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DISCLAIMER

This issue paper does not represent and should not be construed to represent any agency

determination or policy.  This issue paper has not been externally reviewed.  The information is

being provided to assist the National Academy of Sciences in their review of the scientific issues

surrounding trichloroethylene health risks. 
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PREFACE

Publication of these issue papers is a part of EPA’s effort to develop a trichloroethylene

(TCE) human health risk assessment.  These issue papers were developed to provide scientific

and technical information to the National Academy of Sciences (NAS) for use in developing their

advice on how to best address the important scientific issues surrounding TCE health risks.  As

such, these papers discuss a wide range of perspectives and scientific information (current

through Fall 2004) on some of these important issues, highlighting areas of continuing

uncertainty and data that may be relevant.  They are intended to be useful characterizations of the

issues, not a presentation of EPA conclusions on these issues.  The papers have undergone

internal review within EPA, but they have not been externally reviewed.  The concepts presented

in these papers will eventually be addressed in EPA’s revised risk assessment of TCE, after the

advice from the NAS, along with comments from the EPA Science Advisory Board and the

public, as well as recently published scientific literature, have been incorporated. 
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THE TCE ISSUE PAPERS

BACKGROUND

In August 2001, a draft, Trichloroethylene (TCE) Health Risk Assessment: Synthesis and

Characterization, was released for external review.  This draft assessment drew on 16 “state-of-

the-science”  papers published as a supplemental issue of Environmental Health Perspectives

(Volume 108, Supplement 2, May 2000).  Subsequent to its release, EPA’s 2001 draft assessment

underwent a peer review by a panel of independent scientists through EPA’s Science Advisory

Board (SAB), which provided a peer review report in December 2002.  In addition, the public

submitted more than 800 pages of comments to EPA during a 120-day public comment period.

There are a number of important issues that EPA will need to examine as it moves 

forward in revising the draft TCE assessment.  These include issues raised not only in the SAB

peer review and public comments, but also by new scientific literature published since the release

of the state-of-the-science papers and EPA’s 2001 draft assessment.  Some of this research is

specific to the study of TCE or its metabolites while some of it describes advances in scientific

fields more generally but which have potential relevance to characterizing the human health risks

from TCE.  

In February 2004, EPA held a symposium so that authors of some of the TCE-specific

research that had been published since the release of the draft assessment could present their

findings in more detail.  This symposium represented only a limited cross section of recently

published research, but was reflective of the breadth of new relevant science that EPA will

consider in revising the assessment (the presentation slides and a transcript of the meeting are

available separately on EPA’s website and have already been sent to the NAS).  

In 2004, EPA, in cooperation with a number of other federal agencies, initiated a

consultation with the National Academy of Sciences (NAS) to provide advice on scientific issues

related to the health risk assessment of TCE.  It was recognized that a review by an NAS panel of

the important scientific issues would be beneficial and informative to clarify the state-of-the-

science as EPA moves forward in completing its health risk assessment.  A charge was

developed for the NAS through an Interagency Workgroup led by the White House Office of

Science and Technology Policy.  

PURPOSE OF THE TCE ISSUE PAPERS

Although EPA will need to address all of the issues identified in the charge to the NAS

panel in updating its assessment, EPA would like to focus the NAS panel’s attention on a subset

of issues that EPA believes to be most critical in developing a revised risk assessment, as

summarized in four issue papers developed by EPA staff:
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1. Issues in trichloroethylene pharmacokinetics;

2. Interactions of trichloroethylene, its metabolites, and other chemical exposures;

3. Role of peroxisome proliferator-activated receptor agonism and cell signaling in

trichloroethylene toxicity; and

4. Issues in trichloroethylene cancer epidemiology.

Each paper provides an overview of the science issues, a discussion of perspectives on

those issues (including the SAB and public comments), and an outline of some of the recently

published scientific literature.  The pharmacokinetics issue paper also summarizes results from a

recent collaboration with the U.S. Air Force on TCE pharmacokinetics, as well as EPA’s planned

approach for further refinement of the pharmacokinetic modeling of TCE and its metabolites. 

These scientific areas were selected because they are (a) critical to the hazard and/or dose-

response characterization of TCE; (b) scientifically complex and/or controversial; and (c) areas in

which substantial important scientific literature has been recently published.  The input from the

NAS on the topics described in the issue papers, as well as other topics put forth in the charge to

the NAS, should help to strengthen EPA’s revised TCE assessment.  

NEXT STEPS

The advice from the NAS, along with comments already received from the EPA SAB and

the public, as well as recently published scientific literature, will be incorporated into a revised

EPA risk assessment of TCE, strengthening its scientific basis.  Because of the substantial

amount of new information and analysis that is expected, the revised draft of the assessment will

undergo further peer review and public comment prior to completion.
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1.  INTRODUCTION AND PURPOSE

Understanding trichloroethylene (TCE) pharmacokinetics—absorption, distribution,

metabolism, and elimination—is critical to both the qualitative and quantitative assessment of

human health risks from environmental exposures.  On a qualitative level, pharmacokinetic

information can help to identify the chemical species that may be causally associated with

observed toxic responses.  In addition, the delineation of inter- and intraspecies differences can

provide insights into how laboratory animal and epidemiological data may inform overall human

health risks and into how individuals may differ in their susceptibility.  Quantitatively, this

information may allow the development of physiologically based pharmacokinetic (PBPK)

models to describe the relationship between external measures of exposure and internal measures

of toxicologically relevant dose.  However, it should be noted that the selection of appropriate

dose metrics depends not only on the reliability of PBPK data and models but also on the

understanding of the mode of action (MOA) for a particular toxic effect (issues regarding the

interactions of metabolites are discussed in a separate issue paper).  With an adequate database,

testing, and evaluation, quantitative results from PBPK models may then be used along with

MOA information to develop appropriate alternatives to default procedures for addressing the

pharmacokinetic component of a number of risk assessment issues, including extrapolation to

different exposure conditions (e.g., exposure routes, time-concentration patterns, co-exposures);

extrapolation across species (e.g., developing human equivalent doses or concentrations);

dose-response relationships (e.g., low-dose extrapolation, use in pharmacodynamic modeling);

uncertainty (e.g., due to pharmacokinetic complexity and/or data limitations); and variability

(e.g., differences in metabolism or clearance). 

This document is intended to provide an overview of TCE metabolism and PBPK

modeling to focus the National Research Council (NRC) committee’s advice on specific

scientific issues and approaches to addressing TCE pharmacokinetics for the purposes of risk

assessment.  This document, in discussing issues in TCE pharmacokinetics, refers to both past

work on TCE pharmacokinetics and to some of the recent studies that may be relevant for risk

assessment, but it is not intended to provide a complete survey and synthesis of the scientific

literature.  Sections 2 through 4 summarize the issues and uncertainties surrounding TCE

metabolism and PBPK models with particular attention to information from recent studies and

modeling efforts.  Section 5 describes the U.S. Environmental Protection Agency’s (EPA’s)

plans for continued development of a TCE PBPK model for use in a revised TCE risk

assessment.  Input from the National Academy of Sciences (NAS) regarding interpretation of the

information presented in the following sections, the availability of additional data sources, and
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possible improvements to EPA’s planned approach to PBPK modeling would help strengthen the

basis of EPA’s revised TCE assessment.

2.  TCE METABOLISM

Lash et al. (2000a) presented a comprehensive review of the absorption, distribution,

metabolism, and elimination of TCE and its metabolites as part of the State of the Science series

on TCE published in 2000, and a brief summary was presented in EPA’s 2001 draft risk

assessment (U.S. EPA, 2001).  TCE is rapidly and extensively absorbed by all routes of

environmental exposure—ingestion, inhalation, and dermal contact.  Once absorbed, TCE

distributes via the circulatory system throughout the body.  Because it is lipophilic, it can

accumulate in fat and other tissues, although the half-life of TCE in fatty tissues (on the order of

hours or days) is still much shorter than more persistent substances such as dioxins (on the order

of years).  The majority of TCE taken into the body is metabolized; direct exhalation is the other

major route of elimination of the parent (Lash et al., 2000a).  There are a number of complexities

regarding the full spectrum of metabolic pathways.  An understanding of the formation of TCE

metabolites and the pharmacokinetics of each of them is motivated by the potential toxicological

significance of many of these metabolites.  In particular, for many endpoints, the toxicity of TCE

is hypothesized to be attributable to one or more of these metabolites.  (The toxicology of TCE

metabolites and their interactions is discussed in more detail in a separate issue paper.)  Figure

2-1 presents a postulated scheme for the pathways of TCE metabolism, adapted from the work of

Lash et al. (2000a) and Clewell et al. (2000).  As shown in the figure, TCE metabolism occurs

through two main pathways—oxidation via the microsomal mixed-function oxidase (MFO)

system (i.e., P450s) and conjugation with glutathione (GSH) by glutathione-S transferases

(GSTs).  Several important issues related to these metabolic pathways are discussed below. 

