure standards for formaldehyde (BfR, 2006; 
Health Canada, 2001; Liteplo & Meek, 2003; MAK 
Commission, 2006; USEPA, 2006a, 2006b). On the 
other hand, the California Environmental Protection 
Agency decided against using the CIIT modeling ef­
fort, citing the need for examining model uncertainty 
(CalEPA, 2005). 

In a previous article (Subramaniam et al., 
2007), we quantitatively examined the following 
uncertainties in Conolly et al. (2003): (a) the impact 
of applying solutions to the two-stage model that are 
valid only for a time-independent model, (b) the as­
sumption of rapidly fatal tumors, and (c) the impact 
of including historical controls from all National Tox­
icology Program (NTP) bioassays. In contrast to the 
conclusion in Conolly et al. (2003, 2004), we showed 
that, depending on the control data used, a large 
contribution from formaldehyde’s mutagenic action 
may be needed in the mathematical model to explain 
formaldehyde carcinogenicity. The focus of this arti­
cle is to outline additional uncertainties in Conolly 
et al. (2003, 2004) and the inferences that can be 
drawn from their modeling. These issues pertain 
to 

1. the characterization of normal cell replication 
rates, 

2. the model structure for relating initiated cell 
division and death rates to corresponding 
rates in normal cells, 

3. the extrapolation of cell replication rates to 
humans from those characterized for the F344 
rat, and 

4. the use and extrapolation of data on DNA 
protein cross-links. 

2. KEY ISSUES AND INFERENCES 

2.1. Replication Rates for Normal Cells (αN ) 

Cell replication rates in Conolly et al. (2003) 
were obtained by pooling labeling data from two 
phases of a study in which male F344 rats were ex­
posed to formaldehyde gas at similar concentrations 
(0., 0.7, 2.0, 6.0, 10.0, or 15.0 ppm). The first phase 
employed injection labeling with a two-hour pulse la­
beling time and animals were exposed to formalde­
hyde for early exposure periods of 1, 4, and 9 days, 
and 6 weeks (Monticello et al., 1991). The second 
phase used osmotic minipumps for labeling with a 
120-hour labeling time to quantify labeling in ani­
mals exposed for 13, 26, 52, and 78 weeks (Monticello 
et al., 1996). Considerable uncertainty and variabil­
ity, both quantitative and qualitative, exist in the use 
and interpretation of these labeling data for charac­
terizing a dose response for cell replication rates. We 
discuss the primary issues here. 

Monticello et al. (1991, 1996) used unit length 
labeling index (ULLI) to quantify cell replication 
within the respiratory epithelium. ULLI is a ratio be­
tween a count of labeled cells and the correspond­
ing length (in millimeters) of basal membrane ex­
amined, whereas the per-cell labeling index (LI) is 
the ratio of labeled cells to all epithelial cells, in this 
case, along some length of basal membrane and its 
associated layer of epithelial cells. Monticello et al. 
(1991, 1996) published ULLI values averaged over 
replicate animals for each combination of exposure 
concentration, exposure time, and nasal site. Conolly 
et al. (2003) adopted the following procedure to con­
struct a dose-response curve for normal cell replica­
tion rates (αN as a function of formaldehyde flux) 
from these data. 

1. The injection labeled ULLI data were first 
normalized by the ratio of the average 
minipump ULLI for controls to the average 
injection labeled ULLI for controls. 

2. The ULLI average values (after the above 
normalization) were then weighted by the ex­
posure times in Monticello et al. (1991, 1996) 
and averaged over the nasal sites. Thus, the 
data were combined into one time-weighted 
average for each exposure concentration. 

3. LI was linearly related to the measured ULLI 
using data from a different experiment (Mon­
ticello et al., 1990) where both quantities had 
been measured for two sites in the nose. The 
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Fig. 3. Logarithm of normal cell replication rate αN versus formaldehyde flux (in units of pmol/mm2/h) for the F344 rat nasal epithelium. 
Values were derived from continuous unit length labeled data obtained by Monticello et al. (1996), for 4–6 individual animals at all 6 nasal 
sites (legend, sites as denoted in original article) and 4 exposure durations (13, 26, 52, 78 weeks). Each point represents a measurement for 
one rat, at one nasal site, and at a given exposure time. Filled red circles: αN (flux) used in Conolly et al. (2003) plotted at their averaged 
flux values (see text for details). Long dashed lines: their linear interpolation between points. Short dashed line: their linear extrapolation 
for flux value >9,340 pmol/mm2/h (see Fig. 5 for full range of extrapolation). Note: Linear interpolation/extrapolation is shown with y-axis 
transformed to logarithmic scale. 

mean value of 0.60 for the ratio ULLI/LI was 
then used. 

4. Cell replication	 rates of normal cells (αN ) 
were then calculated using an approximation 
due to Moolgavkar and Luebeck (1992); given 
by αN = (−0.5/t)log(1 − LI), where LI is the 
labeling index, and t is the period of labeling 
(120 hours; Monticello et al., 1996). 

5. This	 was repeated for each exposure con­
centration of formaldehyde, resulting in one 
value of αN for each exposure concentration. 

6. Correspondingly, for a given exposure con­
centration, the steady-state formaldehyde flux 
into tissue, computed by CFD modeling, 
was averaged over all nasal sites. Thus, the 
αN (flux) constructed by Conolly et al. (2003) 
consisted of a single αN and a single average 
flux for each of six exposures. 

However, the formula for αN in Step 4 above 
was derived for continuous labeled index, and Mool­
gavkar and Luebeck caution that it is not applicable 
for pulse-labeled data. The application of this for­
mula to the injection (pulse)-labeled data is problem­

atic because two-hour pulse-labeled data represent 
the pool of cells in S-phase rather than the rate at 
which cells are recruited to the pool and because the 
baseline values of αN obtained in this manner from 
both data sets differ considerably. Therefore, we re­
strict our analysis below to the continuous labeled 
data (Monticello et al., 1996). 

