A Framework for Categorizing Biological Indicators According to their Sensitivity to Climate Change

Britta Bierwagen

Global Change Research Program
National Center for Environmental Assessment
Office of Research & Development
U.S. Environmental Protection Agency

Climate Change Effects on Biocriteria Workshop
March 27-29, 2007
Baltimore, MD
Key Messages

Biological indicators may be affected by climate change

Categorizing indicators according to climate sensitivity is one step in controlling for or detecting climate change effects
Outline

• A very brief overview of biocriteria
• How climate change affects biological indicators
• Categories of indicators
• Indicator classes
• Implementation of framework
Biocriteria

- Targets define desired biological condition of waterbody
 - Assess ecosystem health
 - Element of water quality standards

- EPA biocriteria guidance documents exist for:
 - Rivers & Streams, Lakes, Wetlands, Estuaries & Coastal Areas

- Biocriteria guidance is under development for:
 - Coral Reefs
State Biocriteria Program Goals

- Stressor identification
- Monitor BMP effectiveness
- TMDL assessment & monitoring
- Status & trends in water quality & condition
 - Baselines
 - Water quality standards
- Aquatic life uses determination
Climate Change & Biocriteria Programs

- Additional stressor on ecosystem
- Affects both reference & non-reference sites
- Current indicators may be confounded by climate change effects on ecosystems
- Biocriteria program management goals
 - Difficult to establish goal if baseline is changing
 - Or goals may be impossible to meet

Overview - Climate Change Effects - Categories of Indicators - Indicator Classes - Implementation of Framework
Climate Change & Biocriteria Programs

- Additional stressor on ecosystem
- Affects both reference & non-reference sites
- Current indicators may be confounded by climate change effects on ecosystems
- Biocriteria program management goals
 - Difficult to establish goal if baseline is changing
 - Or goals may be impossible to meet
Climate Change & Biocriteria Programs

• Additional stressor on ecosystem
• Affects both reference & non-reference sites
• Current indicators may be confounded by climate change effects on ecosystems
• Biocriteria program management goals
 ▪ Difficult to establish goal if baseline is changing
 ▪ Or goals may be impossible to meet
Climate Change & Biocriteria Programs

- Additional stressor on ecosystem
- Affects both reference & non-reference sites
- Current indicators may be confounded by climate change effects on ecosystems

- Biocriteria program management goals
 - Difficult to establish goal if baseline is changing
 - Or goals may be impossible to meet
How do existing biological indicators respond to climate change?
Categories of Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Insensitive to Climate Change</th>
<th>Sensitive to Climate Change</th>
<th>Sensitive to Climate Change and Other Stressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
<td>Warmwater fish</td>
<td>Fish community composition</td>
<td>Salmon egg to fry survival</td>
</tr>
<tr>
<td>Response</td>
<td>No change in majority of range</td>
<td>Cold- and coolwater fish species decline, warmwater fish species increase</td>
<td>Decreased survival due to increased turbidity from sediment input due to increased precipitation and/or land use change</td>
</tr>
</tbody>
</table>
What Defines Climate-Insensitive?

- Ecological events not cued to temperature
- Species is tolerant of broad temperature range
- Tolerant of wide range of hydrologic conditions
 - High flows or low flows
 - High variability in flow
 - Variation in salinity
What Defines Climate-Sensitive?

- Ecological events cued to temperature
- Species exists in narrow temperature range
- Intolerant of certain hydrologic conditions
 - High flows or low flows
 - Saltwater intrusion
Climate-Sensitive Indicator Classes

- Phenology (timing of emergence, reproduction, flowering, etc.)
- Number of reproductive periods
- Vulnerable life stage to climate variable
- Thermal tolerance
- Hydrological tolerance
Examples of Sensitive Indicators

Phenology

• Earlier emergence of stoneflies and mayflies with warmer temperatures
• Earlier trout spawning in warmer water
Examples of Sensitive Indicators

Longer growing season leads to an increase in the number of reproductive periods

- Increase in algal productivity
- Additional reproductive periods of amphipod species
Examples of Sensitive Indicators

Life stage vulnerable to climate variable

• Decrease in salmon egg to fry survival from increased turbidity from erosion
Examples of Sensitive Indicators

Thermal tolerance

• Increase in peak abundance of thermophilic copepod species
• Shift from cold- and coolwater to warmwater fish species
Examples of Sensitive Indicators

Hydrological tolerance

• Decline of drought intolerant mussel spp.
• Decrease in autumn spawning salmonid species
• Decrease in salt intolerant wetland plants
What are the next steps?
Using the Framework

• Evaluate and understand how current indicators respond to climate change

• Evaluate novel indicators to detect climate change

• Determine how indicator responses affect a Biological Condition Gradient and biocriteria in standards
Using the Framework

- Evaluate and understand how current indicators respond to climate change
- Evaluate novel indicators to detect climate change
- Determine how indicator responses affect a Biological Condition Gradient and biocriteria in standards
Using the Framework

- Evaluate and understand how current indicators respond to climate change
- Evaluate novel indicators to detect climate change
- Determine how indicator responses affect a Biological Condition Gradient and biocriteria in standards
Extending the framework

- Alter design of sampling and monitoring programs (Case Study 1)

- Monitor reference and non-reference sites for similar changes (Case Study 2)
Thank You!

Questions?