Particular attention is given to recently published literature that may be informative.  Input from

NAS regarding the interpretation of this new information and its potential utility for quantitative

analysis would be helpful to EPA as it revises its draft assessment.  Of particular importance

across all the issues described below is whether sufficient information exists both within and

across species to quantify rates of TCE metabolism as well as the factors that may influence

differential flux through the various metabolic pathways.  These issues are critical to PBPK

model development and use because they inform the formation and relative concentrations of

metabolites in potential target organs.  Issues more directly related to pharmacokinetic modeling

are discussed in Sections 3 and 4.  
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2.1.  DCA FORMATION AND THE ROLE OF TCE OXIDE (EPOXIDE)

As noted in the Lash et al. (2000a) review, considerable uncertainty exists as to the extent

of DCA formation from TCE exposure.  Two potential sources of dichloroacetic acid (DCA)

formation, from trichloroethanol (TCOH) and from dechlorination of trichloroacetic acid (TCA),

were discussed in Lash et al. (2000a).  As reviewed in Bull (2000), DCA is one of the TCE

metabolites that has been hypothesized to be involved in liver tumor induction.  Although some

researchers have suggested that DCA levels are too low in mice and humans after TCE exposure

to play a significant role in TCE toxicity (e.g., Barton et al., 1999), it has also been noted that

DCA-induced toxicity has been observed at exposure levels for which DCA cannot be detected

in vivo (Bull et al., 2002).  Pharmacokinetic issues related to DCA formation are discussed

below; recent toxicological information regarding the potential role of DCA in TCE toxicity is

discussed in a separate issue paper. 

Detection of DCA production in vivo after TCE administration has been complicated by

reported problems with analytical methodologies that have led to artifactual formation of DCA

ex vivo when samples contain significant amounts of TCA (Ketcha et al., 1996).  Following the

discovery of these analytical issues, Merdink et al. (1998) re-evaluated the formation of DCA

from TCE, TCOH, and TCA in mice, with particular focus on the hypothesis that DCA is formed

from dechlorination of TCA.  They were unable to detect blood DCA in naive mice following

administration of TCE, TCOH, or TCA, and, even with pretreatment with DCA to reduce

clearance rates, they were unable to detect DCA following TCA administration.  They concluded

that “ [a]lthough there is significant uncertainty in the amount of DCA that could be generated

from TRI [TCE] or its metabolites, our experimental data and pharmacokinetic model

simulations suggest that DCA is likely formed as a short-lived intermediate metabolite.”  

However, it has been noted that when directly administered, DCA can produce significantly

elevated liver tumor incidence in mice at doses for which DCA blood levels remain below

analytical detection limits owing to DCA’s rapid metabolism (Bull et al., 2002; Kato-Weinstein

et al., 1998; Merdink et al., 1998).  Fisher et al. (1998) reported the results of a controlled human

exposure study in which DCA was detected in some, but not all, human blood samples.  To

minimize ex vivo formation of DCA resulting in chemical artifacts, the investigators analyzed

plasma rather than whole blood.  However, it is still difficult to determine whether the observed

inter-individual differences are due to intrinsic variability (e.g., differences in DCA degradation

via GST-zeta), measurement errors, or a combination of each. 

Much of the focus on DCA formation following TCE administration has been on

dechlorination of TCA.  For instance, Merdink et al. (2000) report trapping of a DCA radical

with the spin-trapping agent phenyl-tert-butyl nitroxide (PBN), identified by gas

chromatography/mass spectroscopy (GC/MS), in both a chemical Fenton system and rodent
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microsomal incubations with TCA as substrate.  On the other hand, the work by Guengerich and

colleagues has suggested that the source of DCA may be through a TCE oxide (epoxide)

intermediary.  Although oxidation of TCE by P450s results predominantly in chloral (CHL)

(Lash et al., 2000a), previous work of Miller and Guengerich (1983) had reported evidence of

formation of the epoxide as an independent oxidative pathway (i.e., not leading to formation of

CHL).  The epoxide itself may be of toxicological importance, either by itself through formation

of protein or DNA adducts or through subsequently formed reactive species (Guengerich, 2004). 

In addition, Cai and Guengerich (1999) recently reported that a significant amount of DCA

(about 35%) is formed from aqueous decomposition of TCE oxide via hydrolysis in an almost

pH-independent manner.  Because this reaction forming DCA is a chemical process rather than

mediated by enzymes, and because evidence suggests that some epoxide was formed from TCE

oxidation, Guengerich (2004) noted that DCA would be an expected product of TCE oxidation. 

2.2.  PATHWAYS OF GSH CONJUGATION AND SUBSEQUENT METABOLISM

As discussed in Lash et al. (2000b), TCE metabolism through the GSH pathway is

hypothesized to be involved in renal toxicity, but processing of GSH conjugates is complex and

poorly understood relative to the processing of oxidative metabolites.  The first stable product of

the conjugation of TCE is S-(1,2 dichlorovinyl)glutathione (DCVG).  A postulated scheme for

subsequent processing to dichlorovinylcysteine (DCVC), corresponding mercapturates

(N-acetyl-DCVC), and other compounds, is shown in Figure 2-1.  Evidence for the in vivo

activity of the GSH pathway in humans comes from Lash et al. (1999a), who reported detection

of DCVG in the blood of human volunteers exposed to TCE.  However, DCVC was not detected

in blood, and the mercapturates were detected only sporadically in urine.  Bloemen et al. (2001)

measured GSH pathway metabolites in the urine of human volunteers and occupationally

exposed workers and reported that levels were below detection limits in all cases.  

DCVC is thought to be a critical intermediate in the fate of GSH conjugates of TCE. 

Although one potential fate of DCVC is detoxification via N-acetylation to yield mercapturates,

bioactivation to a toxic form is a potential parallel pathway.  Thus, data on detoxification (e.g.,

urinary mercapturates) do not capture the total flux through the GSH pathway, and, in particular,

the data are not informative regarding the amount bioactivated (Lash et al., 2000a).  It has been

hypothesized that bioactivation is through the renal beta-lyase metabolism of DCVC, producing

reactive metabolites that may contribute to renal toxicity.  Recent in vitro data (Krause et al.,

2003; Lash et al., 2003) indicate that flavin-containing monooxygenases (FMO) also may be

toxicologically important for the bioactivation of DCVC, particularly in the human kidney. 

Moreover, there are multiple ways in which DCVC may become available in the kidney for

bioactivation.  GSH conjugates produced in the liver may be exported directly to the blood into
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systemic circulation, or to the bile, where they can be reabsorbed through the gut.  Although the

liver is the primary site of GSH conjugation, most tissues, including the kidney, contain GSTs

(Lash et al., 2000a).  In vitro studies (Cummings et al., 2000a, b; Cummings and Lash, 2000)

have reported GSH conjugation of TCE in rat and human kidney cells, suggesting a potential role

for local metabolism.  This work has also identified several GST isoforms in kidney cells that

may be involved in TCE metabolism. 

Although the work cited above may help lead to a better understanding of complex

pathways and the metabolism that results from TCE exposure, it appears to be limited for

developing a firm quantitative understanding of the relative rates of in vivo processing and the

bioactivation of conjugative metabolites.

2.3.  EXTRAHEPATIC METABOLISM

Although it is generally thought that the liver is the major site of TCE metabolism, P450s,

GSTs, and other metabolizing enzymes are distributed at varying levels of activity throughout

other tissues (Lash et al., 2000a).  Although extrahepatic metabolism may not contribute

significantly to overall mass balance (Lash et al., 2000a), it may be important locally in terms of

the toxicological effects from in situ production of metabolites.  Two sites of potential

importance are the lung and the male reproductive system (metabolism in the kidney was

discussed above).

2.3.1.  Oxidative Metabolism in the Lung

As discussed in Green (2000), the oxidative pathway of TCE metabolism in mouse lung

Clara cells is hypothesized to be responsible for the accumulation of CHL in mouse lungs,

leading to cytotoxicity.  Forkert and colleagues had previously reported cytotoxicity in mouse

lung Clara cells from TCE exposure (Forkert and Forkert, 1994; Forkert and Birch, 1989; Forkert

et al., 1985).  Green (2000) suggested that although the activity of enzymes is lower in the lung

as a whole than in the liver, the activity of P450 in the lung appears to be relatively higher than

the activity of enzymes involved in clearing CHL and TCOH (believed to be alcohol

dehydrogenase and uridine diphosphate (UDP)-glucuronosyl transferase [UGT]).  Hence, these

two metabolites may accumulate in the mouse lung and lead to toxicity.  Green (2000) suggests

that such a mechanism in mice may not be relevant to humans because there is little CYP2E1

activity in the human lungs as a whole.  In the draft TCE assessment, it was noted that metabolic

activity from whole lungs may give misleading results because of the variety of cell types in

which high activity in a few may be diluted by others with low activity.  Boers et al. (1999)

reported the number of Clara cells in the human lung and indicated that Clara cells both

contribute substantially to cell renewal and are important in the development of lung
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adenocarcinoma in humans.  In addition, the differential activities of the relevant enzymes in

human lung tissues and cell types have not been examined to date.  

2.3.2.  Metabolism in the Male Reproductive System

Reports of TCE exposure affecting the male reproductive system (reviewed in the 2001

draft TCE assessment), including the observation of Leydig cell tumors in rats exposed to TCE

(Maltoni et al., 1988, 1986), have led to the investigation of metabolism and toxicity of TCE and

its metabolites in the male reproductive system.  Forkert et al. (2003, 2002) report several studies

that indicate TCE oxidative metabolism occurs in the male reproductive tract.  They detected

CYP2E1 activity in the epididymal epithelium and testicular Leydig cells in mice, monkeys, and

humans.  Analysis of seminal fluid from eight human subjects diagnosed with clinical infertility

and exposed to TCE occupationally was also performed and showed the presence of TCE, CHL,

and TCOH in all eight subjects; DCA in two subjects; and TCA in one subject.  TCA and/or

TCOH were identified in urine samples from only two subjects.  Although the lack of detailed

exposure information limits the use of these data for development of a quantitative

pharmacokinetic understanding, this evidence is qualitatively informative regarding the potential

for local metabolism of TCE in the male reproductive tract.