Fig. 3 shows the variability due to replicate an­
imals, exposure times, and nasal sites in the con­
tinuous labeled data obtained by Monticello et al. 
(1996). The unit length labeling index data for in­
dividual animals were provided to us by CIIT. In 
this figure, we plotted log αN versus site-specific flux 
for six sites and four exposure times for four to six 
replicate animals in each case. Each point represents 
data from a single site for a single animal at a given 
time. The αN (flux) tabulated in Conolly et al. (2003) 
are also plotted in this figure at their averaged flux 
values (filled circles). For flux >9,340 pmol/mm2/h, 
Conolly et al. extrapolated this empirically derived 
αN (flux) using a scheme discussed below in Section 
2.1.1. The curves shown connecting the filled cir­
cles in the figure represent their linear interpolation 
(long dashes) between the six points. Their linear 
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(a) (i.e., a class or indicator variable, τ i representing the 
13 weeks 26 weeks effect of the ith time), 

log(αN) = a + b · flux + c · flux2 + d · flux3 + τi . 

The variability considered is that among animals 
and any measurement error as well as any other 
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Fig. 5 for the full range of flux values used in 
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associated with high cancer incidence. Monticello 
et al. found a high correlation between tumor rate 
and the unit length labeling index weighted by the 
number of cells at a site. Therefore, considering these 
factors while regressing αN against tissue dose would 
be important in the context of site differences in tu­
mor response. A further complexity arises because of 
histological changes and thickening that occurs in the 
nasal epithelium over time in the higher-dose groups 
(Morgan, 1997), factors that are likely to affect esti­
mates of replication rates. 

The more relevant question, however, is whether 
the use of a time-weighted average over all sites 
has an effect on low-dose risk estimates. It would 
also be useful to examine if the time-dependence af­
fects the results of the time-to-tumor modeling and 
whether early temporal changes in replication rate 
are important to consider because of the generally 
cumulative nature of cancer risk. The time window 
over which formaldehyde-induced cancer risk is most 
influenced is not known, but the time weighting as­
signs a relatively low weight to labeling observed at 
early times compared with those observed at later 
time points. Finally, initiated cells are likely to be 
replicating at higher rates than normal cells as ev­
idenced in several studies on premalignant lesions 
(Rotstein et al., 1986; Dragan et al., 1995; Coste et al., 
1996). Therefore, labeling index data as an estima­
tor of normal cell replication rate would be most re­
liable at early times when the mix of cell samples in-
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cludes fewer preneoplastic or neoplastic cells. Given 
the above uncertainties and variability not character­
ized in CIIT (1999) or in Conolly et al. (2003), we be­
lieve it is important to examine whether additional 
dose-response curves that fit the cell replication 
data reasonably well have an impact on estimated 
risk. 

2.1.1. Upward Extrapolation of Normal Cell 
Division Rate 

The extensive labeling data collected by Mon­
ticello et al. (1991, 1996) present an opportunity to 
use precursor data in assessing cancer risk. The at­
tempt to apply these data (collected at specific sites 
and as averaged) to the full set of 20 flux bins from 
the CFD model, however, leads to a difficulty in 
Conolly et al. (2003). Because of the averaging and 
the fact that replication data were not collected at 
sites where the very highest fluxes are predicted 
to occur, the empirical data could only be used to 
determine αN(flux) for the lower flux range, 0–9, 
340 pmol/mm2/h, whereas the highest computed flux 
at 15.0 ppm exposure was 39,300 pmol/mm2/h. There­
fore, Conolly et al. introduced an adjustable parame­
ter, αmax, that represented the value of αN(flux) at the 
maximum flux of 39,300 pmol/mm2/h. αmax was esti­
mated by maximizing the likelihood of the two-stage 
model fit to the tumor incidence data. For 9,340 < 

flux ≤ 39,300 pmol/mm2/h, αN(flux) was determined 
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by linear interpolation from αN(9,340) to αmax, as  
shown by the dashed line in Fig. 5. 

2.2. Division and Death Rate of Initiated Cells 

The results of a two-stage model are extremely 
sensitive to the values for initiated cell division (αI) 
and death (β I) rates, particularly in the case of a 
sharply rising dose-response curve as in the case of 
formaldehyde. The pool of cells used for obtaining 
the available labeling index data (Monticello et al., 
1991, 1996) consists of largely normal cells with per­
haps increasing numbers of initiated cells at higher 
exposure concentrations. Since the division rates of 
initiated cells in the nasal epithelium, either back­
ground or formaldehyde-exposed, could not be in­
ferred from the available empirical data, Conolly 
et al. made what they perceived to be a biologically 
reasonable assumption for α I. Conolly et al. assumed 
αI to be linked to αN by 

αI = αN{multb − multc × max[αN − αN(basal), 0]}, 
(1) 

where αN ≡ αN (flux), αN ( basal) is the estimated aver­
age cell division rate in unexposed normal cells, and 
multb and multc are unknown parameters estimated 
by likelihood optimization against the tumor data.4 

Dose-response curves for αN and αI in the Conolly 
et al. model are depicted in Fig. 5. The main panel 
in this figure was generated using the J-shaped cell 
replication dose response and the optimized values of 
the parameters in Conolly et al. (2003) for this case. 

As shown in Fig. 5, αI is estimated in Conolly 
et al. (2003) to be very similar to αN. That is, with 
Equation (1) assumed to relate α I(flux) to αN (flux), 
a J (or hockey)-shaped dose-response curve for 
αN (flux) results in a J (or hockey) for αI(flux). The 
J-shape for the time-weighted averaged αN (flux) in 
Conolly et al. (2003) could plausibly be explained, 
as suggested by the examples in Conolly and Lutz 
(2004), by a mathematical superposition of dose-
response curves describing the effects of (a) the 
inhibition of cell replication by the formation of 
DPX (Heck & Casanova, 1999), and (b) cytotoxicity-
induced regenerative replication (Conolly et al., 
2002). As explained earlier, there is considerable un­
certainty and variability, both qualitative and quan­
titative, in the interpretation of the labeling index 

4multb and multc were equal to 1.072 and 2.583, respectively 
(J-shaped αN ), and 1.070 and 2.515, respectively (hockey-stick 
shaped αN ). 

data, and in the derivation of cell replication rates 
from the unit-length labeling index data. Notwith­
standing this uncertainty-variability, and in the 
absence of data, the essential question is whether 
mechanisms that explain a J-shaped dose response 
for normal cell replication or a cytotoxicity-driven 
threshold in doseresponse (as indicated by a hockey­
stick-shaped curve) should be expected to pre­
vail also for initiated cells. Furthermore, would the 
formaldehyde flux at which the cell replication dose-
response curve rises above its baseline be similar in 
value for both normal and initiated cells as inferred 
by the CIIT model in Fig. 5? 

