

US-EPA CompTox Chemicals Dashboard – integrating chemistry and biology data to serve computational toxicology and environmental science

Antony Williams, Chris Grulke, Ann Richard, Richard Judson, Imran Shah Grace Patlewicz, John Wambaugh, Katie Paul-Friedman, Jeremy Dunne and Jeff Edwards

National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

CompTox Portal

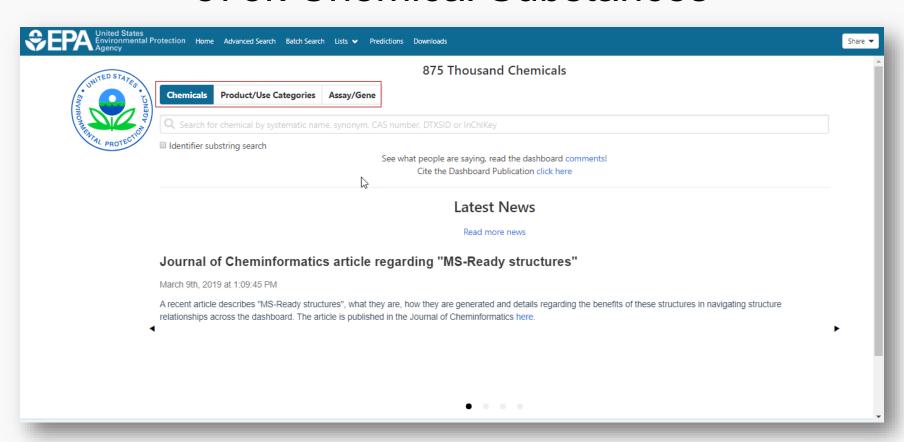

Environmental Topics

Laws & Regulations

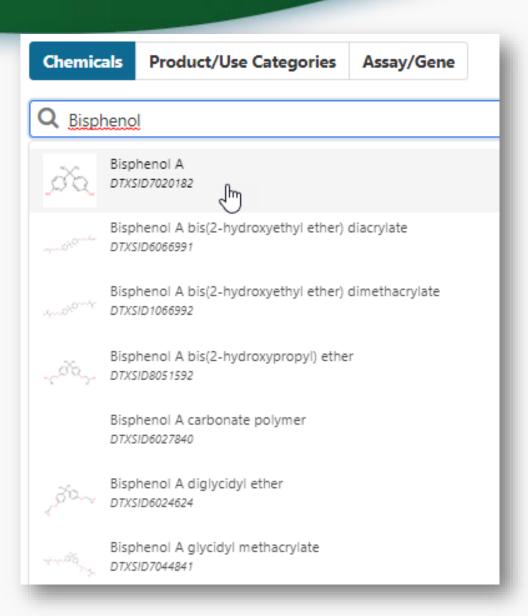
About EPA

Search EPA.gov

CompTox Chemicals Dashboard

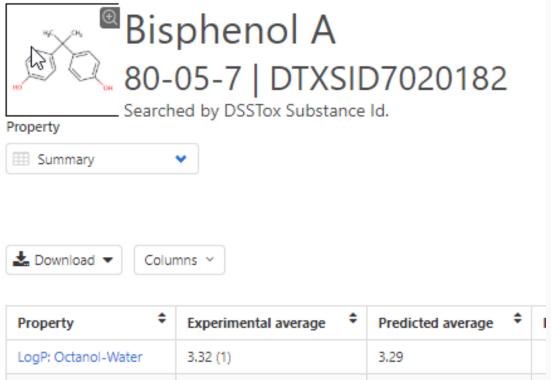

- A publicly accessible website delivering access:
 - ~875,000 chemicals with related property data
 - Searchable by chemical, product use, gene and assay (ToxCast)
 - Experimental and predicted physicochemical property data
 - Bioactivity data" for the ToxCast/Tox21 project
 - Links to other agency websites and public data resources
 - "Literature" searches for chemicals using public resources
 - "Batch searching" for thousands of chemicals
 - DOWNLOADABLE Open Data for reuse and repurposing

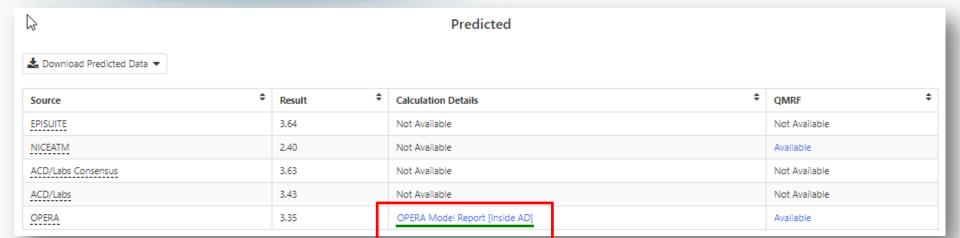
CompTox Chemicals Dashboard

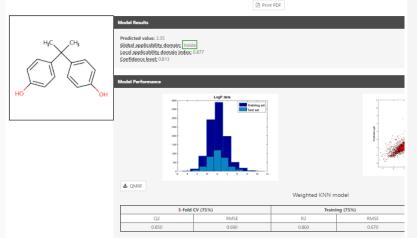


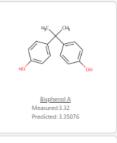
875k Chemical Substances

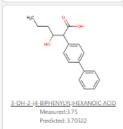
BASIC Search

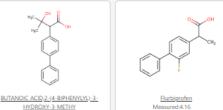

Detailed Chemical Pages

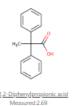

Experimental and Predicted Data


Transparency for prediction models






80-05-7 | DTXSID7020182


rest Neighbors from the Training Set

Measured:3.25 Predicted: 3.39062 Measured:4.16 Predicted: 3.94445

Predicted: 2.84603

OPERA Predicted Properties

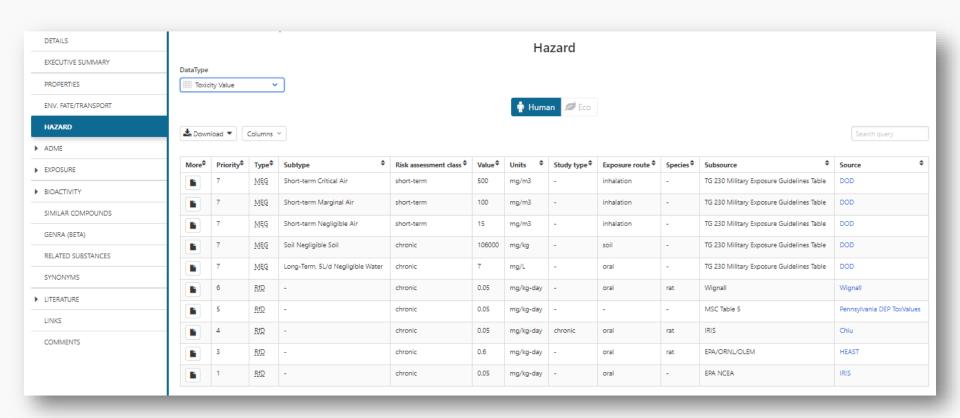
An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling

K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams

Journal of Cheminformatics

RESEARCH ARTICLE

Open Access

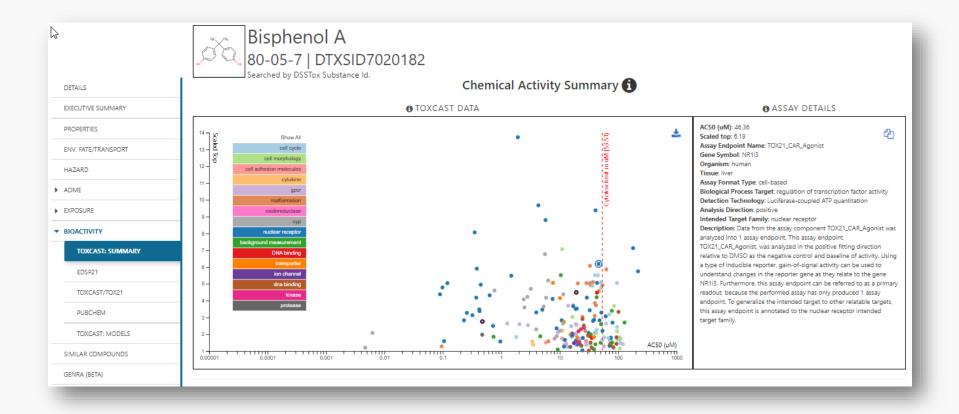

OPERA models for predicting physicochemical properties and environmental fate endpoints

Kamel Mansouri 1,2,3* D, Chris M. Grulke 1, Richard S. Judson 1 and Antony J. Williams 1