3.  EXISTING TCE PBPK MODELS

Multiple PBPK models published for TCE and its metabolites show varying levels of

detail and data consistency.  The focus of most of these models has been on the oxidative

pathway and the major oxidative metabolites TCA, TCOH, and TCOH glucuronide (TCOG),

reflecting the limited quantitative understanding described above for the other metabolic

pathways.  Section 3.1 briefly describes the models previously used in developing EPA’s 2001

draft risk assessment.  The draft assessment noted a substantial amount of model uncertainty

because the models sometimes provided disparate internal dose predictions, differing in some

cases by an order of magnitude.  Section 3.2 describes recent efforts sponsored by EPA and the

U.S. Air Force to develop a revised interim TCE PBPK model.

3.1.  PUBLISHED TCE PBPK MODELS USED IN EPA’S 2001 DRAFT RISK

ASSESSMENT

The PBPK models used in EPA’s 2001 draft risk assessment were described in detail

elsewhere (Fisher, 2000; Clewell et al., 2000; Bois, 2000a, b, and references therein) and are

briefly summarized below. 
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3.1.1.  Models Had a Common Basis

All the models described below are extensions of the earlier published models of Fisher et

al. (1991) for rats and mice and Allen and Fisher (1993) for humans.  The structures of these

“ first generation”  models were similar to that for styrene, reported by Ramsey and Andersen

(1984), which has been used as the basis for a number of PBPK models for volatile organic

solvents.  Common characteristics of these models include the following:

• Physiological compartments included the liver and fat, lumped rapidly, and slowly
perfused tissues, where transport in and out is perfusion limited with rapid
equilibrium partitioning between the tissues and the venous blood leaving the tissues.

• Gas exchange in the lung occurring via rapid equilibrium partitioning between
alveolar air and arterial blood.

• Oxidative metabolism, modeled as a saturated (Michaelis-Menten) process, occurring
in the liver, with the metabolite TCA lumped into an equivalent volume of
distribution.

The models described below built on this early work to include additional physiological

compartments and a more detailed description of metabolism.  

3.1.2.  “ Second Generation”  Fisher  Models

3.1.2.1.  Updated Mouse PBPK Model 

Abbas and Fisher (1997) and Greenberg et al. (1999) developed updated PBPK models

for TCE and its metabolites in mice for both oral (corn oil gavage) and inhalation exposure,

respectively.  The number of parent compartments was expanded with the addition of a lung,

kidney, and gut compartment.  Additional metabolites included in the model were CHL/chloral

hydrate (CH), TCA, TCOH, TCOG, and dichloroacetic acid (DCA).  Physiological submodels

for each metabolite, with liver, kidney, lung, and a lumped body compartment, were linked to the

parent model and to each other through liver metabolism.  Physiological parameters were taken

or derived from the literature; chemical-specific parameters were measured experimentally or

inferred from the experimental data.  New time-course data, which included extensive metabolite

measurements in multiple tissues, were used for calibration and/or validation.  For the inhalation

experiments, previously collected time-courses (Fisher et al., 1991) were also used for validation

purposes.  Fisher (2000), in reviewing these efforts, noted several unresolved discrepancies in

model parameters, including the following:
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• In the inhalation experiments, a fractional uptake of 53% in the lung was
hypothesized that significantly improved the model fit to the data.  

• Several metabolic rate constants derived from model calibration differed significantly
between oral and inhalation exposures. 

3.1.2.2.  Updated Human PBPK Model

Fisher et al. (1998) developed an updated human PBPK model for TCE and its

metabolites.  The model structure was similar to the mouse model, with an expanded

physiological model for TCE and physiological submodels for metabolites.  However, the

metabolic scheme included only TCA, TCOH, and TCOG (Figure 3-1) because those were the

only metabolites consistently and reliably detected in experimental data.  New time-course data

were collected on human subjects exposed to 50 ppm and 100 ppm of TCE in air.  Data included

individual measurements of parent and metabolite concentrations in exhaled air, blood, and urine

as well as covariates, such as age, body weight, and percentage of body fat.  Physiological

parameters other than those measured were taken or derived from the literature; chemical-

specific parameters were measured experimentally or inferred through calibration to the

experimental data.  Urinary excretion parameters were optimized on a subject-specific basis

owing to high observed variability.  The observed variability and the sparseness of the data set

(i.e., limited measurements relative to the model complexity) required that all the data be used

for calibration, and traditional validation was not performed.  Additional comparisons were

performed against previously published data from Monster et al. (1976) and Muller et al. (1974),

but these required adjustment of metabolic parameters to obtain adequate fits.  Overall, there was

some overprediction of the exhaled vapor concentration after cessation of exposure and some

underprediction of TCE blood concentrations at 50 ppm.

3.1.3.  Clewell Model

Clewell et al. (2000) reported on the development of an updated PBPK model for TCE in

mice, rats, and humans.  The same model structure was used for all three species.  The primary

extension of the model from the original Fisher et al. (1991) and Allen and Fisher (1993) models

was the inclusion of additional metabolites.  Like the updated Fisher models, TCOH, TCOG, and

DCA were described.  However, at the time the model was developed (circa 1996), the more

recent data from Fisher’s laboratory (Greenberg et al., 1999; Fisher et al., 1998; Abbas and

Fisher, 1997) were not yet available.  Clewell et al. (2000) also included CHL in the

tracheobronchial region and DCVC production in the liver with bioactivation in the kidney. 

Unlike the updated Fisher models, all circulating metabolites were modeled using

one-compartment (volume of distribution) descriptions.  Biliary excretion of TCOG and
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enterohepatic recirculation of TCOH were also included as part of the metabolite model

structure.  As was the case for the Fisher models, physiological parameters were taken or derived

from the literature, and chemical-specific parameters were derived from previously published

measurements or inferred through calibration to previously published data sets.  Specifically,

evaluations were made against a subset of measurements for mouse oral and inhalation studies

(Fisher et al., 1991; Templin et al., 1993; Prout et al., 1985), rat oral studies (Templin et al.,

1995; Larson and Bull, 1992b), and human inhalation studies (Monster et al., 1979; Muller et al.,

1975, 1974; Stewart et al., 1970).  In addition, in vitro data were used to estimate some

metabolism parameters related to CHL in the lung and DCVC in the kidney.  Note that these data

sets did not include any of the data collected by Fisher and colleagues reported above as having

been used in the second-generation Fisher models.  Finally, allometric scaling was used

extensively to convert parameters across species from those for which calibration data were

available to those for which no calibration data existed. 

Validation was not performed in the strict sense because not enough experimental data

were available for all the metabolites across species.  Clewell et al. (2000) visually inspected the

model simulations and the data and concluded that simulation results were generally reasonable,

although it was clear that complete agreement between the model and each study investigated

could not be obtained with a single set of parameters for each species.  The results of the

sensitivity and uncertainty analyses that were performed indicated that dose metrics for TCE and

for the major metabolites TCA and TCOH could be expected to be reasonably precise (Clewell et

al., 2000).  Dose metrics related to CHL in the lung and DCVC bioactivation in the kidney, on

the other hand, were reported to be highly uncertain owing to a lack of adequate pharmacokinetic

data across species (Clewell et al., 2000).  The DCA metrics also were considered to be uncertain

because known analytical errors (Ketcha et al., 1996) existed in some measurements.  

3.1.4.  Bois Reparameterizations of Fisher and Clewell Models

Bois (2000a, b) performed reparameterizations of the Fisher and Clewell models using a

Bayesian statistical framework.  The basic approach was to develop a hierarchical statistical

model for the population distribution of each model’s parameters rather than to use the single

values determined by Fisher and Clewell.  Therefore, population variability and the uncertainty

surrounding that variability were incorporated into the analysis.  A Markov Chain Monte Carlo

technique was used to perform the high-dimensional numerical sampling and integration

necessary to derive the joint probability distribution of the parameters given the available data. 

These analyses also provided estimates of the uncertainty and variability surrounding individual

dose estimates, although, in many cases, uncertainty and variability could not be disentangled

because the data were aggregated.  For the analysis of rodent data, the population model
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described “ inter-lot”  or “ inter-lab”  variability, which included measurement errors, rather than

actual  inter-individual variability.

The Bois analysis of the Clewell model was performed first (Bois, 2000b).  The statistical

analysis required some minor modifications of the Clewell model.  The data used included most

of those reported in Clewell et al. (2000) and some additional published data sets.  Again, the

data used in Fisher’s second-generation models were not included here.  Overall, this formal

statistical method led to predictions that were systematically better fitting than those (already

reasonable) fits obtained by Clewell et al. (2000).  However, as found in Clewell et al. (2000), a

number of data sets still showed a relatively poor fit, even with allowance for variability supplied

by the hierarchical statistical framework.  

The marginal posterior distributions for a number of parameters generated from this

analysis were used as input priors to the Bois analysis of the Fisher model (Bois, 2000a).  Some

minor modifications of the Fisher model were required to accommodate the population analysis,

and the data sets used included most of the data used by Fisher.  However, the analysis did not

include the Greenberg et al. (1999) mouse inhalation data that show evidence of fractional

absorption in the lung (see Section 4.2.3).  The mouse model showed good fits to TCE and TCA,

while residuals for other metabolites often reached one or two orders of magnitude.  Some of the

differences may have been due to variability, as there seemed to be substantial “noise”  in the data

for some metabolites, but systematic differences were still apparent.  The human model showed a

substantially better fit, particularly for TCA, with residuals generally of a factor of 2 or less.  

Because the Clewell model posterior distributions were used as input priors here, the Bois

analysis of the Fisher model actually incorporates to some degree all the data from both analyses.