In general, normal and initiated cells represent 
distinctly different cell populations with regard to 
proliferation response (Ceder et al., 2007; Dragan 
et al., 1995; Coste et al., 1996; Schulte-Hermann et al., 
1997; Bull, 2000). The hypothesis that formaldehyde-
induced DPX blocks cell replication, a step that re­
quires activation of a checkpoint in the cell cycle for 
DNA repair, was made for normal cells. If exposure 
to formaldehyde leads to loss of function of p53 or 
other key cell cycle genes in the rat via mutation, 
deletion, or silencing, then it is less likely that DNA 
replication would be blocked in such cells. p53 muta­
tions have been identified in formaldehyde-induced 
preneoplastic and neoplastic lesions in nasal passages 
of rats exposed to 15 ppm formaldehyde5 (Recio 
et al., 1992, 1997; Wolf et al., 1995); these data are 
discussed further below. Furthermore, initiated cells 
are generally thought to be resistant to the cytotoxic­
ity that inhibits proliferation in a normal cell (Farber, 
1984; Tsuda et al., 1980; Glick & Yuspa, 1994). 

The hazard function in Conolly et al. (2003) de­
pends on the birth rate (αI) and death rates (β I) of  
initiated cells (as opposed to depending only on the 
net rate, αI – β I). The calibration of the model in 
Conolly et al. (2003) is most influenced by the high-
dose animal data while its use in Conolly et al. (2004) 
is for low-dose human exposure. Parameters αI and 
β I are therefore separately important to this prob­
lem in contrast to some epidemiologic applications 
where only the difference is critical (Moolgavkar & 
Luebeck, 1990). In the absence of data, it is there­
fore necessary to make a reasonable assumption re­
garding β I in order to implement a two-stage model. 
Conolly et al. (2003, 2004) considered β I to be a 

5It may be noted that p53 mutations have also been indicated by 
the data of Shaham et al. (2003) in human exposures to formalde­
hyde well below cytotoxic concentrations, although the reliability 
of these data has been questioned. 
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function of local formaldehyde flux, and related this 
parameter to the cell division rate of normal cells. 
They assumed 

βI(flux) = αN(flux). (2) 

(Note that the growth of the population of normal 
cells is specified in a deterministic manner, so the 
death rate of normal cells βN does not explicitly enter 
the dynamics.) 

In the rest of this section, we seek plausible bi­
ological inferences that arise from the assumption 
given by Equations (1) and (2) in Conolly et al., 
and discuss them in the context of what is known 
qualitatively. With the assumption in Equation (2), 
the net growth rate of initiated clones (αI – β I) is  
made to depend exclusively on the replicative ad­
vantage that initiated cells have over normal cells 
and independent of variations in the death rate of 
initiated cells. The logic behind Equation (2) was 
based on the following assumptions. First, for nor­
mal cells, βN (flux) = αN (flux); that is, the observed 
cell replication rates are indeed regenerative and 
to a good approximation balance their death rate. 
This would be the case on average if, apart from 
the age-dependent net growth of the normal nasal 
lining that is specified a priori  by a growth curve, 
the total number of normal cells in the lining does 
not significantly change over time (as required in the 
model). Second, it was assumed that formaldehyde is 
equally cytotoxic to initiated and normal cells (since 
the mechanism is presumed to be via its general 
chemical reactivity). Then, one obtains β I = βN = 
αN , in essence bringing the cytotoxic action of 
formaldehyde to bear strongly upon the parametriza­
tion of the CIIT model. 

We now examine the implications of juxtapos­
ing the two aspects of the model structure for initi­
ated cells given by Equations (1) and (2) in Conolly 
et al. (2003). The ratio αI/αN as a function of 
formaldehyde flux in Conolly et al. (2003) is shown in 
Fig. 6. For the model specification that best fits the 
tumor incidence data, αI/αN > 1.0 for flux < 27,975 
pmole/mm2/h, while for higher flux values αI/αN < 

1.0. In Conolly et al. while β I = αN is an assump­
tion, the relationship of αI < αN at higher flux is a 
result of fitting the model to the tumor data. Set­
ting β I = αN and αI < αN implies that initiated 
cells die at a faster rate than they divide, thus reduc­
ing the contribution to the calculated tumor prob­
ability from elements on the nasal surface that are 
subject to these higher flux levels. A possible expla­
nation for this effect is that preferential cell-killing 
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Fig. 6. Flux dependence of ratio of initiated and normal cell repli­
cation rates (α I/αN ) in CIIT model. Cell replication rate of initi­
ated cells is less than normal cell replication rate at flux exceeding 
the value denoted by the arrow. By assumption, the y-axis also 
represents (α I/β I) in Conolly et al. (2003). 

due to formaldehyde’s cytolethality could lead to 
extinction of the initiated cell clones in some re­
gions. Second, initiated clones at these flux levels are 
subject in the model to an extremely high rate of 
turnover. At these rates, the telomeres of such cells 
face erosion, eventually leading to extinction of cells 
(Weinberg, 2007, p. 388). Extinction of initiated 
clones is also presented in other two-stage modeling 
endeavors (Luebeck et al., 1991; Kopp-Schneider & 
Portier, 1992; Bogen, 1998). However, extinction of 
initiated clones at a specific region of the nasal lining 
throughout the course of the exposure would effec­
tively prevent the formation of tumors in that region. 
Therefore, it would be useful to extend the CIIT 
model to compute site-specific tumor risk and exam­
ine its predictions at locations where tumors were ob­
served in the rat. The effect of cytotoxicity on incipi­
ent clones of malignantly transformed cells could also 
be potentially relevant to the location of tumors. 