OPERA Models: https://github.com/kmansouri/OPERA

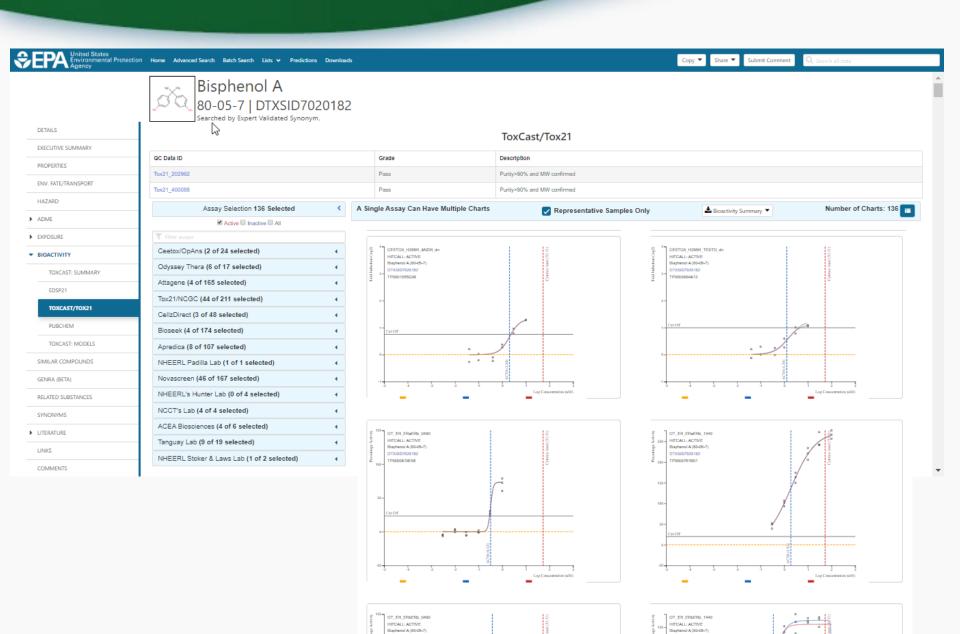
Access to Chemical Hazard Data

Hazard Data from "ToxVal_DB"



- ToxVal Database contains following data:
 - -~800,000 toxicity values
 - -~30 sources of data
 - -~22,000 sub-sources
 - -~5000 journals cited
 - -~70,000 literature citations

In Vitro Bioassay Screening



In Vitro Bioassay Screening

ToxCast and Tox21

Bioactivity: Downloadable Data

https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data

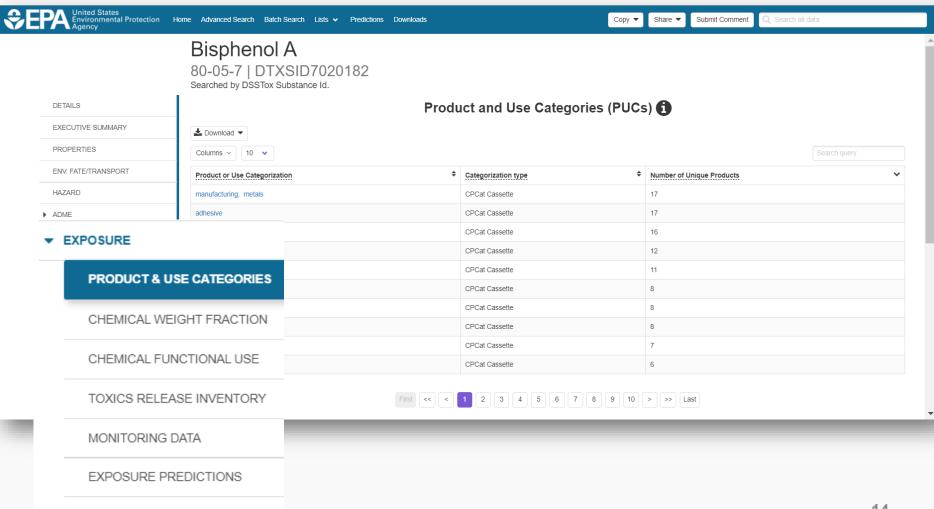
Exploring ToxCast Data: Downloadable Data

The results after processing through the Pipeline are available on the <u>ToxCast Dashboard</u>, and for most users EPA recommends accessing the data there.

- ToxCast Chemicals
- <u>ToxCast Assays</u>

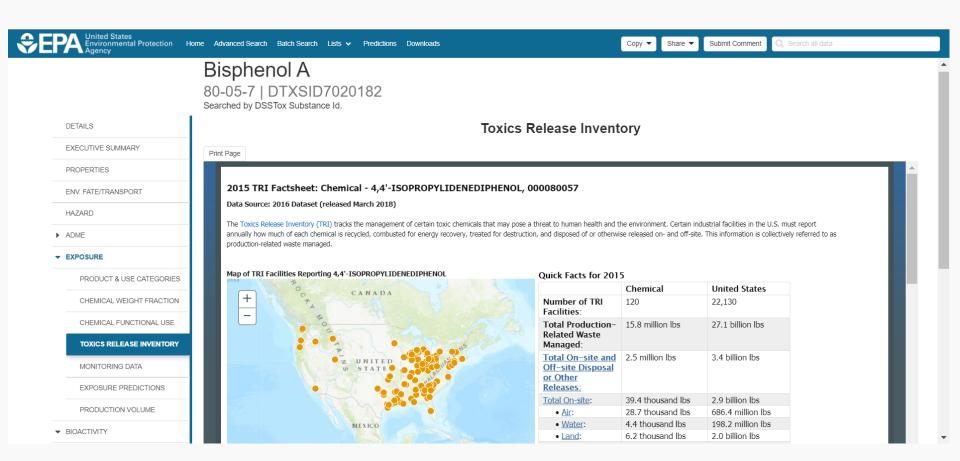
ToxCast Data and Information

- ToxCast & Tox21 Summary Files. Data for a single chemical endpoint pair for thousands of chemicals and assay endpoints for 20 variables such as the activity or hit call, activity concentrations, whether the chemical was tested in a specific assay, etc.
 - o <u>Download ToxCast Summary Information</u>
 - Download ReadMe
- ToxCast & Tox21 Data Spreadsheet. A spreadsheet of EPA's analysis of the chemicals screened through ToxCast and the Tox21 collaboration which includes EPA's activity calls from the screening of over 1,800 chemicals.
 - Download Data
 - Download ReadMe
- ToxCast Data Pipeline R Package. The R computer programming package used to process and model all EPA ToxCast and Tox21 chemical screening data. The files include the R programming package as well as documents that provide overviews of the data analysis pipeline used and the R package. Users will need experience with R to use these files.
 - <u>Download Package</u>
 - TCPL Overview


Resources

- <u>Toxicity Forecaster (ToxCast)</u>
 <u>Fact Sheet</u>
- ToxCast Publications
- ToxCast Citation
- About ToxCast

Sources of Exposure to Chemicals


PRODUCTION VOLUME

Sources of Exposure to Chemicals

An "Executive Summary" Quick Look Tox Info

Executive Summary

Quantitative Risk Assessment Values

- IRIS values available
- No PPRTV values
- Minimum RfD: 0.050 mg/kg-day (chronic, IRIS, oral, 8) [3]
- No RfC calculated

Quantitative Hazard Values

- Minimum oral POD: 3.8 mg/kg-day (reproductive, HPVIS, oral, 6) 3
- No inhalation POD values
- Lowest Observed Bioactivity Equivalent Level: CYP1A1, CYP1A2, Tpo, ESR2, ESR1, ESR1,
- NR1I3, PPARA, NR1I2, Cyp2c11, MMP3, Esr1

Cancer Information

- No cancer slope factor
- No inhalation unit risk value
- Carcinogenicity data available: University of Maryland carcinogenicity warning: 2 No genotoxicity findings reported

Reproductive Toxicology

200 Reproductive toxicity PODs available 2

Chronic Toxicology

340 Chronic toxicity PODs available 2

Subchronic Toxicology

12 Subchronic toxicity PODs available

Developmental Toxicology

6 Developmental toxicity PODs available

Acute Toxicology

391 Acute toxicity PODs available 2

Subacute Toxicology

1 subacute toxicity PODs available

No neurotoxicology data available.

Endocrine System

Endocrine Disruption Potential. Significant Estrogen and Androgen Receptor activity seen. Chemical was positive in 21 ER assays (out of 35) and was positive in 9 AR assays (tested in 19).

MTTK Css data are available

Fate and Transport

No bioaccumulation concern.

- No volatility concern.
- Biodegradation predictions are available
- BCF predictions are available

 ■
- ✓ Vapor Pressure predictions are available
 ✓

Exposure estimates are available based on NHANES and SEEM

AOP Information

AOP Links: 13, 33, 36, 58, 60, 61, 66, 107, 124, 150, 163, 175, 187, 200

Other Notes

- No water quality values available
- No air quality values available.
- 14 Occupational exposure values available.