The incorporation is imperfect not only because the two model structures are different but also

because the covariance structure of the “Bois-Clewell”  posterior distributions was lost in the use

of marginal posterior distributions for the new priors.  Therefore, somewhat different results may

have been obtained if each model were calibrated to the entire data set.  

3.2.  U.S. EPA/U.S. AIR FORCE-SPONSORED TCE PBPK MODEL DEVELOPMENT

Throughout 2004, EPA and the Air Force have jointly sponsored an initial attempt at

combining elements from the TCE PBPK modeling efforts described above.  The interim results

of this effort are briefly summarized here.  A more detailed description will be available in a

separate interim report.  The development of this model included a peer consultation conducted

in June 2004, a summary report for which is also available separately (TERA, 2004).

The goal of this effort was to address several important issues for the first time,

particularly the following:



11

• A single interim model structure combining features from both the Fisher and Clewell
models was developed and used for all three species of interest (mice, rats, and
humans).  An effort was made to combine structures in as simple a manner as
possible; the evaluation of alternative structures was left for future work.

• The Fisher and Clewell models, as well as the Bois analyses of those models,
reflected substantially different databases of information.  This effort evaluated the
revised model against a combination of the data sets previously used, to the extent
applicable.  However, a comprehensive review of all published data was left for future
work.

• Similar to the Bois (2000a, b) analyses, a hierarchical Bayesian population analysis
using Markov Chain Monte Carlo techniques was performed on the combined model
with the combined database of kinetic data to provide estimates of parameter
uncertainty and variability. 

• Species- and dose-dependent TCA plasma binding was implemented to evaluate its
effects on the associated dose metrics (see discussion in Section 4.2.5).  Equilibrium
binding, as reported in the in vitro study of Lumpkin et al. (2003), was incorporated
into the TCA metabolite submodel.  It was assumed that the on/off rates were fast
compared to transport, as existing TCA studies have not reported the time-scale of
TCA binding kinetics.

Interim results from this effort seem to suggest that a single model structure can fit a

variety of data evaluated for TCE and its major oxidative metabolites TCA, TCOH, and TCOG,

although in some cases different parameter values, particularly for metabolism, are required for

different studies.  This interim model represents a major step in the development of TCE PBPK

models, particularly because the model was evaluated against a larger database of kinetic data

than was any previous model.  However, a number of the issues described below remain to be

investigated; therefore, EPA plans additional model development, evaluation, and

characterization.  The general approach for these continued efforts is described in Section 5.

4.  CONTINUING SCIENTIFIC UNCERTAINTIES IN TCE PBPK MODELING

4.1.  UNCERTAINTY AND VARIABILITY IN PBPK MODELING

Uncertainty and variability in PBPK modeling are discussed in this section.  (See

Bernillon and Bois, 2000, for a more detailed discussion of statistical issues in PBPK modeling.) 

Specific issues related to TCE are discussed in Section 4.2.  The terms “uncertainty” and

“variability,” as used here, refer to distinct concepts:  uncertainty refers to a lack of knowledge

that may be reducible with additional data or study, and variability refers to inherent
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heterogeneity that is irreducible.  Uncertainty in the characterization of variability may exist

because the data are limited or because understanding of the interrelationships within complex

biological systems is lacking.  Although one would ideally like to separate uncertainty and

variability, this is not always possible.  For instance, when data from individuals are aggregated,

then measurement error and inherent variability may not be separable, even assuming the

underlying model is valid.  

Given the complexity of TCE pharmacokinetics and the concomitant complexity of TCE

PBPK models, it is important to characterize the uncertainty in the PBPK modeling results so as

to inform the uncertainty in dose-response assessment.  This characterization can have both

qualitative and quantitative components.  Model uncertainty—which is the uncertainty due to the

structural features and assumptions that underlie a particular model—is usually addressed

primarily qualitatively through a critical evaluation of model features.  Parameter

uncertainty—which is the uncertainty in the values of input parameters that are required by the

model—lends itself to more quantitative analysis.  Although the use of PBPK models in risk

assessment is intended to provide more accurate (i.e., less uncertain) estimates of dose relative to

default procedures, it should be recognized that PBPK modeling cannot be expected to

completely eliminate pharmacokinetic uncertainty.  In some cases, rigorous analysis of PBPK

models may actually reveal pharmacokinetic uncertainties that were not previously understood or

characterized, or that are greater in magnitude than assumed through default procedures. 

Therefore, it is possible that analysis using PBPK models may appear to increase uncertainty. 

Even in this case, however, PBPK models can help to identify data that may have the greatest

impact on reducing these uncertainties.

Owing to their biological basis, PBPK model parameters may also exhibit significant

inter-individual variability.  Parameters for PBPK models fall into several categories, with

varying levels of independent information as their variability.  Physiological parameters (such as

organ weights and blood flows) are generally measurable, with some having a priori information

as to their variability.  Chemical-specific parameters, such as partition coefficients, are also

measurable using in vitro methods.  Generally less information is available about variability for

these parameters.  However, in these cases, experiment-specific data (other than body weights)

are generally not available—that is, the individuals for which physiological and chemical-

specific parameters are measured differ from the individuals for which pharmacokinetic data are

collected.  Parameters such as metabolic and clearance rates are usually inferred through

comparison of model predictions with pharmacokinetic data—i.e., the models are calibrated by

changing these parameters to fit experimental data, such as time-courses of chemical

concentrations.  In addition, they may be inferred from in vitro measurements (e.g., microsomal

preparations) or data from other chemicals, but with an additional uncertainty that is not easily
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quantified.  Pharmacokinetic data for both humans and laboratory animals show considerable

variability, even within single experiments that use inbred rodent strains under identical

conditions (e.g., Prout et al., 1985).  Variability in parameters can thus be inferred from

variability in the kinetic data and, in some cases, independent measures obtained from in vitro

data on enzyme content and/or activities. 

PBPK models may be useful in characterizing this variability through a population

approach.  The basic idea is to fit the variability in individual data by assigning different

parameter values to different individuals.  Although this is a relatively new approach in human

health risk assessment, it has been applied routinely in the development of pharmaceutical drugs;

however, the structural models used in pharmaceutical research are typically empirical (e.g., one

or two compartments) rather than physiologically based (Ette and Williams, 2004a, b, c;

Davidian and Giltinan, 2003; Yuh et al., 1994; Sheiner et al., 1972).  One commonly used

approach is the “two-stage” method, which involves fitting a model to each separate individual’s

data and then obtaining population parameter estimates in a second step based on the individual

results from the first step.  Because of the difficulty of parameter estimation for a complex

model, it is common practice either to fix all but a few parameters to estimated values or to set

up a very simple model with only a few parameters (as is common for pharmaceuticals).  Fisher

et al. (1998) used this two-stage approach in their analysis of human data on TCE, calibrating the

urinary excretion separately for different individuals.  However, this procedure may attribute too

much variability to the parameter being adjusted rather than to other parameters that also may be

uncertain and/or variable (Bernillon and Bois, 2000; Woodruff and Bois, 1993).  In addition, this

procedure is ill-suited for the situation where multiple data sets provide information on

overlapping sets of parameters.

A second approach involves developing a statistical model for simultaneously

characterizing population variability and overall parameter uncertainty.  This approach has been

variously described as nonlinear mixed-effect modeling (e.g., Davidian and Giltinan, 2003;

Sheiner et al., 1977) and Bayesian population modeling (e.g., Gelman et al., 1996), depending on

whether the analysis uses a frequentist (typically maximum likelihood) or Bayesian statistical

framework.  The use of population models (in both pharmaceutics and toxicology) has focused

on single (mostly human) data sets where individual measurements are available (Jonsson and

Johanson, 2003, 2002, 2001a, b; Jonsson et al., 2001a, b; Smith et al., 2001; Bois et al., 1999; 

Gelman et al., 1996; Bois et al., 1996a, b).  The use of this methodology for simultaneously

calibrating parameters using multiple data sets, including laboratory animal data that are typically

aggregated, is a relatively new area with few published results other than those of Bois (2000a, b)

for TCE, described above.  However, because of the ability to incorporate prior information on

the analysis of any particular data set, the Bayesian approach is conceptually well suited for the
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situation with TCE in which multiple data sets are being analyzed together.  A commonly used

method to implement this Bayesian population approach has been the use of Markov Chain

Monte Carlo techniques.

4.2.  SCIENTIFIC UNCERTAINTIES RELATED TO TCE PHARMACOKINETIC

MODELING

Although the EPA/Air Force-sponsored effort to combine elements of the Fisher,

Clewell, and Bois models into an interim PBPK model has examined some of the differences

between these previous approaches (see the separate interim report for additional details), a

number of uncertainties remain as to model assumptions, structure, and parameters.  These issues

are briefly summarized below.  It is unclear at this time which of these uncertainties are

important with respect to fitting available data or predicting internal dose; our proposed approach

to assessing these sensitivities is summarized in Section 5.  

4.2.1.  Remaining Parameter Uncertainties in Oxidative Metabolism

The analyses described above reported a number of parameter uncertainties. 