The inference from the model that formaldehyde 
has a selectively higher cytolethality for initiated cells 
compared to normal cells at high-enough flux levels 
is intriguing. Note that the effect of cytolethality on 
normal cells in Conolly et al. (2003) is the observed 
regenerative increase in cell replication. On the other 
hand, the inference regarding αI at high flux is ob­
tained on account of the model calibration in Conolly 
et al. and may depend upon the choices made in av­
eraging the cell replication data and in extrapolating 
those data above the range of observation. Nonethe­
less, the model structure reconciles these features of 
tumor-suppression at high formaldehyde fluxes with 
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its prediction of an overall increase in tumor risk 
with formaldehyde exposure. In the Appendix, we 
demonstrate how this is brought about. 

There is evidence indicating that generally 
αI > αN in epithelial and other tissue types with or 
without exposure to specific chemicals (Ceder et al., 
2007; Dragan et al., 1995; Schulte-Hermann et al., 
1999; Grasl-Kraupp et al., 2000; Coste et al., 1996). 
With regard to the inference generated by the opti­
mized model in Conolly et al. (2003) that αI < αN 

at high flux levels of formaldehyde, it is plausible 
that the mutation that leads to initiated cells also re­
duces their responsiveness (and reduces it progres­
sively with greater exposure concentrations) to the 
general cell replication signals that give rise to in­
creased normal cell replication. There is, however, no 
direct evidence for verification of this inference. 

There are, however, various data that indicate 
initiated cells to be considerably more resistant to cy­
totoxicity. Alcohol dehydrogenase 3 (ADH3) is the 
primary enzymatic defense against formaldehyde. 
The mRNA levels of ADH3 have been reported to 
be elevated in the basal layer of human oral epithelial 
tissue, proliferating cultured human normal oral ker­
atinocytes, and to be dramatically elevated in immor­
talized human oral keratinocytes compared to nor­
mal cells (Hedberg et al., 2000; Nilsson et al., 2004); 
and, moreover, it has been proposed that ADH3 
mRNA is a marker for keratinocyte proliferation 
(Nilsson et al., 2004). These data suggest that initiated 
cells may have excess clearance capacity afforded by 
readily available ADH3 mRNA. Initiated cells in the 
liver, both spontaneous and chemically induced, have 
been demonstrated to be resistant to cytotoxicity at 
an early stage for a large number of chemicals. Such 
a resistance is manifested variably as decreased abil­
ity of the toxicant to induce cell death or to inhibit 
cell proliferation compared to corresponding effects 
in normal cells (Farber, 1984; Tsuda et al., 1980). 
This resistance, thought to be critical to the promo­
tion of liver tumors, is also considered to be brought 
about by elevated levels of several enzymes, includ­
ing glutathione transferase isoforms (Glick & Yuspa, 
1994). 

It is likely that initiated cells already have altered 
cell cycle control and thus the influence of formalde­
hyde on apoptosis likely differs between normal and 
initiated cells. In this regard, in vitro models for non­
malignant and malignant immortalized human oral 
keratinocyte cell lines, representing in vivo trans­
formed states, exhibit increases in both proliferation 
and apoptotic rates (Ceder et al., 2007). However, 

the immortalized cells are less responsive to signals 
of terminal differentiation than normal cells (Ceder 
et al., 2007), and thus this pathway may be impaired 
in initiated cells in vivo. Similarly, p53 mutations 
are associated with loss of cell cycle control and 
increased genomic instability (Adimoolam & Ford, 
2003), and may represent a marker for initiated cells. 
Recio et al. (1992) identified p53 mutations via PCR 
in five of eleven formaldehyde-induced tumors in ro­
dent nasal passages. In an expansion of this work, 
Wolf et al. (1995) identified mutant p53 protein in 
one lesion characterized as preneoplastic, but did not 
detect such mutants in lesions characterized as non­
neoplastic, metaplastic, and hyperplastic. Addition­
ally, higher levels of TGFα were found in preneoplas­
tic cells than in normal cells. Taken together, there 
are many data to suggest (1) that inferring αI < αN 

at cytotoxic formaldehyde flux levels is problematic, 
and (2) that β I would be quite different from βN . 

Thus, in the absence of data to indicate that 
Equations (1) and (2) are biologically reasonable ap­
proaches to link the kinetics of initiated cells with 
those of normal cells, alternate model structures 
other than those represented by these relationships 
considered by Conolly et al. need to be explored, 
given that the two-stage model is extremely sensitive 
to α I and β I. Such an evaluation needs to primarily 
explore if the assumptions in Equations (1) and (2) 
significantly impact the intended use of the model, 
namely, extrapolation to low-dose human cancer risk 
and the calculation of an upper bound on human risk. 
Any such alternate model structure needs to provide 
a good fit to the time-to-tumor data. 

As a means of examining an alternate assump­
tion on β I , there is support to indicate that that some 
homeostatic mechanisms of growth control are re­
tained in preneoplastic cells so that apoptotic rates 
and cell replication rates are in general coupled; con­
sequently, death rates of initiated cells would rise 
with an increase in their division rates (Schulte-
Hermann et al., 1997, 1999; Moolgavkar, 1994; Grasl-
Kraupp et al., 2000). In the absence of data, other 
authors (Luebeck et al., 1995; Portier et al., 1996; 
Luebeck et al., 2000) have assumed the death rate of 
initiated cells to be proportional to their division rate 
across dose, that is, 

β = κ · αI β I, 

and allowed the constant of proportionality, κβ , to be  
estimated by optimization against tumor data. 
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2.3. Relevance of the Empirical Labeling Index 
Data and High Flux Bins 

As mentioned earlier, the dose response for αN 

in Conolly et al. (2003) explicitly utilizes the empirical 
labeling index data for roughly the lower one-fourth 
(0 to 9,340 pmol/mm2/h) of the flux range over which 
the model was calibrated (Fig. 5). To what extent 
then do the empirical labeling data influence model 
calibration and results? 