REGIONAL SCREENING

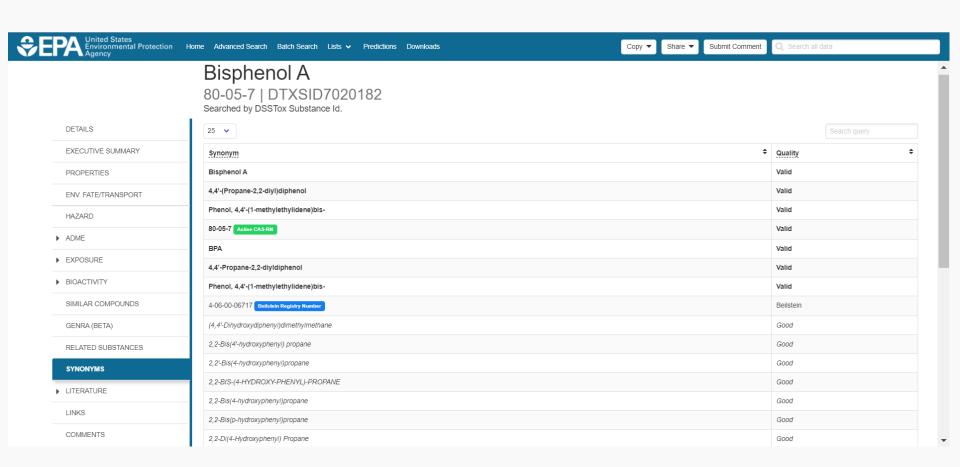
	Class	THQ	Value
	risk-based SSL (mg/kg)	THQ = 0.1	5.8
	GIABS (unspecified)	THQ = 1	4
	GIABS (unspecified)	THQ = 0.1	1
Ì	ABS (unspecified)	THQ = 0.1	0.1
	RFDo(mg/kg-day)	THQ = 0.1	0.05
	screening level (residential Soil) (mg/kg)	THQ = 0.1	320
	screening level (industrial soil) (mg/kg)	THQ = 0.1	4100
	screening level (tap water) (ug/L)	THQ = 0.1	77
	RFDo (mg/kg-day)	THQ = 1	0.05
	screening level (residential Soil) (mg/kg)	THQ = 1	3200
	screening level (industrial soil) (mg/kg)	THQ = 1	41000
	ABS (unspecified)	THQ = 1	0.1
	risk-based SSL (mg/kg)	THQ = 1	58
	screening level (tap water) (ug/L)	THQ = 1	770

♠ PHYSCHEM PARAMETERS

ASSAY PLOTS

Quantitative Risk Assessment Values

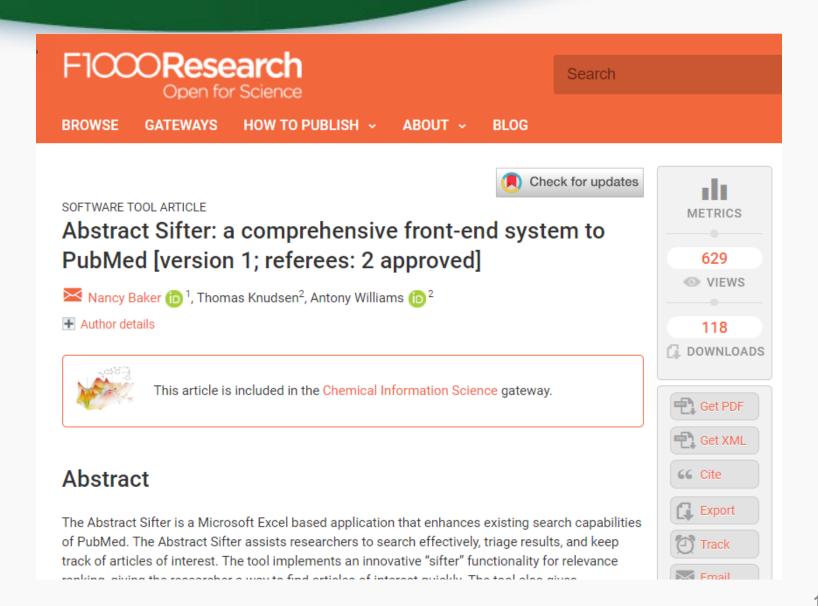
- IRIS values available
- No PPRTV values
- EPA RSL values available
- Minimum RfD: 0.050 mg/kg-day (chronic, IRIS, oral, 8)
- No RfC calculated
- NIVIVE POD not calculated


Quantitative Hazard Values

- Minimum oral POD: 3.8 mg/kg-day (reproductive, HPVIS, oral, 6)
- No inhalation POD values
- ✓ Lowest Observed Bioactivity Equivalent Level: CYP1A1, CYP1A2, Tpo NR1I3, PPARA, NR1I2, Cyp2c11, MMP3, Esr1

16

Identifiers to Support Searches



Built in "Modules"

Abstract Sifter for Excel

Literature Searching

Morphine

57-27-2 | DTXSID9023336

Searched by Approved Name.

Abstract Sifter

1) Select PubMed starting point query then 2) click on Retrieve. Select a Query Term Retrieve Articles Select a Query Term Hazard Fate and Transport Metabolism/PK/PD Chemical Properties Exposure Mixtures Male Reproduction Androgen Disruption Female Reproduction GeneTox Cancer Clinical Trials Embryo and embryonic development Child (infant through adolescent) Dust and Exposure Food and Exposure Water and Exposure Algae Disaster / Emergency

Optionally	ı. edit	the o	auerv	before	retrieving
Optionum	, cuit	LIII C	quoi y	DOIDIG	TO UTO VIIII M

"57-27-2" OR "Morphine"

Literature Searching

Child (Intant through adolescent)

Dust and Exposure

Food and Exposure

Water and Exposure

Algae

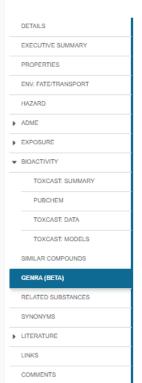
Disaster / Emergency

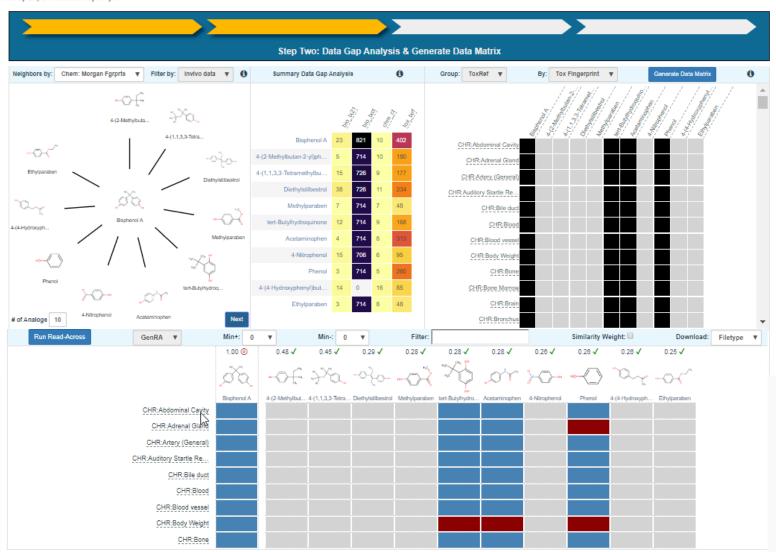
Öptionally, edit the query before retrieving.

("57-27-2" OR "Morphine") AND ((water OR groundwater OR drinking water) AND Environmental Exposure)

Literature Searching

37 of 37 articles loaded...


То	To find articles quickly, enter terms to sift abstracts. 1											
wastewater Spectrometry		EPA		Clear Terms		Download / Send to Download Sifter for I	Excel	0				
	wastewater	Spectromet	гу 👃	EPA	Total	PMID	Year	Title	Authors	Journal	Rev	_
	4	2		0	6	29274731	2017	Simultaneous analysis of opioid analgesics and thei	Krizman-Matasic; Kostanjevecki; Ahel; Terzic	Journal of chromatography. A		
	0	1		0	1	25768972	2015	Evaluating external contamination of polybrominate	Poon; Aleksa; Carnevale; Kapur; Goodyer; Koren	Therapeutic drug monitoring		
	0	1		0	1	22544551	2012	Spatial distribution of illicit drugs in surface waters o	Vazquez-Roig; Andreu; Blasco; Morillas; Picó	Environmental science and pollution research inter		
	1	1		0	2	20801487	2010	Analysis of llicit and illicit drugs in waste, surface an	Berset; Brenneisen; Mathieu	Chemosphere		
	1	1		0	2	17935751	2007	Illicit drugs, a novel group of environmental contami	Zuccato; Castiglioni; Bagnati; Chiabrando; Grassi;	Water research		
	2	1		1	4	17607391	2007	Using environmental analytical data to estimate lev	Bones; Thomas; Paull	Journal of environmental monitoring : JEM		
	3	1		2	6	17180984	2006	Simultaneous determination of psychoactive drugs \dots	Hummel; Löffler; Fink; Ternes	Environmental science & technology		
	6	0		0	6	30583189	2018	Assessment of drugs of abuse in a wastewater trea	Kumar; Tscharke; O'Brien; Mueller; Wilkins; Padhye	The Science of the total environment		
	0	0		3	3	30488421	2018	Effect of enriched environment during adolescence \dots	Mohammadian; Najafi; Miladi-Gorji	Developmental psychobiology		
	3	0		0	3	29574368	2018	Estimation of the consumption of illicit drugs during \dots	Foppe; Hammond-Weinberger; Subedi	The Science of the total environment		
	1	0		0	1	28787791	2017	$\label{thm:equation} \mbox{Evaluation of in-sewer transformation of selected illi}$	Gao; Banks; Li; Jiang; Lai; Mueller; Thai	The Science of the total environment		
	9	0		0	9	28472697	2017	Occurrence and fate of illicit drugs and pharmaceuti	Causanilles; Ruepert; Ibáñez; Emke; Hernández; d	The Science of the total environment		
	0	0		0	0	28010888	2016	Dose-dependent effects of morphine on lipopolysac	Mottaz; Schönenberger; Fischer; Eggen; Schirmer;	Environmental pollution (Barking, Essex : 1987)		
	0	0		0	0	27746311	2016	Effects of voluntary exercise on the viability, prolifer	Haydari; Safari; Zarbakhsh; Bandegi; Miladi-Gorji	Neuroscience letters		
	0	0		0	0	27261879	2016	Genotoxic effects induced by the exposure to an en	Parolini; Magni; Castiglioni; Binelli	Ecotoxicology and environmental safety		
	3	0		0	3	27179320	2016	Temporal trends in drug use in Adelaide, South Aus	Tscharke; Chen; Gerber; White	The Science of the total environment		-


Generalized Read-Across (GenRA)

Bisphenol A

80-05-7 | DTXSID7020182 Searched by Expert Validated Synonym.

