Development of a Generalized Inhalation Model for Use with the High-Throughput Toxicokinetics (*httk*) Package in R

M. W. Linakis¹, R. R. Sayre^{2,3}, R. G. Pearce^{2,3}, N. S. Sipes⁴, H. A. Pangburn⁵, J. M. Gearhart⁶, J. F. Wambaugh³

¹UES, Inc., Dayton, OH 45432; ²Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831; ³National Center for Computational Toxicology, United States Environmental Protection Agency, RTP, NC 27711; ⁴National Institute of Environmental Health Sciences, RTP, NC 27711; ⁵United States Air Force School of Aerospace Medicine, Aeromedical Research Department, Force Health Protection, Wright-Patterson AFB, OH 45433; ⁶Henry M Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson AFB, OH 45433;

Introduction

Currently, it is difficult to prospectively estimate human toxicokinetics (particularly for novel chemicals) in a high-throughput manner. The R software package *httk* was developed, in part, to address this deficiency through the use of physiologically-based toxicokinetic (PBTK) modeling. However, the PBTK model included in the *httk* package is currently limited to oral and intravenous exposure routes. The aim of this investigation was to develop a generalized inhalation model for *httk* and to evaluate the model using published exposure data.

Methods

- · Model structure was based on published physiologically-based models
 - Jongeneelen *et al.* (2011) for calculation of blood:air partitioning based on chemical propertiesⁱ
 - Clewell et al. (2001) for inhalation model parametersⁱⁱ
- Evaluated 42 volatile organic chemicals (VOCs) with concentrationtime data available in previously published studies
 - Physicochemical data (molecular weight, Henry's Law coefficient, log P) were obtained using EPA's CompTox Chemicals Dashboard with OPEn qsaR App predictionsⁱⁱⁱ
 - Fraction unbound in plasma was calculated using Simulations Plus® ADMET Predictor™ v. 9
- Inputs for each exposure scenario included chemical concentration in the air, length of exposure to the chemical, and species. Michaelis-Menten liver metabolism was implemented for rats.
- Appropriateness of simulated concentrations for chemicals was determined by examining log-transformed observed vs. simulated:
- Concentrations (blood, plasma, exhaled breath)
- Max concentration (C_{max})
- Area under the concentration-time curve (AUC)

Figure 2: Log-transformed observed vs. simulated concentrations (blood and exhaled air). Regression measures of fit are related to the "Overall" regression. Black line is the line of identity (x = y). Labeled points are >2 log-orders different between observed and simulated values.

Results (continued)

Abstract #1791

- In total, 143 exposure scenarios (77 in humans, 66 in rats) to 42 chemicals were included in the analysis
 Included chemicals had mean molecular weight of 116.10 g/mol
- (range: 32.04-252.32 g/mol) and log P of 2.2 (range: -0.6-6.1)
- Figure 1 shows the structure of the model utilized in the analysis with the added inhalation components
- Goodness-of-fit values for observed vs. simulated values are shown in Figure 2 for log-transformed concentrations (blood and exhaled air)
 C_{max} regression: slope = 0.83, r² = 0.72, RMSE (Identity) = 0.48
- AUC regression: slope = 0.92, $r^2 = 0.72$, RMSE (identity) = 0.48
- Approximately 3.5% of the observed concentration values were >2 log-orders different than the simulated concentrations (0.8% overpredicted, 2.7% underpredicted)
- About 1.6% of measured data points were censored because they were negligible values at t = 0
- Figure 3 provides the distribution of the differences between logtransformed simulated and observed concentrations for each given chemical/species/matrix combination grouped by CAMEO chemical class

Conclusions and Future Directions

- Goodness-of-fit values indicate relatively reasonable simulation of the reported data
- Limitations include lack of accounting for ingestion, dermal absorption, and lung metabolism
- External evaluation will be pursued with concentration-time data not used in this analysis (see Sayre *et al.* Abstract 1766/Poster P142)
- Future efforts will be focused on identifying trends in model fit relative to chemical properties, inclusion of an aerosol inhalation component

References

ⁱJongeneelen FJ, Berge WF. Ann Occup Hyg. 2011. 55(8):841-864. ⁱⁱClewell HJ 3rd, et al. Toxicol Sci. 2001. 63(2):160-172 ⁱⁱMansouri K, et al. J. Cheminform. 2018. 10(1): 10

THE AIR FORCE RESEARCH LABORATORY

Cleared, 88PA, Case # 201x-xxxx, xx Mon 201x.