In Fig. 7, we plot the probability of tumor at 
the end of the study versus formaldehyde flux to the 
rat nasal lining at 15-ppm of formaldehyde exposure 
concentration. The ordinate is the tumor probabil­
ity corresponding to the hazard for a given flux bin 
and is a function of flux at 15-ppm exposure and the 
number of cells at risk exposed to that flux. (In inter­
preting this curve, note that it is the hazard, not the 
probability, that is additive over the flux bins. This is 
further clarified in the Appendix.) These results have 
not been reported previously. They were obtained 
using the source code and data sets kindly provided 
to us by Dr. Rory Conolly. (It may be noted that the 
Conolly et al. source code we used here is different 
from the code we developed in our previous article, 
Subramaniam et al. (2007).) We see that the proba­
bility of tumor is at the most equal to 0.005 in the 
flux range from 0 to 9,340 pmol/mm2/h, while the cal­
ibration of the model is most influenced by its fit to 
the tumor data at 10 and 15 ppm exposure concen­
trations, largely corresponding to flux greater than 
9,340 pmol/mm2/h. Thus, the replication rates com­
puted directly from the experimentally determined 
labeling data have limited influence on the fit to 
the tumor data and, therefore, on the estimation of 
other model parameters, including those relevant to 
the low-dose range. On the other hand, we found in 
our analysis that a 20% increase or decrease in the 
estimated parameter αmax (the cell replication rate 
corresponding to the upper end of the flux range at 
15-ppm exposure) degraded the fit to the tumor in­
cidence data considerably. Because of the interplay 
between the parameters estimated by optimization, 
this sensitivity of the model to αmax indicates that it 
is necessary to examine to what extent low-dose esti­
mates of risk are influenced by the uncertainty in its 
value. 

As an aside, we observe from Fig. 7 (and Fig. 1) 
that the maximum contribution to the probability of 
tumor at the 15-ppm exposure arises from interme­
diate levels of formaldehyde flux to the nasal tissue, 
corresponding to flux bins 8 through 12 in the model. 
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Fig. 7. Contribution to tumor probability at 15 ppm exposure con­
centration from 20 flux bins. X-axis is the average flux correspond­
ing to each flux bin. Results correspond to the optimal model in 
Conolly et al. (2003) with the hockey-stick model for cell division 
rates (their Tables 1 and 4). Dashed lines indicate flux range over 
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which the averaged empirical labeling index data are not available. 
(See Section 2.1.1.) 

This is because the number of cells in the high flux 
bins is an extremely small fraction in comparison to 
the total number of cells at risk (as seen from Fig. 2). 
As exposure concentration decreases, the maximum 
contribution to the tumor probability comes increas­
ingly from higher flux bin numbers (not shown in 
the figure but made evident in the Appendix). These 
results further suggest that the risk of nasal tumor 
is strongly site-specific across the entire exposure 
range for reactive gases like formaldehyde. When 
considered along with the uptake patterns shown 
in the simulations in Kimbell et al. (2001a, 2001b), 
our results suggest that sites in the rat nose, which 
present higher risk (for a given exposure), are more 
anteriorly located at lower exposure than at higher 
exposures. 

The optimal value of αmax was found by Conolly 
et al. (2003) to be 0.0435 h−1. As noted by the au­
thors, an argument in support of this value is that 
it corresponds to the inverse of the fastest cell cycle 
times found in the literature. Since the model treats 
the induced replication rates as being time-invariant, 
it means that cells in the high flux region(s) divide at 
the highest cell turnover rate ever observed through­
out most of an animal’s life. Is it possible that such 
a high level of replication can be sustained? Por­
tions of the anterior rat nose just posterior to the 
nasal vestibule undergo squamous metaplasia due to 
sustained formaldehyde exposure, and it is thought 

0 10000 20000 30000 40000 
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that this transformed cell type is more resistant to 
formaldehyde-induced toxicity (Kimbell et al., 1997). 
If the induced replication rate is indeed linked tightly 
with cytotoxicity, this suggests that the highest repli­
cation rates are not sustained long term. 

The need for a sensitivity analysis on the upward 
extrapolation to αmax in Conolly et al. (2003) is also 
indicated by Fig. 3. The value of αmax (log10αmax = 
−1.37) in their modeling is roughly an order of mag­
nitude greater than the values of αN (flux) at the high­
est flux levels in this figure. If the data pooled over all 
sites and times are to be used for αN (flux), then based 
solely on the trend in αN (flux) in Fig. 3, it appears 
unlikely that αN (flux) could increase up to this value 
of αmax. Visually, these empirically derived data sug­
gest that αN versus flux may be leveling off rather 
than increasing ten-fold. Thus, an alternative to the 
approach taken in Conolly et al. (2003) of estimating 
αmax via likelihood optimization against the tumor 
data is to use regressions of the empirical cell replica­
tion data to extrapolate αN (flux) outside the range of 
observation (recognizing the uncertainty and model 
dependence that still results from extrapolating well 
outside the range of observed data). 

2.4. Extrapolating Cell Replication Rates 
from Rat to Humans 

Because there are no equivalent labeling index 
data available for the human respiratory epithelium, 
the rat data from Monticello et al. (1991, 1996) were 
also directly applied to estimate cell division rates 
for humans in Conolly et al. (2004). Thus, the curves 
for the human αN (flux) or αI(flux) also acquired the 
hockey or J-shapes, as considered in the rat model. 
The only difference in the human estimate was in 
the fraction of cells considered capable of dividing 
(81.9% in the rat compared to 66.8% in the humans). 
As stated by the authors, such an extrapolation as­
sumes that “(1) the labeling indices, both baseline as 
well as arising from identical exposures to formalde­
hyde, are the same in rats and humans, and (2) the 
fractions of cells at risk, that is, having replicative po­
tential, are different.” 