Related Publications

Cite This: Chem. Res. Toxicol. 2017, 30, 2046-2059

pubs.acs.org/crt

Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure

Jie Liu, \$\frac{1}{2}\$. Grace Patlewicz, \$\frac{1}{2}\$ Antony J. Williams, \$\frac{1}{2}\$ Russell S. Thomas, \$\frac{1}{2}\$ and Imran Shah**

[†]National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27711, United States

Computational Toxicology

Available online 23 July 2018

In Press, Corrected Proof ?

Extending the Generalised Read-Across approach (GenRA): A systematic analysis of the impact of physicochemical property information on read-across performance

Regulatory Toxicology and Pharmacology

Volume 79, August 2016, Pages 12-24

Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information

Imran Shah ^a ^o ⊠, Jie Liu ^{b, c}, Richard S. Judson ^a, Russell S. Thomas ^a, Grace Patlewicz ^a

Contents lists available at ScienceDirect

Computational Toxicology

ogy

journal homepage: www.elsevier.com

Navigating through the minefield of read-across frameworks: A commentary perspective

Grace Patlewicz^{a, *}, Mark T.D. Cronin^b, George Helman^{a, c}, Jason C. Lambert^d, Lucina E. Lizarraga^d, Imran Shah^a

- ^a National Center for Computational Toxicology (NCCT), Office of Research and Development, US Environmental Protection Agency (US EPA), 109 TW Alexander Dr, Research Triangle Park
- b School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
- Coak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA
- Anational Center for Evaluation Assessment (NCEA), US Environmental Protection Agency (US EPA), 26 West Martin Luther King Dr., Cincinnati, OH 45268, USA

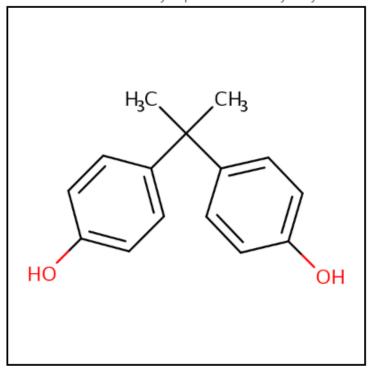
Iourna

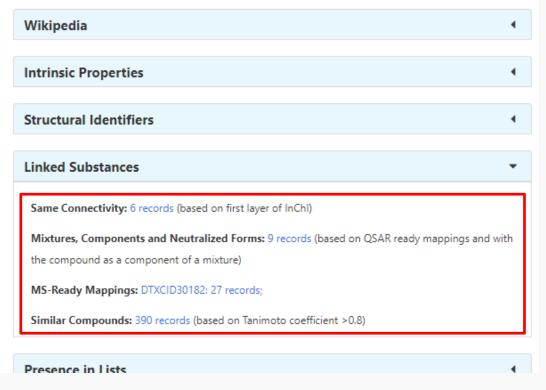
Image

Department of Information Science, University of Arkansas at Little Rock, Arkansas 72204, United States

[§]Oak Ridge Institute for Science Education, National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27711, United States

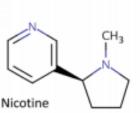
Mapped Relationships

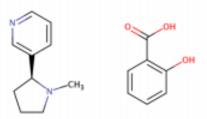

Relationships in the Data



Bisphenol A 80-05-7 | DTXSID7020182

Searched by Expert Validated Synonym.



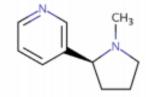

pubs.acs.org/est

Open Science for Identifying "Known Unknown" Chemicals

Emma L. Schymanski*,† and Antony J. Williams*,† 0

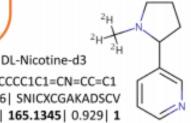
CN1CCC[C@H]1C1=CN=CC=C1 DTXSID1020930| SNICXCGAKADSCV 54-11-5 | 162.1157 | 0.929 | 72 Tox: yes | Expo: yes | Bioassay: yes

Benzoic acid, 2-hydroxy-, compd. with 3-[(2S)-1-methyl-2-pyrrolidinyl]pyridine (1:1)


OC(=O)C1=C(O)C=CC=C1.CN1CCC[C@H]1C1=CN=CC=C1 DTXSID5075319 | AIBWPBUAKCMKNS 29790-52-1 300.1474 0.929 6 Tox: no | Expo: yes | Bioassay: no

CN1CCC[C@@H]1C1=CN=CC=C1 DTXSID004635 | SNICXCGAKADSCV 25162-00-9 | 162.1157 | 0.929 | 20 Tox: no | Expo: ves | Bioassay: ves

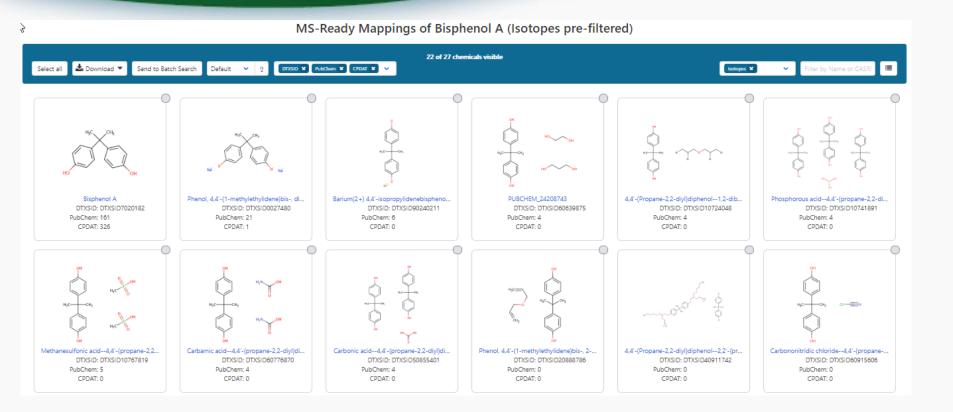
CN1CCCC1C1=CN=CC=C1 DTXSID3048154 | SNICXCGAKADSCV 22083-74-5 | 162.1157 | 0.953 | 9 Tox: yes | Expo: no | Bioassay: yes

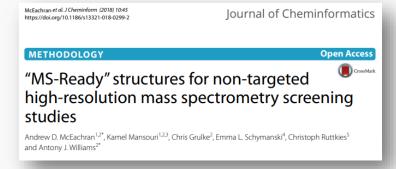

LEGEND: Name, SMILES DTXSID | InChlKey 1st Block CAS | Monoiso. Mass | logP | Sources Data on: Toxicity | Exposure | Bioassays

Nicotine hydrochloride

HCI

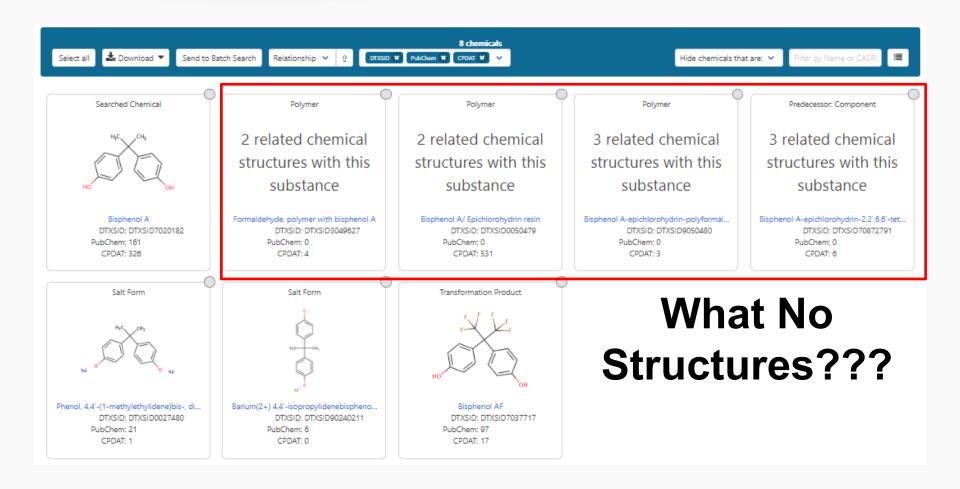
CI.CN1CCC[C@H]1C1=CN=CC=C1 DTXSID602093 | HDJBTCAJIMNXEW 2820-51-1 | 198.0924 | 0.929 | 9 Tox: no | Expo: yes | Bioassay: yes