Uncertainties related to modeling of low-concentration metabolites, such as DCA, DCVC, and

CHL, are discussed below, as they are intertwined with structural issues.  Even for the “well

calibrated” oxidative pathway, two significant issues surrounding the metabolic parameter

remain:

• Fisher (2000) reported substantial differences in parameter values for TCE oxidative
metabolism in mice between inhalation and gavage dosing.  Of particular note was
that the Michaelis-Menten (KM) parameter used to fit the corn oil gavage data was
greater by over an order of magnitude than that used to fit the inhalation data. 
Moreover, the estimate for KM based on the gavage data was substantially greater than
that based on previously published studies, a finding also reported in the Bois (2000a)
analysis of the Fisher models.  Fisher (2000) suggested that this adjustment reflected
the model’s oversimplification of the oral uptake of TCE in corn oil rather than a true
change in the KM for oxidation of TCE.  Smaller changes of up to a factor of two in
other parameters, such those for as glucuronidation of TCOH, were also noted by
Fisher (2000) between gavage and inhalation studies.  

• Fisher (2000) reported a substantially lower value for the BW3/4-scaled Michaelis-
Menten Vmax, or maximum velocity of reaction, parameter (denoted “VmaxC”) in
humans based on the Fisher et al. (1998) data than was reported in previous studies
using previously published data.  This finding was also reported in the Bois analysis
of the Fisher models, with Bois (2000a) noting that the difference could be due to
differences in the data, rather than in the modeling.
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Currently, it is not clear whether these differences are due to inherent variability or

structural misspecification of the model.

4.2.2.  Enterohepatic Recirculation

In the liver, chemicals can be secreted into the bile and circulated into the gut, where they

are reabsorbed into the portal blood.  Recirculation of metabolites increases their effective

half-life in the body, and this is reflected in urinary output of the chemicals.  TCOG and TCA

have been measured in the bile of rats (Stenner et al., 1997), and bile-cannulated rats showed

different blood profiles of the chemicals.  A PBPK model developed based on this work (Stenner

et al., 1998) included enterohepatic recirculation and showed a reasonable match to rat

concentration profiles after oral doses of TCE (in 2% Tween 80) and intravenous doses of TCA

and TCOH.  Difficulties exist in extrapolating the rat data to other species because

pharmaceutical studies have shown that biliary excretion does not scale uniformly (Mahmood

and Sahajwalla, 2002).

The significance of recirculation on important dose metrics is uncertain, as existing

PBPK models have generally shown reasonable fits to blood and urine data without recirculation. 

For instance, even though Clewell et al. (2000) implemented recirculation structurally,

reabsorption in the gut was set to zero for comparison to most data.  Bois (2000a) noted,

however, that urinary excretion data for TCOG in mice was not well fit by the Fisher model,

which did not include recirculation.  Overall, model fit and the sensitivity of dose metrics with

and without enterohepatic recirculation have not been evaluated.  It is likely that TCA and TCOH

metrics are sensitive to enterohepatic recirculation, but a quantitative characterization has not yet

been reported.

4.2.3.  Wash-In/Wash-Out for Inhalation

For different exposure routes in a particular species, the distribution, metabolism, and

elimination of chemicals are expected to be the same, with the only difference being absorption

and first-pass clearance for the particular route.  Inhalation is commonly modeled as being

complete, whereas for volatile chemicals, the blood:air partition coefficient determines both the

uptake and elimination of a chemical.  

As mentioned above, when the best-fit model parameters based on oral mouse data

(Abbas and Fisher, 1997) were used in an inhalation exposure simulation (Greenberg et al.,

1999), the model overpredicted the absorption of TCE as reflected in TCE blood and exhalation

concentrations.  The model could be made consistent with the data if fractional uptake were

implemented, where only a fraction of the chemical is available for transfer to the plasma during

inhalation exposure.  Physiologically, this could occur if the lung epithelium were to act as a
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reservoir for TCE during inhalation exposure, so only a fraction of the TCE inhaled reaches the

alveolar region.  Fractional uptake has been reported for other water-soluble solvents (Pastino et

al., 1997; Perkins et al., 1995; Johanson, 1991), and because the lung tissue is exposed to high

local concentrations, it has a potential impact on risk.

4.2.4.  Diffusion Limited Fat and Liver Compartments

The PBPK models for TCE described above all assume perfusion-limited distribution of

chemicals to the physiologic compartments.  The representation assumes that the compartments

are well mixed over the time-scales of blood flow, so that the compartment concentration can be

described by the blood concentration and a partition coefficient.  Some discrepancies have been

noted, however.  For instance, Bois (2000a) reported that the measured adiposity of the

individual subjects from Fisher et al. (1998) did not correlate well with the posterior estimates for

the model parameter for percentage body weight as fat.  Bois suggested that one possible

explanation was that the pharmacokinetic compartment for fat was not well estimated by external

adiposity measurements.  However, model error has also been proposed as an explanation.

The liver and fat are known to be heterogenous tissues (Albanese et al., 2002; Andersen

et al., 1997), and based on their importance to PBPK models of volatile organics, investigations

have been conducted on the impact of diffusion limitations in these tissues.  For instance, Keys et

al. (2003) recently developed a PBPK model for TCE parent kinetics in rats and mice that

includes more complex descriptions of the fat and liver compartments.  For the fat, transport

between the blood and the compartment was changed from flow- to diffusion-limited.  For the

liver, a second “deep” compartment was added with transport via diffusion to and from the

“shallow” liver, which is also the site of metabolism.  Keys et al. (2003) concluded that TCE

parent concentrations are better simulated by this more complex model, and that although other

dose metrics were not evaluated, metabolite concentrations would not be expected to be

significantly changed.  

4.2.5.  Plasma Binding

The binding of chemicals to proteins in plasma affects their availability to other tissues

and ultimately their effective half-life in the body.  Typical descriptions of relatively weak serum

protein binding assume fast rates compared to the other relevant time-scales. 

The TCE metabolites TCA and DCA are known to bind to plasma proteins.  Templin et

al. (1995) measured the extent of TCA binding in humans, mice, and rats over limited

concentration ranges.  More recently,  Lumpkin et al. (2003) measured TCA binding in humans,

mice, and rats over a wide concentration range that spans reported TCA plasma concentrations

from experimental studies.  These data showed significant species differences, with humans
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exhibiting the most binding and mice exhibiting the least.  As mentioned above, existing TCA

studies have not reported the time-scale of TCA-binding kinetics.  For modeling, one typical

assumption is that the ratio of bound-to-free is in equilibrium in arterial blood, but only the free

fraction is available for exchange with tissues.

Schultz et al. (1999) measured the extent of DCA binding in rats at a single concentration

of about 100 µM and found a binding fraction of less than 5%.  However, these data are not

greatly informative for TCE exposure in which DCA levels are significantly lower, and limitation

to a single concentration precludes fitting to standard binding equations from which the binding

at low concentrations could be extrapolated.  Furthermore, there is insufficient information on

cross-species differences for the extrapolation of rat DCA data to other species. 

4.2.6.  Metabolites With Low Circulating Concentrations and/or Extrahepatic Metabolism

As mentioned in Section 2, significant uncertainty surrounds the metabolic pathways for

metabolites with low circulating concentrations and for which extrahepatic metabolism may be

important toxicologically.  These include DCA, CHL, and the metabolites from GSH

conjugation.  Previous modeling of TCE metabolism indicates that the relative formation rates of

these chemicals are small, so that they are not appreciably constrained by the total TCE mass

balance (Clewell et al., 2000).  However, it would be desirable to model the metabolism to these

chemicals (e.g., Figure 4-1) because of their potential toxicological importance.

Pharmacokinetic studies of DCA exposure (Barton et al., 1999; Abbas et al., 1997;

Larson and Bull, 1992a) provide a picture of the behavior of DCA once formed, but, as discussed

in Section 2, the magnitude of the amount formed from TCE is uncertain.  Circulating DCA in

mice has been measured in a variety of TCE exposure studies (Greenberg et al., 1999; Merdink et

al., 1998; Abbas and Fisher, 1997).  The only DCA data for humans following TCE exposure are

from Fisher et al. (1998).  For all of these studies, the extent to which analytical artifacts of DCA

remain (Ketcha et al., 1996) is unclear, so these data may be useful only as a maximum

constraint. 

As discussed in Section 2, a complication for CHL and GST metabolites is that local

metabolism to these compounds can occur in the lung and kidney, respectively, and the

contributions of local and liver metabolism to the concentration at the site of action are unknown. 

CHL (in equilibrium with CH) is rapidly metabolized into TCOH and TCA, so circulating CHL

levels are expected to be low.  Circulating CH/CHL was measured after high-dose TCE

exposures in mice (Greenberg et al., 1999; Abbas and Fisher, 1997; Prout et al., 1985) and rats

(Prout et al., 1985).  In Abbas and Fisher (1997) and Greenberg et al. (1999), the concentration of

CH was also measured in lung homogenate, although the concentration in the lung Clara cells,

which are believed to be a site of local production and toxicity (Odum et al., 1992), was not
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accessible.  CH was administered to mice (Abbas et al., 1996) and humans (Muller et al., 1974)

in controlled exposures, which may be useful for characterizing its behavior after formation from

TCE.  The relative contributions of hepatic and extrahepatic metabolism remain uncertain.

As mentioned in Section 2, Lash et al. (1999a) measured DCVG concentrations in blood

following TCE exposure.  In addition, the results of a rat study measuring both oxidative and

GST metabolites are in preparation (Lash, 2004).  However, the kidney is believed to be the site

of action for metabolites of DCVG, and the contribution of circulating DCVG produced in the

liver relative to local production of DCVG is uncertain.  Bernauer et al. (1996) and Birner et al.

(1993) have measured the urinary metabolites of DCVG, providing an indicator of the amount of

metabolism that occurred, at least through the N-acetyl transferase (NAT) detoxification

pathway.  In vitro studies exist that measure metabolism by GST in liver and kidney cells (Lash

et al., 1999b) and for activity of beta-lyase (Lash et al., 1990), which has been associated with the

nephrotoxicity (Anders et al., 1988).  The relative in vitro kinetics can be used to inform

reasonable parameter values in the liver and kidney, although, as discussed in Section 2, the

potential role of FMO complicates the quantification of GST metabolite bioactivation across

species.