There are data and arguments to indicate, how­
ever, that basal cell division rates differ across 
species. Considering that enzymatic metabolism 
plays a role in mitosis, one might expect a lower basal 
proliferation in humans compared to that in rats. For 
instance, West and Brown (2005) argue that DNA 
nucleotide substitution rates scale as mass to the in­
verse one-fourth power. 

But there are other factors that provide a con­
trary perspective and thereby highlight the scope of 
uncertainties in the human extrapolation. Chronic 
exposure to environmental insults is known to affect 
basal proliferation rates among humans (Calderon-
Garciduenas et al., 1999), leading to a level of pop­
ulation variability greater than the likely variability 
among laboratory rats housed in a controlled en­
vironment. Calderon-Garciduenas et al. found that 
the replicating fraction of nasal cells (from biop­
sies) for adult humans living in pristine environ­
ments was 14.5%, while for those living in Mexico 
City ranged from 24–30%. In contrast, Monticello 
et al. (1990) observed labeling indices of 4 and 7% in 
the septum and lateral meatus, respectively, of con­
trol F344 rats. Thus, nominally these observations 
suggest a higher basal replication rate in humans. 
Fabrikant and Cherry (1970) observed a labeling in­
dex (LI) of 6.1% in normal biopsy tissue from hu­
man subjects and also measured the length of the 
S-phase, thereby estimating a cell doubling time of 
∼200 hours, which corresponds to a replication rate 
of 3.5 · 10−3 h−1.6 This rate is an order of magnitude 
greater than the control level (3 · 10−4 h−1) used by  
Conolly et al. (2003, 2004). Comparison of these vari­
ous measures of replication is problematic due to dif­
ferences in the experimental methods for measuring 
labeling indices and converting them to replication 
rates. 

Although limited, there are some data that sug­
gest that exposure to formaldehyde increases cell 
replication at doses far below those that are consid­
ered to be cytotoxic. Tyihak et al. (2001) treated dif­
ferent human cell lines in culture to various doses 
(0.1 mM to 10 mM) of formaldehyde and found that 
the mitotic index increased at the lowest dose of 
0.1 mM, a dose that the authors considered to be 
nontoxic in their experiment. This finding considered 
along with the episodic nature of human exposure 
patterns, and human population variability and sus­
ceptibility (for example, polymorphisms in ADH3 
(Hedberg et al., 2001; Wu et al., 2007)) suggest that 
human risk estimates in Conolly et al. (2004) derived 
assuming cell replication rates to be higher than base­
line levels only under cytotoxic conditions may not 
be conservative. 

An important feature of the human extrapo­
lation in Conolly et al. (2004) is that it explicitly 

6We have been unable to find a more recent value in the literature 
for baseline replication rate (rather than just labeling index) in 
the human nasal epithelium. 
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incorporates regional nasal dosimetry of formalde­
hyde using a finite-element reconstruction of the 
nasal airways of a single Caucasian adult male 
(Subramaniam et al., 1998). However, there are con­
siderable interindividual variations in nasal anatomy 
(ICRP 66, 1994). For example, the nasal volumes 
of 10 adult nonsmoking subjects between 18 and 
50 years of age in a study in the United States varied 
between 15 ml and 60 ml (Santiago et al., 2001) and 
disease states can result in further variation (Singh 
et al., 1998). Therefore, population variability in the 
regional uptake of formaldehyde could potentially be 
large. The advantage of the CFD modeling approach, 
on the other hand, is that it allows for the effect of 
anatomical variations to be explicitly characterized, 
and is the subject of currently ongoing work (Garcia 
et al., 2008.) 

Formaldehyde dosimetry is also influenced by 
the occurrence of squamous metaplasia, an adaptive 
tissue conversion to squamous that occurs in nasal 
epithelium exposed to toxic tissue levels of formalde­
hyde. It has been observed to occur in rats at expo­
sure concentrations of 3 ppm and higher (Kimbell 
et al., 1997). Squamous epithelium is known to be 
considerably less absorbing of formaldehyde than 
other epithelial types (Kimbell et al., 1997). Overall, 
the highest flux levels of formaldehyde in the simu­
lations in Kimbell et al. (2001a) are seen in the re­
gion just posterior to the nasal vestibule. A conse­
quence of squamous metaplasia would be to “push” 
the higher levels of formaldehyde flux toward the 
more distal regions of the nose (Kimbell et al., 1997). 
The above dosimetric consequence is, however, not 
incorporated in the regional flux estimates provided 
in Kimbell et al. (2001a, 2001b) and could be a source 
of substantial uncertainty in the flux values used in 
the cancer modeling in Conolly et al. (2003). While 
the metaplastic adaptive effects may not be ger­
mane to human exposure scenarios in Conolly et al. 
(2004), they are reflected in the animal labeling index 
data used in the model. Incorporation of these tissue 
changes would make the modeling more complex, 
but the simulations in Kimbell et al. (1997) indicate 
that it would be possible to consider the above effects 
on dosimetry using their computational approach. 

2.5. Use and Estimation of DPX 

It was not known whether the DPX directly in­
duced mutations (Conolly et al., 2003; Merk & Speit, 
1998); therefore, Conolly et al. treated DPX as a 
dose surrogate indicative of the intercellular concen­

tration of formaldehyde leading to formaldehyde-
induced mutations. Regional DPX concentration lev­
els were estimated using a PBPK dosimetry model 
first developed for the F344 rat and rhesus mon­
key, and then scaled-up to predict levels in the 
humans (Conolly et al., 2000). The probability of 
formaldehyde-induced mutation per cell generation 
(μ) in the two-stage model was then linearly related 
to the estimated DPX concentration in the tissue 
(μ = μ0 + KMU × DPX). 