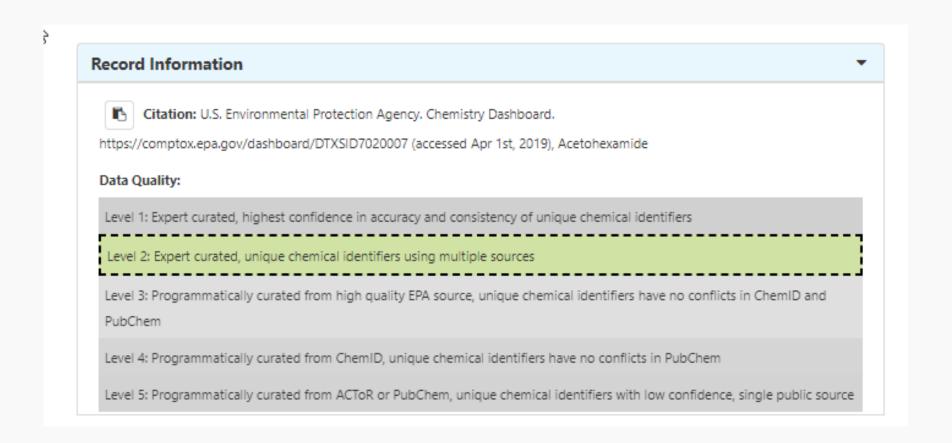

[2H]C([2H])([2H])N1CCCC1C1=CN=CC=C1 DTXSID80442666| SNICXCGAKADSCV 69980-24-1 | 165.1345 | 0.929 | 1

Tox: no | Expo: no | Bioassay: no

Bisphenol A 27 Total MS-Ready Mappings



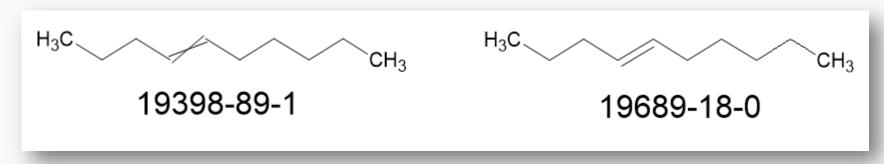
Related Substances – Transformation Products, "Monomer-Polymer"



Quality Control

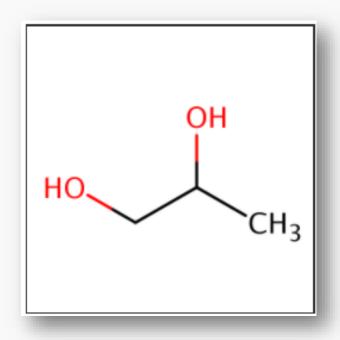
Quality Control of the Database

We have full time curators checking data

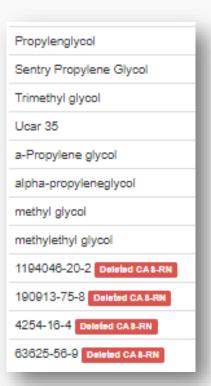

Names to CASRN Mappings

	Substance Mapping (1 of 66)							
D _C	Source Casrn	Source Name	Hit Substance_ID	Hit Casrn	Hit Name			
0	19398-89-1	4-Decene	DTXSID50876156	19689-18-0	4-Decene	Remove Validation		
0	112926-00-8	silica gel, cryst free	DTXSID9029851	112926-00-8	Hydrated silica	Remove Validation		
0	124-28-7	1- Octadecanamine, N,N-dimethyl-	DTXSID4027026	124-28-7	N,N-Dimethyl-1- octadecanamine	Remove Validation		
0	1330-43-4	Boron sodium oxide	DTXSID2034388	1330-43-4	Sodium tetraborate	Remove Validation		
0	13492-26-7	Mono- and di- potassium salts of phosphorous acid	DTXSID9035961	13492-26-7	Phosphonic acid, potassium salt (1:2)	Remove Validation		
0	135-37-5	Glycine, N- (carboxymethyl)- N-(2- hydroxyethyl)-, disodium salt	DTXSID8042008	135-37-5	Ethanoldiglycine disodium salt	Remove Validation		

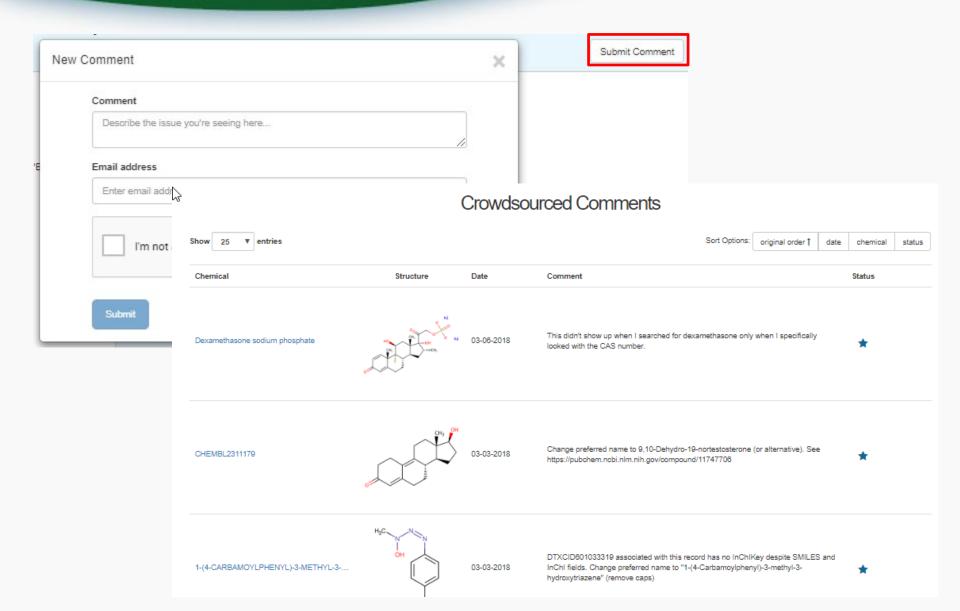
"4-Decene"



E/Z-stereochemistry


E-stereochemistry

CAS Registry Numbers



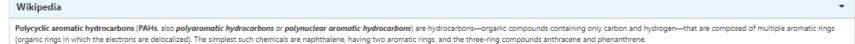
1,2-Propylene glycol
Propane-1,2-d
1,2-Propanediol
57-55-6 Active CAS-RN
alpha-Propylene glycol
(+/-) 1,2-Propanediol
(RS)-1,2-Propanediol
dl-Propylene glycol
3-01-00-02142 Belictein Registry Number
1,2-Propanediol
(.+)-1,2-Propanediol
(.+)-Propylene glycol

Crowdsourced Curation

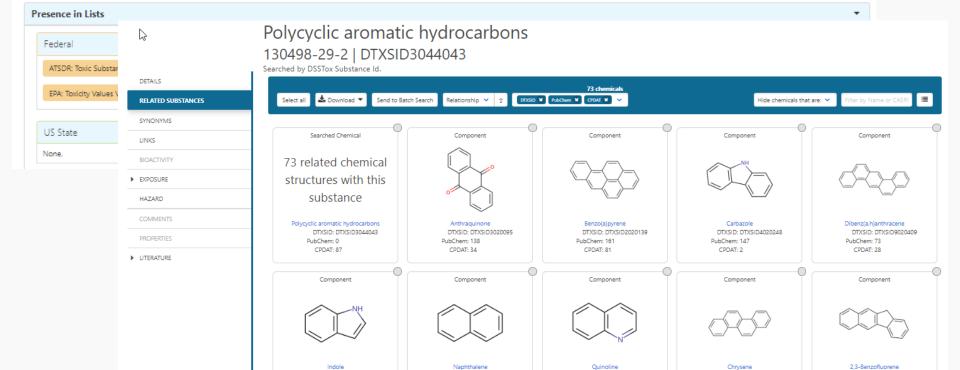
Chemical Lists and Categories

Category example – PAHs

DTXSID: DTXSID1022477


5/

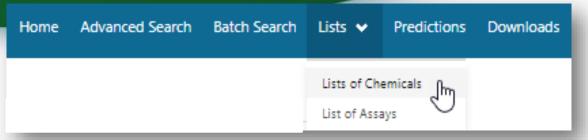
DTXSID: DTXSID0022432

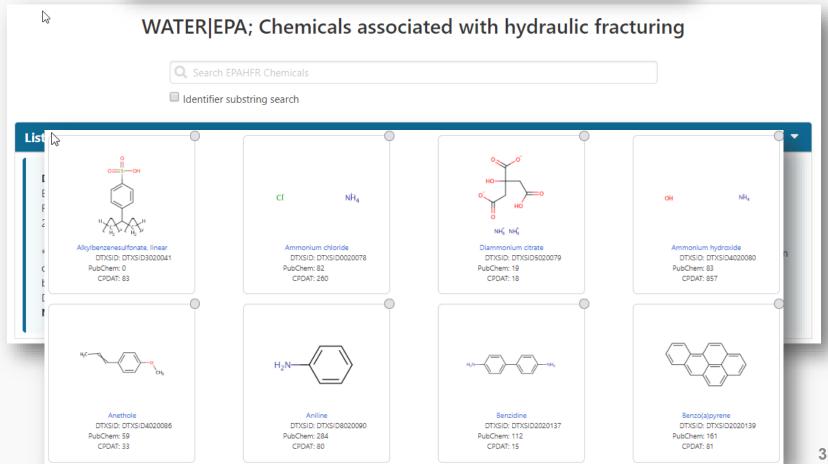

Polycyclic aromatic hydrocarbons 130498-29-2 | DTXSID3044043

Searched by DSSTox Substance Id.