5.  PLANS FOR CONTINUED TCE PBPK MODEL DEVELOPMENT

The issues raised in the previous sections suggest a number of potential approaches for

PBPK model development.  The models of Fisher, Clewell, and Bois provide a relatively

consistent basis for development of a single base model structure for mice, rats, and humans. 

Additional structural features can then be evaluated against the database of existing data.  The

model parameters can then be refined and further characterized through a Bayesian statistical

framework.  Given the complexity of the model and the large database of studies with which to

compare model predictions, this process will need to proceed in an iterative manner.  An interim

model developed through an EPA/Air Force collaboration, described above, will be used as a

starting point for additional model development and evaluation.  The following sections are

intended to inform the NRC committee of EPA’s plans for continued TCE PBPK model

development.  NRC feedback on this approach, and suggestions for improving it, would help to

strengthen the basis of EPA’s revised TCE risk assessment.

5.1.  MODEL PURPOSE AND SCOPE

The main objective of EPA’s TCE PBPK modeling effort is to estimate biologically

relevant internal doses for use in risk assessment.  These dose estimates may be used for a variety

of extrapolations (e.g., high to low dose, inter- and intra-species, exposure route or regime) and
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are subject to both uncertainty and variability.  Selection of the appropriate dose metric for use in

risk assessment is dependent not only on the reliability of the data and models but also on the

understanding of the MOA for a particular toxic effect—i.e., what may be the “biologically

relevant” internal doses.  Because a revised assessment of TCE MOA hypotheses has not yet

been completed, selection of the most appropriate dose metric(s) is not possible at this time

(although metabolite interactions are discussed in a separate issue paper).  Therefore, the

approach EPA is planning concentrates first on characterization of the PBPK model structure and

parameters.  Previous PBPK modeling of TCE is used as a guide to develop a model that is both

flexible and reliable to the extent scientifically supported by available data. 

How PBPK modeling was used in the 2001 draft assessment provides an important first

step in consideration of the scope of continued PBPK model development.  Uses of PBPK

modeling considered in the 2001 draft assessment included the following:

• Cross-species extrapolation of cancer risk estimates based on mouse and rat
bioassays.  Use of PBPK modeling was considered for analyzing mouse liver tumors
(based on TCA and DCA area under the concentration curve [AUC] dose metrics), rat
kidney tumors (based on bioactivation of DCVC), and mouse lung tumors (based on
CHL).  Because of the significant model and parameter uncertainty of these three
endpoints, PBPK model-based cancer risk estimates were developed only for mouse
liver tumors.

• Route-to-route extrapolation of human cancer risk estimates, based on either TCA or
DCA AUCs.

• Development of noncancer risk estimates based on mouse and rat noncancer studies. 
Dose metrics considered included TCA and DCA AUC, TCOH peak concentration,
and bioactivation of DCVC, depending on the study and endpoint.  Because the draft
reference dose (RfD) was based on liver weight changes, TCA and DCA AUC dose
metrics were used.  These dose metrics were used both for characterizing the
pharmacokinetic component of cross-species extrapolation and human variability,
based on the Bois analysis of the Clewell model. 

Therefore, the basic toxicological database, as reviewed in the 2001 draft, suggests that

the PBPK models of TCE be developed in mice, rats, and humans.  These are also the species in

which numerous pharmacokinetic studies have been conducted.  EPA’s modeling effort will

consider the dose metrics that have been previously considered for use in risk assessment,

although additional dose metrics may need to be evaluated if the MOA evaluation suggests

alternatives not listed here.  Regarding routes of exposure, oral and inhalation kinetic studies are

most common in mice and rats, and nearly all controlled human kinetic studies are based on

inhalation exposure.  A few rodent studies were reported for injection exposures (Stenner et al.,
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1997; Abbas et al. 1997, 1996; Lee et al., 1996; D’Souza et al., 1985), and only one group has

reported results for controlled dermal exposure in rats and humans (Poet et al., 2000).  However,

the general human population may be exposed orally and dermally as well.  Therefore, for risk

assessment purposes, the model should ideally simulate inhalation and oral exposures for all

species, as well as injection for rodents and dermal exposure for humans.

Although the 2001 draft assessment noted that co-exposures with other chemicals may

modulate TCE toxicity, the PBPK modeling effort is not planning to include explicit modeling of

chemical mixtures beyond the extent to which TCE metabolism leads to a mixture of circulating

metabolites.  Modeling additional exposure from some of the metabolites themselves would

presumably be straightforward, but there appear to be insufficient data on more complex

chemical mixtures with TCE to model with a PBPK model.  Some exploratory analyses have

been reported (Dobrev et al., 2002, 2001), but the data sets are sparse, where only a few

chemicals and compartments were measured.  Also, the previously mentioned uncertainties with

TCE alone seem significant enough so that evaluation of a model of mixtures seems impractical

at this time.  However, the mechanistic framework of the PBPK model illustrates the parameters

that have an important impact on the dose metrics and observable quantities, thereby facilitating

experimental design for future investigations of mixtures.  

The 2001 draft assessment also noted the potential for susceptible subpopulations with

differential risks from TCE exposure.  However, the data appear to remain largely qualitative, so

potential subpopulations will not be explicitly modeled within the PBPK models, although they

may be addressed through other means in the revised risk assessment.  Although physiologic

differences are modestly characterized for segments of the population, substantial uncertainties

are associated with the TCE-specific biochemical differences associated with age, disease state,

and genetic polymorphisms.  These questions can to a degree be addressed in the individual

model evaluation, where the sensitivity analysis will reveal the parameters that are sensitive with

respect to toxicologically important dose metrics.  These parameters can be compared to the

knowledge of the represented biological process to identify potential subpopulations that may

respond differently and to develop hypotheses for the identification and eventual quantification

of risk metrics for those populations.  

5.2.  SOURCES OF PHYSIOLOGICAL AND KINETIC DATA

Parameters for PBPK models include three distinct types of data:  physiological data,

chemical-specific parameters, and parameters for determining the stochastic behaviors of models. 

The physiological data are independent of the chemical being modeled and refer to such areas as

organ volumes and blood flows.  Chemical-specific parameters include the partition coefficients,
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metabolic rate constants, and coefficients for protein binding.  Important stochastic behaviors to

be modeled are derived from inter-individual and experimental variances.

The specific physiological compartments considered in EPA’s modeling effort are

selected based on information available for exposure, toxicology, and metabolic profile related to

a particular chemical and potential active metabolites.  Important information includes

measurements of parent or metabolite concentrations, known metabolism or elimination, or a

known toxic effect within specific tissues.  Distribution within, between, and among organs,

tissues, and fluid is modeled according to compartmental volumes, blood flow rates, and

blood:tissue partitioning. 

As in previous PBPK modeling efforts (Clewell et al., 2000; Fisher et al., 1998),

physiological parameters and chemical-specific partition coefficients are estimated from

independent studies, such as standard physiology references or in vitro experiments.  The kinetic

parameters associated with absorption, metabolism, and elimination are fit to kinetic data,

although in some cases they may be informed by in vitro data as well.  

Studies on the formal analysis of variability using PBPK models are limited (Bois, 2000a,

b).  There is no established method to characterize the variability in a heterogeneous population. 

Even physiologic references, such as ILSI-RSI (1994), Brown et al. (1997), and ICRP (2003),

focus on determining the range and/or central tendency of reasonable values, not on developing

the distributions that are necessary for probabilistic analyses.  In addition, the covariance between

parameters (e.g., between tissue volumes and blood flows) are not characterized but may need to

be accounted for to avoid unrealistic combinations of parameter values.

For the chemical-specific parameters, the variability of parameters can be estimated from

in vitro experiments (partition coefficients, metabolism) and individual pharmacokinetic data. 

As discussed previously, formal evaluation of variability against data can be performed using a

hierarchical Bayesian population model employing a Markov Chain Monte Carlo algorithm. 

However, for much of the laboratory data on TCE, individual data were pooled, making it

difficult to characterize inter-individual variation and to separate variability from measurement

error.  An additional challenge is that human data sets tend to be relatively homogeneous and

performed under controlled conditions, and thus may not represent the range of inter-individual

variability present in the full population.  Therefore, in the evaluation of variability for the target

populations of the risk assessment, posterior distributions from the Bayesian analysis could tend

to underestimate full population variability and thus may not always be appropriate. 
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5.3.  MODEL EVALUATION

Model evaluation involves the consideration of alternative model structures, the

estimation of model parameters, and characterization of uncertainty and variability.  The EPA

effort will be conducted in three broad phases:  exploratory model development, sensitivity

analysis, and Bayesian population analysis of uncertainty and variability.  The resulting

individual models with “mean” parameter values estimated from the Bayesian population

analysis will be made available to the public through the Exposure Related Dose Estimating

Model (ERDEM) system, developed by the U.S. EPA (Appendix B).  The Bayesian population

analysis using the Markov Chain Monte Carlo algorithm will also be done using publicly

available software, MCSim (Appendix B). 

The first phase will involve exploratory analysis in which a single model structure (or set

of structures) will be built with separate parameterization for each species.  During this phase, the

uncertainties described above surrounding alternative model structures will be investigated. 