The PBPK model in Conolly et al. (2000) for pre­
dicting DPX levels in humans assumed three first-
order rate constants to be the same in humans as in 
the rat. These rates were for formaldehyde clearance, 
for formaldehyde binding to DNA, and for DPX re­
pair. Enzymatic metabolism of formaldehyde was as­
sumed to be saturable (in addition to the first-order, 
nonenzymatic removal rate). The saturation constant 
Km was estimated for the rhesus monkey by opti­
mizing against monkey DPX data. For humans, the 
model used this value of Km and the epithelial thick­
ness averaged over three regions of the rhesus mon­
key nose. The maximum rate of metabolism Vmax 

was estimated independently for the rat and rhesus 
monkey by fitting to the DPX data available for these 
species. This constant was then extrapolated to hu­
mans by assuming a power law scaling with body 
weight (BW); that is, Vmax = a · BWb, and the coeffi­
cient “a” and exponent “b” were derived from the 
independently estimated values of (Vmax)RAT and 
(Vmax)RHESUS. 

The extent of mechanistic data across species, 
as available in this case, is rarely seen with other 
chemicals, and the above scale-up procedure was 
an attempt to use both the rodent and primate 
DPX data. However, allometric relationships across 
species are generally based on regressing data from 
multiple species and usually multiple sources of data 
points. Thus, the empirical strength of a power-
law derived by using two data points (F344 rat and 
rhesus monkey) is extremely weak for use as an 
allometric relationship that can then be used to ex­
trapolate to humans. The following observations in­
dicate the need for further understanding of the un­
certainty in the values of the parameters Vmax and 
Km in the Conolly et al. (2000) models for predict­
ing DPX. First, Km varies by an order of magni­
tude across the rat and monkey models but is then 
considered invariant between the monkey and hu­
man models (Conolly et al., 2000). Second, the val­
ues in Conolly et al. (2000) for Vmax/Km, the low-dose 
limit of the rate of enzymatic metabolism, is roughly 
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similar between the rat and monkey but lower by a 
factor of six in humans. 

A factor that possibly contributes to these in­
consistencies is that a well-mixed compartment is 
assumed with regard to formaldehyde interaction 
with DNA and DPX is calculated as the amount of 
formaldehyde bound to DNA per unit volume of 
tissue. Formaldehyde and DPX concentrations are 
likely to have a sharp gradient with distance into the 
nasal mucosa (Georgieva et al., 2003). Considered to­
gether with interspecies differences in tissue thick­
ness, it is therefore uncertain as to whether DPX per 
unit volume or DPX per unit area of nasal lining is 
the more appropriate dose metric to be extrapolated. 

As mentioned earlier, there are important un­
resolved questions with regard to the role of DPX 
in formaldehyde-induced mutagenicity. Studies indi­
cate that DNA lesions remain after DPX removal, 
resulting in DNA damage (Quievryn & Zhitkovitch, 
2000; Speit & Schmid, 2006), and further that the in­
duction of DPX leads to other types of DNA and pro­
tein damage (Barker et al., 2005). Cell lines deficient 
in nucleotide excision repair and DNA-DNA cross­
link repair were more sensitive to formaldehyde-
induced micronuclei. DPX removal was not differ­
ent in these cell lines, indicating that events after 
DPX removal may result in DNA damage (Speit 
& Schmid, 2006). As such, these findings indicate 
the potential for formaldehyde-induced mutation af­
ter DPX removal and the accumulation of these 
secondary mutations. Because the residual lesions 
may be cleared more slowly than DPX (which was 
modeled as rapidly cleared), treating formaldehyde’s 
mutagenic action as proportional to DPX may un­
derrepresent its mutagenicity. Another potentially 
significant assumption is that the proportionality con­
stant KMU was considered equal for the first and sec­
ond mutational event. This assumption was made in 
order to develop a parsimonious model. Other un­
certainties pertaining to DPX clearance and the rel­
evance of rapid hourly variations in DPX levels have 
been addressed in our previous work (Subramaniam 
et al., 2007). 

3. CONCLUSION 

The strength of the CIIT risk assessment for 
inhaled formaldehyde is its incorporation of mech­
anistic information at various levels. In particular, 
it includes important interspecies differences in 
dosimetry and an amount of quantitative, mechanis­
tic data that are typically not available for a risk as­

sessment (e.g., DPX levels in rats and monkeys). In 
the case of a highly reactive and soluble gas such as 
formaldehyde, where portal of entry effects are im­
portant, local airway geometry plays a major role in 
uptake patterns (Kimbell et al., 2001a, 2001b). As 
there are major differences in rat and human nasal 
airway geometry and in the number of cells in various 
sections of the airways, dosimetric differences, which 
influence site-specific toxicity, may be major deter­
minants of risk. Biologically motivated models that 
explicitly incorporate such information have the po­
tential to substantially reduce scientific uncertainty 
in health risk assessment if the impact of model as­
sumptions can be adequately characterized. A novel 
contribution of the CIIT formaldehyde modeling is 
that cell replication rates and DNA protein cross-link 
concentrations are driven by local delivered dose, the 
formaldehyde flux to each region of nasal tissue, pre­
dicted for anatomically accurate representations of 
the nasal passages. 

Analysis of the CIIT effort helps identify a range 
of biological and statistical issues that can arise in the 
use of biologically-based dose-response models for 
low-dose extrapolation of cancer risk. The uncertain­
ties we identify in this article are both qualitative and 
quantitative in nature and arise in the use of the avail­
able cell replication, tumor, and DPX data, in the 
model specification, and in the evaluation of param­
eters. These issues, examined in the context of mod­
eling the data on F344 rats in Conolly et al. (2003), 
mainly pertain to: 

1. the model structure for initiated cells in the 
context of no data and the extreme sensitivity 
of a two-stage model to initiated cell birth and 
death rates; 

2. the	 characterization of the dose-response 
curve for normal cell replication rates, includ­
ing the upward extrapolation of this curve 
over a major part of the tissue dose range over 
which the model is parameterized; 

3. the appropriateness of combining pulse and 
continuous labeled data as a time-weighted 
average over all sites; and 

4. the potential importance of reflecting the vari­
ability in normal cell replication rates across 
nasal sites 