PAHs are uncharged, non-polar molecules found

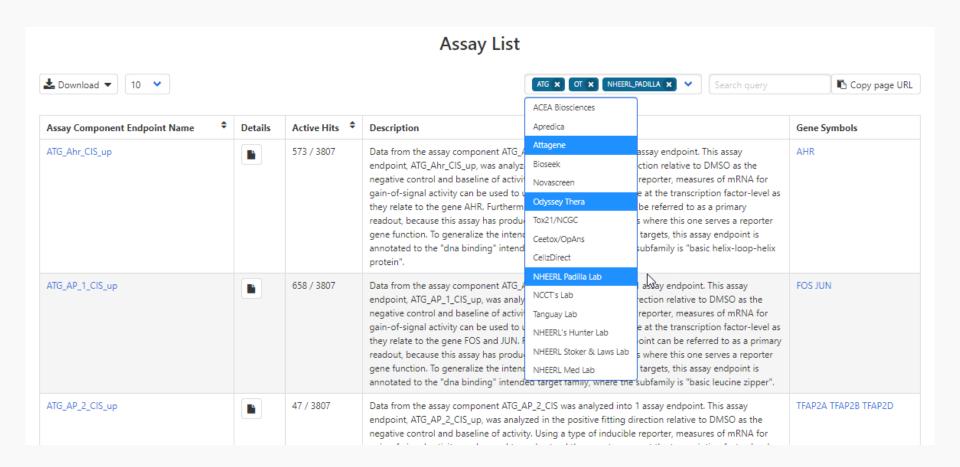
... Read more

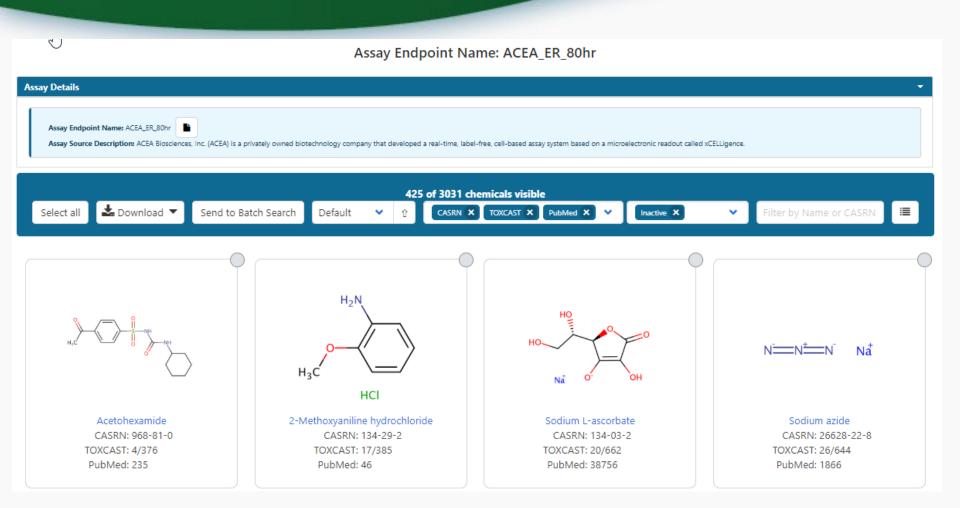

DTXSID: DTXSID8020913


DTXSID: DTXSID1021798

DTXSID: DTXSID0020737

EPAHFR: Hydraulic Fracturing




List of Assays

From Assay to Chemicals...

Other Searches

Chemicals

Product/Use Categories

Assay/Gene

Search for chemicals based on product or use categories

Product/Use Categories

h

Chemicals

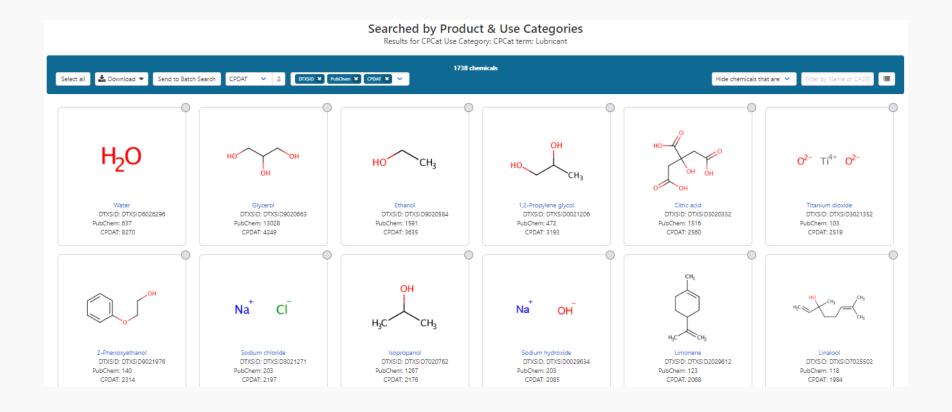
Product/Use Categories

Assay/Gene

CPDat PRODUCT category: auto products auto lubricant engine lubricants and belt dressings, not including motor oils (spray or aerosol formulation specified)

CPDat PRODUCT category: auto products auto lubricant engine lubricants and belt dressings, not including motor oils

CPDat PRODUCT category: home maintenance lubricant household maintenance lubricants (spray or aerosol formulation specified)


CPDat PRODUCT category: home maintenance lubricant household maintenance lubricants

CPDat PRODUCT category: personal care clipper lubricant/cleaner cleaning and lubricating products for hair clippers

CPCat USE category: lubricant generic lubricants, lubricants for engines, brake fluids, oils, etc (does not include personal care lubricants)

Lubricant

Lots of UVCBS in Commerce....

1 related chemical structure with this substance

Butoxypolypropylene glycol DTXSID: DTXSID3034404 PubChem: 0 CPDAT: 437

0 related chemical structures with this substance

Distillates, petroleum, hydrotreated heav...

DTXSID: DTXSID3028217 PubChem: 0 CPDAT: 433 0 related chemical structures with this substance

> Fatty acids, tall-oil DTXSID: DTXSID0028088 PubChem: 0 CPDAT: 436

1 related chemical structure with this substance

CPDAT: 433

Edifas B DTXSID: DTXSID2020555 PubChem: 0 Poly(oxy-1,2-ethanediyi), alpha-tridecyl-... DTXSID: DTXSID8043993 PubChem: 0 CPDAT: 435

0 related chemical structures with this substance

> Coconut oil DTXSID: DTXSID8027664 PubChem: 0 CPDAT: 432

1 related chemical structure with this substance

Polyoxyethylene (20) oleylether DTXSID: DTXSID1027714 PubChem: 0 CPDAT: 435

H₃C CH₃

4-Methyl-2-pentanone DTXSID: DTXSID5021889 PubChem: 173 CPDAT: 428 0 related chemical structures with this substance

Soy oil DTXSID: DTXSID8027660 PubChem: 0 CPDAT: 435 0 related chemical structures with this substance

Bentonite DTXSID: DTXSID6030782 PubChem: 0 CPDAT: 433

0 related chemical structures with this substance

Distillates, petroleum, solvent-refined he...
DTXSID: DTXSID9028172
PubChem: 0
CPDAT: 426

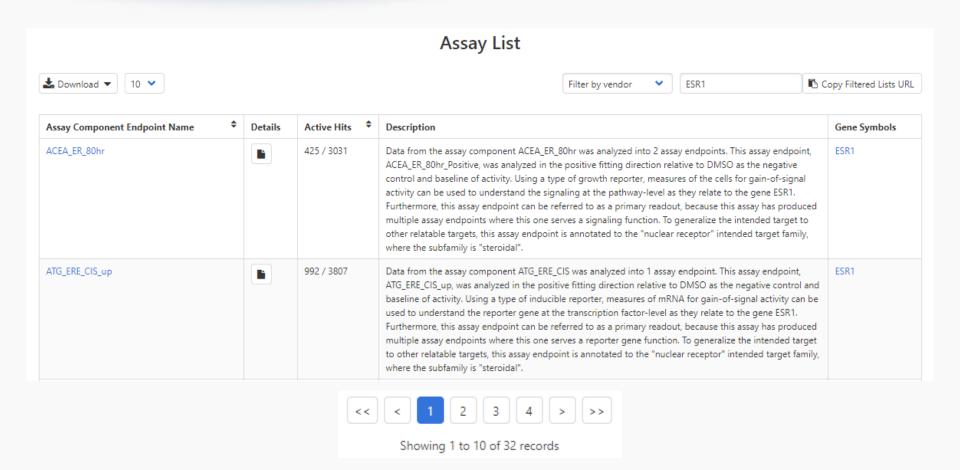
Dibutyl phthalate
DTXSID: DTXSID2021781
PubChem: 138
CPDAT: 421