These include enterohepatic recirculation, wash-in/wash-out in the lung, diffusion-limited fat and

liver compartments, and plasma binding.  In addition, as described above, considerable

uncertainty exists regarding the metabolic pathways and parameters for low-concentration

metabolites and those locally produced.  The goal of this phase is to settle on one or a few model

structure(s) that best fit(s) the available data while maintaining biological plausibility.  These

exploratory models will be calibrated with available kinetic data.  The evaluation of model fit,

performed either statistically and/or by visual inspection depending on the nature of the available

data, will guide the refinement of model structure and parameters.  Appendix A provides a table

of the candidate pharmacokinetic studies against which the PBPK models are to be evaluated.  

For simple models and a limited number of data sets, a typical “validation” after

calibration would be to compare the fit model with data not used for calibration.  However, the

data sets for TCE include different exposure scenarios and measurements on different scales that

do not present a clear metric to evaluate the performance of an individual model.  Also, despite

the number of studies, the data are sparse relative to the qualitatively important compartments

and metabolites.  Thus, traditional “validation” will not be feasible.  An arguably more relevant

question for risk assessment is a characterization of the confidence with which a model can

predict dose metrics of interest.  This is related to the characterization of uncertainty and

variability, described below.

The second (intermediate) phase is sensitivity analysis of the individual models to

determine the important parameters.  Two types of analyses will be performed:  sensitivity of the

fit to data and sensitivity of the dose metrics.  Sensitive parameters are critical to characterize the

analysis of uncertainty and variability.  The priors assigned to those parameters will reflect the

certainty to which the value is known.  For example, the tissue volumes for which we have
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independent measurements will have greater precision than the kinetic rate constants that were fit

to data.  The parameters that impact the dose metrics but not the fit to data require other

constraints to characterize their uncertainty.  The model can also be analyzed around these

parameters to determine the measurable quantities that would constrain the value; this provides

the basis for future targeted experimental studies to reduce the uncertainty.  The sensitivity

analysis also highlights the biological processes that affect risk by identifying the corresponding

model parameters.  These parameters can be evaluated against the knowledge of the biological

pathway to identify other chemicals that would impact the dose metrics (i.e., sharing the same

saturable metabolic pathway) or to identify subpopulations that would exhibit different risks due

to differences in a pathway.  

The third phase of evaluation is a Bayesian population analysis (using a Markov Chain

Monte Carlo algorithm) that incorporates the variability in the available data to characterize the

uncertainty and variability in the model parameters and their impact on model predictions. 

Examples of the use of the Bayesian population approach with PBPK models were discussed

earlier.  The previous section described the sources of data for developing prior estimates of the

population means and variances and their attendant uncertainties.  Other published uncertainty

analyses, including both the Bayesian analyses cited above and traditional Monte Carlo analyses

(e.g., Clewell et al., 2000; Cronin IV et al., 1995) will also be used as a guide for reasonable prior

distributions.  As noted above, however, the populations for which kinetic data are available (i.e.,

Appendix A) may not be wholly representative of the target populations of interest for the risk

assessment. 

Before using the results of this analysis to perform inferences as to the uncertainty and

variability in dosimetry predictions, it is necessary to confirm that the model is consistent with

the data and existing biological knowledge.  As was the case for the exploratory analysis, a

formal model “validation” will not be performed owing to the need to use all the available data in

calibrating the model.  However, “model fit” does need to be assessed, particularly because

posterior parameter estimates may be overconstrained if the model does not fit the data (e.g.,

discussion in Bois, 2000a).  Gelman et al. (2004) provide an extensive discussion of techniques

for “posterior predictive checking,” or the assessment of whether the model is consistent with the

data.  The general basic idea is to generate simulated data from the posterior parameter

distribution for comparison with the actual observed data.  Bois (2000a, b) provided some

examples of this type of analysis.  In addition, posterior estimates of parameters and predictions

should also be checked for biological plausibility because there is biological knowledge that is

not formally included in either the prior estimates or in the likelihood.  For instance, it can be

difficult to translate biological knowledge quantitatively into formal prior distributions,

particularly with respect to parameter covariances.  Thus, parameter combinations that are
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unrealistic biologically may be easier to check a posteriori.  The results of these analyses may

lead to additional refinement of the model and/or parameters and may thus necessitate iteration

of the entire model evaluation process.  It should be noted, however, that it may not be possible

to completely disentangle the combination of data errors, model errors, and parameter variability.

Finally, the results of the Bayesian population analysis will be used along with available

information on the target populations of interest (see Section 5.2) to characterize the uncertainty

and variability in the pharmacokinetic modeling results.  This characterization will be an

important input, along with the appropriate mode-of-action and hazard characterization, into the

selection of dose metrics as well as species- and route-extrapolation methods for use in

quantitative dose-response analysis.  
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Figure 2-1.  Metabolism of trichloroethylene (TCE).  

CDH = chloral dehydrogenase (aldehyde oxidase); EHR = enterohepatic
recirculation; FA = formic acid; FMO = flavin-containing monooxygenase;
GA = glyoxylic acid; OA = oxalic acid; TCE-O-P450 = oxygenated TCE-
cytochrome P450 transition state complex; TCOG = TCOH glucuronide;
UGT = UDP glucuronosyl transferase; BL = cysteine conjugate �-lyase;
CGDP = cysteinyl-glycine dipeptidase; DCVCS = DCVC sulfoxide; DCVG =
dichlorovinyl glutathione; DCVSH = dichlorovinyl mercaptan; GGTP = �-
glutamyl transpeptidase; NADCVC = N-acetyl dichlorovinylcysteine;
NAT = N-acetyl transferase.

Source:  Adapted from Clewell et al. (2000) and Lash et al. (2000a).
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Figure 3-1.  Typical simplified metabolism scheme for modeling.  

TCE = trichloroethylene; TCA = trichloroacetic acid; TCOH = trichloroethanol;
TCOG = TCOH glucuronide.

Figure 4-1.  Possible liver metabolism scheme to model potential dose
metrics.  

TCE = trichloroethylene; DCA = dichloroacetic acid; DCVG = dichlorovinyl
glutathione; CH = chloral hydrate; TCA = trichloroacetic acid; TCOH =
trichloroethanol; TCOG = TCOH glucuronide.
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APPENDIX A:  CANDIDATE STUDIES FOR MODEL EVALUATION

Lead author Reference Species
Exposure
scenario Measurements

R.R. Abbas Toxicol Appl
Pharmacol 147:15–30,
1997.

Mice-Male B6C3F1 TCE oral TCE and metabolites in
blood, liver, lung,
kidney, fat, and urine

R.R. Abbas Toxicologist 36:32–33,
1997.

Mice-B6C3F1 TCA, TCOH,
DCA, CH iv

Compounds in blood
and urine

R.R. Abbas Drug Metab Dispos
24(12):1340–1346,
1996.

Mice-B6C3F1 CH iv Compounds in blood
and urine

H.A. Barton Toxicol Appl
Pharmacol
130:237–247, 1995.

Rats-Male SD TCE inhalation TCE closed chamber
concentrations

H.A. Barton Toxicol Lett
106(1):9–21, 1999.

Mice-Male B6C3F1 DCA iv and oral
(aqueous) 

DCA in blood

U. Bernauer Arch Toxicol
70(6):338–346, 1996.

Humans-Male TCE inhalation Oxidation and GST
metabolites in urine

U. Bernauer Arch Toxicol
70(6):338–346, 1996.

Rats-Wistar TCE inhalation Oxidation and GST
metabolites in urine

G. Birner Environ Health
Perspect 99:281–284,
1993.

Rats-Wistar, F344
Mice-NMRI 

TCE oral gavage NADC, TCA in urine

L.J. Bloemen Int Arch Occup
Environ Health 
74:102–108, 2001.

Humans-Male TCE inhalation Oxidation and GST
metabolites in urine

C.E. Dallas Toxicol Appl
Pharmacol
110:303–314, 1991.

Rats-Male SD TCE inhalation TCE in blood, breath 

R.W. D’Souza J Toxicol Environ
Health 15:587–601,
1985.

Rats-Male SD TCE iv TCE in blood 

J.G. Fernandez Br J Ind Med 
34(1):43–55, 1977.

Humans-Male TCE inhalation Alveolar, excreted
TCE

J.W. Fisher Risk Anal
13(1):87–95, 1993. 

Mice-Male and
female B6C3F1 

TCE oral gavage
in corn oil

TCE in blood; TCA in
plasma

J.W. Fisher Toxicol Appl
Pharmacol 
109(2):183–195, 1991.

Mice-Female
B6C3F1

TCE inhalation TCE and metabolites in
blood and chamber

J.W. Fisher Toxicol Appl
Pharmacol 
109(2):183–195, 1991.

Mice-Male B6C3F1 TCE inhalation TCE and metabolites in
blood and chamber

J.W. Fisher Toxicol Appl
Pharmacol 
109(2):183–195, 1991.

Rats-Female F344 TCE inhalation TCE and TCA in blood
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J.W. Fisher Toxicol Appl
Pharmacol 
109(2):183–195, 1991.

Rats-Male F344 TCE inhalation TCE and TCA in blood

J.W. Fisher Toxicol Appl
Pharmacol 
152(2):339–359, 1998.

Humans-Female TCE inhalation TCE and metabolites in
blood and urine;
exhaled TCE

J.W. Fisher Toxicol Appl
Pharmacol 
152(2):339–359, 1998.

Humans-Male TCE inhalation TCE and metabolites in
blood and urine;
exhaled TCE

M.S. Greenberg Toxicol Appl
Pharmacol 
154(3):264–278, 1999.