In addition, we identified a limited set of issues 
in Conolly et al. (2004) that we believe to impact 
the scale-up of risk estimates from rats to humans 
the most. The CIIT effort faces the difficulty that is 
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common to most interspecies extrapolation of 
toxicologic data: the lack of human data for esti­
mation of necessary parameters and variability in 
humans. This difficulty also exists when default ex­
trapolation methods are used, but the mechanistic 
details in a biologically motivated model can make 
the lack of human data and the resulting uncer­
tainties explicit and identifiable. On the other hand, 
a biologically motivated model, such as the CIIT 
model, where the extent of assumptions and uncer­
tainties is large, can result in replacing general re­
lationships in a baseline scientific explanation hav­
ing some empirical support with much more spe­
cific assumptions. These latter assumptions can have 
a large impact on risk extrapolation and, although 
appearing scientifically plausible, may have limited 
empirical support. In using the human extrapola­
tion in Conolly et al. (2004), we mainly identified 
uncertainties in: 

1. extrapolating rodent tumor formation to hu­
mans as parameterized in this model by the 
use of rodent cell labeling data; 

2. estimation of mutation dose response, which 
is assumed to depend here on the internal 
dose metric of DPX concentrations. 

Conolly et al. (2004) characterized the demi­
nimis human risk estimates derived from this model 
as being “conservative in face of model uncertain­
ties.” This assessment of conservatism was based, in 
part, upon their (1) use of the “hockey-stick” dose 
response for cell replication rates when the time-
weighted average of cell replication rates over sites 
allowed a J-shaped curve in the F344 rat; (2) in­
clusion of overall respiratory cancer incidence in 
estimation of baseline parameters in the human 
model; and (3) use of an upper bound for the co­
efficient relating formaldehyde-induced mutation to 
DPX concentrations. Given the potentially signif­
icant uncertainties identified in this article and in 
the limited analyses presented in Subramaniam et al. 
(2007), we believe that such a characterization is pre­
mature. A documented evaluation of these uncer­
tainties and, in the absence of data, the examination 
of alternate model structures is therefore needed. 
The characterization of initiated cell kinetics in the 
modeling is particularly debatable in view of the ex­
treme sensitivity of two-stage model risk estimates on 
initiated cell replication and death rates. Because of 
the paucity of these data, in this article we probed the 
inferences arising from the CIIT model structure for 
support from related biological evidence. The argu­

ments presented in this article provide grounds for 
considering the CIIT model structure as plausible. 
However, the biological evidence also provide strong 
motivation to consider very different relationships 
between the initiated and normal cells with regard 
to their replication and death rates than that consid­
ered in Conolly et al. (2003, 2004). This is likely to 
be the most important of uncertainties that can sub­
stantially impact both the rat clonal growth model 
for formaldehyde-induced nasal cancer as well as the 
corresponding model for extrapolation to the human 
respiratory tract. 
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APPENDIX 

Here we examine further our inference that ex­
posure to certain levels of regional formaldehyde 
flux leads to extinction of initiated cell clones (i.e., 
β I(flux) > αI(flux)) in the Conolly et al. (2003) 
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flux bin 6 

model. How is this reconciled with the fact that the 
overall tumor data to which the model is fitted are 0.14 
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probe this by examining model predictions for dif­
ferent flux bins at various exposure concentrations. 
In the model structure in Conolly et al. (2003), the 
overall hazard at a given exposure concentration is 
decomposed additively in terms of solutions for each 
flux bin. Then, if Pi(T) is the contribution to the 
tumor probability due to the average formaldehyde 
flux from flux bin “i” at a given exposure concentra­
tion, the cumulative probability of tumor at time T 
for the overall nose can be written as 

P(T) = 1 − [1 − Pi (T)], 

0.12 
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0.08 
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0.04 

0.02 

2 4 6 8 10 12 14 16 

Exposure concentration (ppm) i 

where the product is over the 20 flux bins. Pi(T) is a  Fig. A1. 
function of formaldehyde flux delivered to cells in bin 
“i” and the number of cells at risk in that bin. Recall posure. Thus, in essence, the drop in Pi that is seen 
now that: 

1. the average flux corresponding to a given flux 
bin increases linearly with exposure concen­

for some flux bins is “compensated” by the monoton­
ically increasing Pi for the other flux bins, and allows 
for the overall tumor probability for the entire nose 
to be monotonically increasing with exposure con­tration, and is given by Fig. 1, and 
centration. (Note that this figure is specific to the 20­2. the spatial coordinates of the elements of 
bin structure of the CIIT model. If the number of bins the nasal lining corresponding to a flux bin 
changes, the average flux corresponding to each bin (that is, receiving a given interval of flux per 
also changes.) These results have not been reported ppm of exposure concentration) are fixed in 
previously.location as exposure concentration changes 

Is the nonmonotonic nature of some curves in in the model.7 Therefore, a pertinent ques-
Fig. A1 plausibly an expression of cell killing at cy­tion is how Pi(T) changes with exposure 
totoxic levels of local flux? It will be useful to ex-concentration. 

Fig. A1 shows Pi(T) for five flux bins (i = 6, 
8, 12, 15, 18) as a function of exposure concentra­
tion for T = 793 days.8 The results correspond to 
the optimal model in Conolly et al. (2003) using pa­
rameters from Table 4 and using the hockey-stick­
shaped cell replication rates from Table 1 of that ar­
ticle. The results show a rapid decrease in the con­
tribution to the tumor probability from flux bins 
15 and 18 for exposure concentrations greater than 
10 ppm and 8 ppm, respectively. For flux bin 12, Pi 

decreases only for exposure concentrations greater 
than 14 ppm. On the other hand, Pi corresponding 
to bins 6 and 8 are monotonically increasing with ex­

7Note that these elements may generally be discontiguous across 
the nasal surface. 

8Note that the 15 ppm exposure data in Conolly et al. (2003) is for 
a longer duration. However, the purpose in Fig. A1 is to exam­
ine model behavior as a function of exposure. Therefore, T was 
maintained the same for all exposure concentrations in these sim­
ulations. 

amine whether alternate biologically plausible model 
structures for initiated cells also result in such a 
prediction. 
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