Other Searches

Chemicals Product/Use Categories Assay/Gene

Search for assays based on endpoint name or gene symbol

Chemical-Biology


Assay/Gene Search

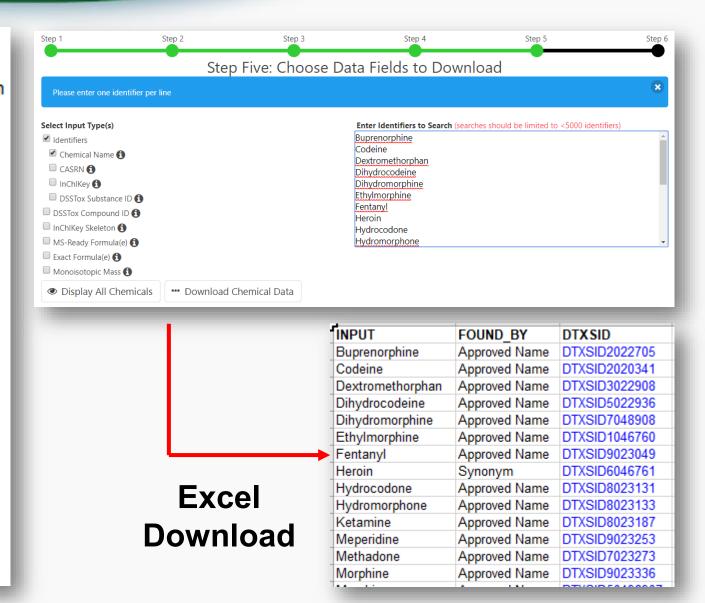
Product/Use Categories Assay/Gene Chemicals Q ESR ASSAY: TOX21_ESRE_BLA_ch1 Data from the assay component TOX21_ESRE_BLA_ch1 was analyzed into 1 a... ASSAY: TOX21 ESRE BLA ch2 Data from the assay component TOX21_ESRE_BLA_ch2 was analyzed into 1 a... ASSAY: TOX21_ESRE_BLA_ratio Data from the assay component TOX21_ESRE_BLA_ratio was analyzed into 1... ASSAY: TOX21_ESRE_BLA_viability TOX21_ESRE_BLA_viability used a type of growth reporter where loss-of-... GENE: ESR1 estrogen receptor 1 GENE: esr1.L estrogen receptor 1 L homeolog GENE: ESR2 estrogen receptor 2 (ER beta) GENE: esr2.L estrogen receptor 2 L homeolog

Assay/Gene Search

Batch Searching

Batch Searching

 Singleton searches are useful but people generally want data on LOTS of chemicals!


Typical questions

- What is the list of chemicals for the formula C_xH_yO_z
- What is the list of chemicals for a mass +/- error
- Can I get chemical lists in Excel files? In SDF files?
- Can I include properties in the download file?

Batch Search Names

Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydromorphone Ketamine Meperidine Methadone Morphine Morphinone Naloxone Naltriben 0xycodone Oxymorphone Propoxyphene Sufentanil Tramadol

Add Other Data of Interest

Chemical Identifiers

- ✓ DTXSID
- Chemical Name
- ☐ DTXCID **(**)
- ✓ CAS-RN
- ✓ InChlKey <a>f
- ☐ IUPAC Name 🚹

Structures

- ☐ Mol File 🚯
- SMILES 1
- ☐ InChI String **1**
- ✓ MS-Ready SMILES
- QSAR-Ready SMILES 6

Intrinsic And Predicted Properties

- Molecular Formula 6
- Average Mass 6
- ✓ Monoisotopic Mass

 ⑤
- ☐ TEST Model Predictions 🕦
- OPERA Model Predictions

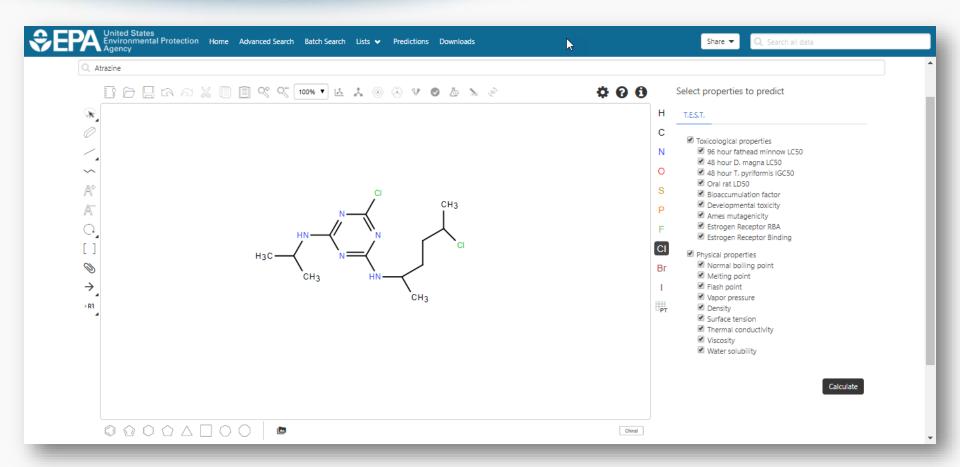
INPUT	DTXSID	CASRN	MOLECULAR FO	MONOISOTOPIC	MS READY SMI
	DTXSID202		C29H41NO4		[H]C12CC3=C4C
	DTXSID202		C18H21NO3		[H]C12CC3=C4C
Dextrometh	DTXSID302	125-71-3	C18H25NO		[H]C12CC3=C(C=
Dihydrocode	DTXSID502	125-28-0	C18H23NO3	301.1677936	[H]C12CC3=C4C
Dihydromor	DTXSID704	509-60-4	C17H21NO3	287.1521435	[H]C12CC3=C4C
Ethylmorph	DTXSID104	76-58-4	C19H23NO3	313.1677936	[H]C12CC3=C4C
Fentanyl	DTXSID902	437-38-7	C22H28N2O	336.2201635	CCC(=O)N(C1CC
Heroin	DTXSID604	561-27-3	C21H23NO5	369.1576228	[H]C12CC3=C4C
Hydrocodon	DTXSID802	125-29-1	C18H21NO3	299.1521435	[H]C12CC3=C4C
Hydromorph	DTXSID802	466-99-9	C17H19NO3		[H]C12CC3=C4C
Ketamine	DTXSID802	6740-88-1	C13H16CINO	237.0920418	CNC1(CCCCC1=
Meperidine	DTXSID902	57-42-1	C15H21NO2	247.1572289	CCOC(=0)C1(CC
Methadone	DTXSID702	76-99-3	C21H27NO	309.2092645	CCC(=O)C(CC(C)
	DTXSID902		C17H19NO3	285.1364935	[H]C12CC3=C4C
Morphinone	DTXSID501	467-02-7	C17H17NO3	283.1208434	[H]C12CC3=C4C
Naloxone	DTXSID802	465-65-6	C19H21NO4	327.1470582	[H]C12CC3=C4C
Naltriben	-	-	-	-	-
	DTXSID502		C18H21NO4		[H]C12CC3=C4C
	DTXSID502		C17H19NO4		[H]C12CC3=C4C
	DTXSID102		C22H29NO2		CCC(=O)OC(CC1
	DTXSID602		C22H30N2O2S		CCC(=O)N(C1=C
Tramadol	DTXSID908	27203-92-5	C16H25NO2	263.188529	COC1=CC=CC(=

Built in Checks...

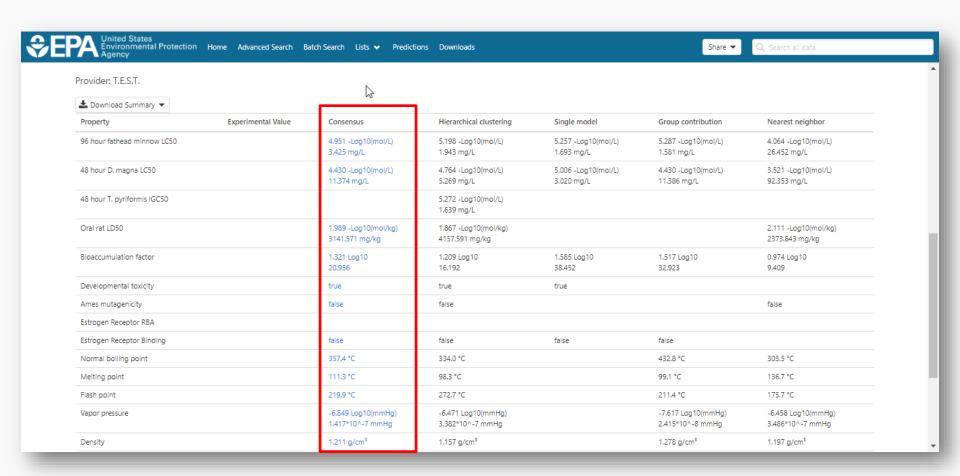
NZ W	U	U	U
Ingredient Name	Cas Number 🔻	FIXED C	FOUND_BY 17
D-Glucitol, 1-deoxy-1(methylamino)-, N-C12 acyl derivs.	87246-72-8	87246-72-	Alternate CAS-RN
6-Acetyl-1,1,2,4,4,7-hexamethyl tetralin	1506-02-1	1506-02-1	Alternate CAS-RN
Spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one,3',6'-dihydroxy-2',4',5',7'-tetraid	568-63-8	568-63-8	Alternate CAS-RN
2-Propenoic acid, 2-methyl-, 2-((2,3,3a,4,7,7a(or 3a,4,5,6,7,7a)-hexahydro-4,7-met	68586-19-6	68586-19-	Alternate CAS-RN
Sodium N-cis-9-octadecenyl-N-methyltaurine	7346-80-7	7346-80-7	Alternate CAS-RN
Oxirane, methyl-, polymer with oxirane, ether with oxybis(propanol) (2:1)	63466-93-3	63466-93-	Alternate CAS-RN
Spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one, 2',4',5',7',-tetrabromo-3',6'-dih	548-26-5	548-26-5	Alternate CAS-RN
1-Octadecene	111-88-9	111-88-9	Checksum Failed
1,2,4-Benzenetricarboxylic acid, tris(decyl) ester, mixt. with 2-[[3-[(1-oxodecyl)ox	187273-40-6	187273-40	Checksum Failed
Acetic acid ethenyl ester, polymer with ethenol	24213-24-5	24213-24-	Checksum Failed
1,4-Benzenedicarbixylic acid, dimethyl ester,polymer with 1,4-cyclohexanedimet	25640-14-0	25640-14-	Checksum Failed
Poly(oxy-1,2-ethanediyl), .alpha.,.alpha.'-[[methyl[3-(tridecyloxy)propyl]imino]d	68601-19-5	68601-19-	Checksum Failed
Cyclohexanol, 5-methyl-2-(1-methylethyl)-, acetate, (1.alpha.,2.beta.,5.alpha.)-(.	29066-34-0	29066-34-	Deleted CAS-RN
Ethoxylated lanolin	9/6/8039	8039-09-6	Deleted CAS-RN
1-Octanaminium, N-methyl-N,N-dioctyl-, chloride	76925-99-0	76925-99-	Deleted CAS-RN
Nitric acid, copper(2+) salt	10031-43-3; 3251-23	10031-43-	Not CAS Number Format
Fatty acids, coco, reaction products with 2-{(2-aminoethyl)amino}ethanol, bis(2-c	132647-09-7; 68411-	132647-09	Not CAS Number Format
Mixture of 2,2'-Dimorpholinodiethyl ether with 1,2-dimorpholinoethane	1723-94-0; 6425-39-4	1723-94-0	Not CAS Number Format
(Chloropropyl)trimethoxysilane	2530-87-2; 25512-39	2530-87-2	Not CAS Number Format