Mice-Male B6C3F1 TCE inhalation TCE and metabolites in
blood, liver, lung, fat,
and kidney; TCE
chamber
concentrations

I. Jakobson Acta Pharmacol
Toxicol (Copenh)
59(2):135–143, 1986.

Rats-Female SD TCE inhalation TCE in blood

T. Kaneko Toxicology 
143(2):203–208, 2000. 

Rats-Male Wistar TCE inhalation TCE in blood; TCA,
TCOH in urine

D.A. Keys Toxicol Sci 
76(1):35–50, 2003.

Rats-Male SD TCE inhalation TCE in blood and
tissues

S. Lapare Int Arch Occup
Environ Health 
67(6):375–394, 1995. 

Humans TCE inhalation TCE in blood; TCA in
urine

J.L. Larson Toxicol Appl
Pharmacol
115(2):278–285, 1992.

Mice-Male B6C3F1 TCE oral
(aqueous)

TCE and metabolites in
blood

J.L. Larson Toxicol Appl
Pharmacol
115(2):278–285, 1992.

Rats-Male Sprague-
Dawley

TCE oral
(aqueous)

TCE and metabolites in
blood

J.L. Larson Toxicol Appl
Pharmacol
115(2):268–277, 1992.

Mice-Male B6C3F1 DCA, TCA oral DCA, TCA in plasma

J.L. Larson Toxicol Appl
Pharmacol
115(2):268–277, 1992.

Rats-Male F344 DCA, TCA oral DCA, TCA in plasma

L.H. Lash J Toxicol Environ
Health A. 56(1):1–21,
1999. 

Humans-Female-1-
BW 66.5

TCE inhalation DCVG in blood

L.H. Lash J Toxicol Environ
Health A. 56(1):1–21,
1999. 

Human-Male-1-BW
71.4

TCE inhalation DCVG in blood
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K.M. Lee Toxicol Appl
Pharmacol 
164(1):55–64, 2000.

Rats-Male SD TCE stomach
injection

TCE in arterial blood

K.M. Lee Toxicol Appl
Pharmacol 
139(2):262–271, 1996.

Rats-Male SD TCE arterial,
venous, portal,
stomach
injections

TCE in arterial blood

J.L. Merdink Toxicol Sci
45(1):33–41, 1998.

Mice-Male B6C3F1  CH, TCE iv TCA, CH, TCOH in
blood

J.L. Merdink J Toxicol Environ
Health A.
57(5):357–368, 1999. 

Rat-Male F344 CH, TCOH iv CH, TCOH in blood;
TCOG, CH, TCA in
bile

A.C. Monster Int Arch Occup
Environ Health
38(2):87–102, 1976.

Humans TCE inhalation TCE in breath; TCA
and TCOH in blood
and urine

A.C. Monster Int Arch Occup
Environ Health 
42(3–4):283–292,
1979.

Humans TCE inhalation TCE in blood and
breath; TCA and
TCOH in blood and
urine

G. Muller Arch Toxicol
32(4):283–295, 1974.

Humans-Male TCE inhalation;
CH, TCA,
TCOH oral

TCE in blood and
breath; TCA and
TCOH in blood and
urine

G. Muller Arch Toxicol
33(3):173–189, 1975.

Humans-Male TCE inhalation TCE in blood and
breath; TCA and
TCOH in blood and
urine

Z.V. Paykoc J Pharmacol Exp Ther
85:289, 1945.

Humans TCA iv TCA in blood and
urine

T.S. Poet Toxicol Sci 
56(1):61–72, 2000.

Humans TCE dermal TCE in breath

T.S. Poet Toxicol Sci 
56(1):61–72, 2000.

Rats-Male F344 TCE dermal TCE in chamber

M.S. Prout Toxicol Appl
Pharmacol
79(3):389–400, 1985. 

Mice-Male B6C3F1
and Swiss Webster

TCE gavage TCE and metabolites in
blood; 14C elimination

M.S. Prout Toxicol Appl
Pharmacol 
79(3):389–400, 1985. 

Rats-Male Osborne-
Mendel and
Alderley Park
Wistar

TCE gavage TCE and metabolites in
blood; 14C elimination
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S.A. Saghir Environ Health
Perspect 110:757–763,
2002. 

Rats-Male F344 DCA iv, oral DCA in plasma

A. Sato Br J Ind Med 
34(1):56–63, 1977. 

Humans-Male TCE inhalation TCE in blood, expired
air; TCA in urine

J.E. Simmons Toxicol Sci 
69(1):3–15, 2002. 

Rats-Male long-
evans 

TCE inhalation TCE in chamber, liver,
blood, brain, fat

R.D. Stenner Drug Metab Dispos
25(5):529–535, 1997. 

Rats-Male F344 TCOH, TCA iv;
TCE
intraduodenal

TCA, TCOH in blood

R.D. Stewart Arch Environ Health
20(1):64–71, 1970.

Humans TCE inhalation Exhaled TCE; TCA,
TCOH in urine

M.V. Templin Toxicol Appl
Pharmacol  23(1):1–8,
1993.

Mice TCE oral
(aqueous)

TCE and metabolites in
blood

M.V. Templin J Toxicol Environ
Health 44(4):435–447,
1995.

Rats-Male F344 TCE oral
(Tween 80
solution)

TCE in blood; TCA
and TCOH in blood
and bile

K.D. Thrall J Toxicol Environ
Health A.
59(8):653–670, 2000. 

Rats-Male F344 TCE iv TCE in breath,
chamber 
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APPENDIX B:  COMPUTER IMPLEMENTATION

The general modeling strategy described above will be implemented in different

languages in two separate modeling efforts.  This activity provides a quality control check on the

modeling software and the coding of the model so that outputs of the two models given the same

input should be similar.  Divergence of the two model outputs would indicate improper coding in

at least one of the models.  Since the two languages that are being used differ in syntax and in

how the model code is structured, it is unlikely that a coding error would be made in both

programs that would be similar enough to go undetected (i.e., both program outputs would be the

same).  Moreover, the capabilities of the two modeling languages differ, and features unique to

each program add to the overall ability to develop and test the model.  The two models are

described below.

Model 1:  Exposure Related Dose Estimating Model 

The U.S. Environmental Protection Agency’s (EPA’s) National Exposure Research

Laboratory (NERL) has developed the Exposure Related Dose Estimating Model (ERDEM) as a

platform for the application of physiologically based pharmacokinetic (PBPK) and

PBPK/pharmacodynamic (PD) models. The heart of ERDEM

(http://www.epa.gov/heasdweb/erdem/erdem.htm) is a PBPK model that simulates the

absorption, distribution, metabolism, and elimination of chemicals in mammalian systems.

Simulated chemicals are introduced into the physiological system by any of several

routes, including injection, ingestion, inhalation, and/or dermal absorption.  The ERDEM system

contains a large set of potential compartments and processes, with over 30 physiological

compartments, such as arterial and venous blood, brain, skin (surface and dermis), fat, kidney,

liver, rapidly and slowly perfused tissues, lung, stomach, and intestine.  Any given model is

derived by selecting the compartments and processes that are most applicable to the kinetics of

the chemical(s) and endpoint of interest.  ERDEM is programmed using the Advanced

Continuous Simulation Language (ACSL).  Model-specific parameter values are entered into

ERDEM based on the physiological, biological, and biochemical modeling data specific to the

chemical and/or scenario of interest.  Any PBPK model, including ERDEM, is made up of a

series of the differential equations that describe the rates of inflow, distribution, metabolism, or

outflow of a chemical and various metabolites in each separate biological compartment.

ERDEM consists of an ACSL-based model engine and a power builder front end.  Both

of these components will be made available to the public as executables from EPA’s Office of

Research and Development (ORD)-NERL.  No special software is required.  An ACSL software

license is needed to recompile the code and cannot be provided by EPA.  However ERDEM
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should require no additional recompilation of code to run the model as described in the

document.

Model 2:  PBPK Development Using MCSim Language

A second model is being developed in the MCSim language.  MCSim is an open-source

statistical modeling package initially developed by Frederic Bois and others for the application of

modern Monte Carlo statistical methods in complex nonlinear models.  Since MCSim includes a

sublanguage for describing dynamic models in terms of their component differential equations

and typical time-varying inputs, it has been particularly valuable in the application of Markov

Chain Monte Carlo methods to estimating Bayesian posterior distributions for parameters of

PBPK models.

Dynamic models in MCSim are written in an algebraic language.  Model specification

includes predefining all the parameters for the model, declaring all the variables whose dynamics

are governed by differential equations, declaring all the variables whose values need to be output,

specifying input variables whose values will be determined by special functions that provide for

periodic or episodic inputs, and specifying the differential equations for the model.  This model

specification file is translated by the MCSim software into the C programming language.  Then it

is compiled and linked to libraries that provide routines for integrating the differential equation

system, carrying out the required Monte Carlo simulations, and doing the input and output

functions.  The resulting executable file is then run with specially formatted input files that can

change parameter values and specify the nature of the desired simulation, whether it is a

numerical integration of the differential equation system, a Monte Carlo simulation of parameter

variability or uncertainty, or a Markov Chain Monte Carlo estimate of Bayesian posterior

distributions for model parameters.

MCSim models are portable at several levels.  At the lowest level, since MCSim itself is

open source, and since open-source C-language compilers are available for almost all computing

platforms (e.g., UNIX, Microsoft Windows, and Apple OS-X), models can be distributed as

model source and recompiled and run with little additional cost to reviewers.  Compiled models

are also executable files and can be run without any additional software (although the executables

are specific to particular operating systems and computing hardware).  Thus, the compiled

models can be distributed and their behavior evaluated without the installation of additional

software.