Related Substance Relationships

Februard Data Sharts	── EPA: National-Scale Air
Enhanced Data Sheets	☐ EPA: PPRTV Chemical R
☐ MetFrag Input File (Beta) 1	EPA: Provisional Adviso
☐ ToxPrint single fingerprints 1	
Abstract Sifter Input File (Beta) 🚯	EPA: Safer Choice Chem
Synonyms and Identifiers 1	Selecting this checkbox provides a separate Excel worksheet containing the relationship
✓ Related Substance relationships	between two chemicals. The output file includes the DTXSIDs and names/CASRNs between the
ToxPrint fingerprints (ChemoTyper f	input list and the related chemical. Relationships include, for example, polymer, components, salt form, transformation product and other relationships.
Associated ToxCast Assays	b


/_	Α	В	С	D	Е	
1	INPUT	DTXSID	PREFERRED_NAME	HAS_RELATIONSHIP_WITH	RELATED_DTXSID	RELATED_PREFERRED_NAM
2	xylenes	DTXSID2021446	Xylenes	Transformation Product	DTXSID40176394	N-Benzoylalanine
3	xylenes	DTXSID2021446	Xylenes	Component	DTXSID6026298	m-Xylene
4	xylenes	DTXSID2021446	Xylenes	Component	DTXSID3021807	o-Xylene
5	xylenes	DTXSID2021446	Xylenes	Component	DTXSID2021868	p-Xylene
6	xylenes	DTXSID2021446	Xylenes	Predecessor: Component	DTXSID9021421	Xylenes; defined mixture 1
7	xylenes	DTXSID2021446	Xylenes	Predecessor: Component	DTXSID7021447	Xylenes; defined mixture 2
8	xylenes	DTXSID2021446	Xylenes	Predecessor: Component	DTXSID30891529	Total Petroleum Hydrocarbons
9	xylenes	DTXSID2021446	Xylenes	Markush Child	DTXSID3021807	o-Xylene
10	xylenes	DTXSID2021446	Xylenes	Markush Child	DTXSID6026298	m-Xylene
11	xylenes	DTXSID2021446	Xylenes	Markush Child	DTXSID2021868	p-Xylene

Real-Time Predictions


Real-Time Predictions

Real-Time Predictions with detailed calculation reports

Real-Time Predictions with detailed calculation reports

Predicted Vapor pressure at 25°C for ClC=1N=C(N=C(N1)NC(C)CCC(Cl)C)NC(C)C from Consensus method

Prediction results

Experimental value Predicted value

Endpoint	Experimental value	Predicted value
Vapor pressure at 25°C Log10(mmHg)	N/A	-6.85
Vapor pressure at 25°C mmHg	N/A	1.42E-07

Individual Predictions				
Method	Predicted value Log10(mmHg)			
Hierarchical clustering	-6.47			
Group contribution	-7.62			
Nearest neighbor	-6.46			

Predictions for the test chemical and for the most similar chemicals in the external tes

If the predicted value matches the experimental values for similar chemicals in the test set (and the similar che

Prediction results (colors defined in table below) 3.0 MAE = 0.67 MAE = 0.67 MAE = 0.67 Prediction results (colors defined in table below) 1.05

Chemicals	MAE*	
Entire set	0.47	
Similarity coefficient ≥ 0.5	0.67	
*Mean absolute error in Log10(mmHg)		

CAS	Structure	Similarity Coefficient	Experimental value Log10(mmHg)	Predicted value Log10(mmHg)
CIC=1N=C(N=C(N1)NC(C)CCC(CI)C)NC(C)C (test chemical)	- 		N/A	-6.85
7287-19-6	بأبار	0.83	-5.91	-5.86
130339-07-0		0.77	-5.62	-7.11
21725-46-2	~;4;~	0.76	-6.86	-7.01
120928-09-8	XXX	0.58	-7.59	-7.67
101200-48-0	क्रिके	0.56	-9.41	-9.76
<u>119738-06-6</u>	apora	0.55	-7.23	-9.11

Open Data Download Files

Downloadable Data

Home Advanced Search Batch Search Lists 🗸

DSSTox Identifier to PubChem Identifier Mapping File

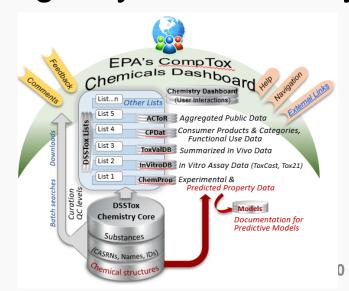
Posted: 11/14/2016

The DSSTox to PubChem Identifiers mapping file is in TXT format and includes the PubChem SID, PubChem CID and DSSTox substance identifier (DTXSID).

SID	CID	DTXSID
316388891	20404	DTXSID30873143
316388890	10142816	DTXSID70873142
316388889	50742127	DTXSID40873139
316388888	19073841	DTXSID20873137
316388887	11505215	DTXSID00873135
316388886	25021861	DTXSID80873133
316388885	2784427	DTXSID60873131
316388884	6731	DTXSID00873130

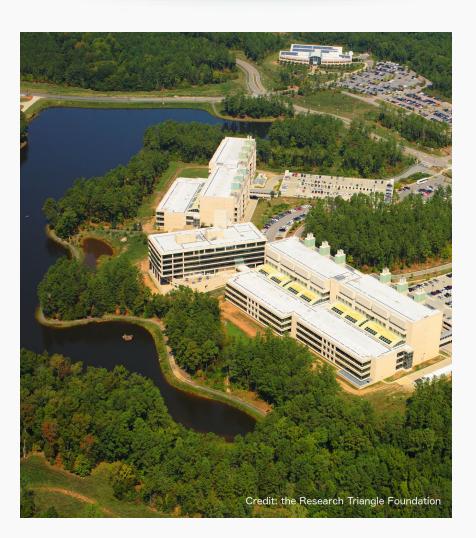
DSSTox identifiers mapped to CAS Numbers and Names File

Posted: 11/14/2016


The DSSTox Identifiers file is in Excel format and includes the CAS Number, DSSTox substance identifier (DTXSID) and the Preferred Name.

1	casrn	dsstox_substance_id	preferred_name
2	26148-68-5	DTXSID7020001	A-alpha-C
3	107-29-9	DTXSID2020004	Acetaldehyde oxime
4	60-35-5	DTXSID7020005	Acetamide
5	103-90-2	DTXSID2020006	Acetaminophen
6	968-81-0	DTXSID7020007	Acetohexamide
7	18523-69-8	DTXSID2020008	Acetone[4-(5-nitro-2-furyl)-2-thiazolyl] hydrazone
8	75-05-8	DTXSID7020009	Acetonitrile
9	127-06-0	DTXSID6020010	Acetoxime
10	65734-38-5	DTXSID6020012	N'-Acetyl-4-(hydroxymethyl) phenylhydrazine

Conclusion



- Building an integrated hub for environmental chemistry data to serve computational toxicology
- Transparent access to data and models file downloads, SQL data dumps and web services
- Expansion of functionality to serve all data streams generated by NCCT across the agency & community
- Data QUALITY is a key focus - ongoing curation
- We are committed to open API development with time..

Acknowledgements

EPA-RTP

- An enormous team of contributors from NCCT, especially the IT software development team
- Our curation team for their care and focus on data quality
- Multiple centers and laboratories across the EPA
- Many public domain databases and open data contributors

Contact

Antony Williams

NCCT, US EPA Office of Research and Development,

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821

https://doi.org/10.1186/s13321-017-0247-6