

PFAS Prioritisation for Targeted Testing

Grace Patlewicz
National Center for Computational Toxicology (NCCT), US EPA

SEPA Outline United States Environmental Protection Agency

- What are PFAS?
- What is the Landscape of PFAS?
- What are PFAS of potential interest to the Agency?
- How many substances might be procurable?
- What constitutes a representative set of PFAS to propose for targeted testing?
- Structural categories current and future
- Some next steps

Per- and Polyfluoroalkyl Substances (PFAS)

Thousands of PFAS are associated with the production of industrial and consumer products.

<u>Poly</u> fluorinated = many fluorines

Polyfluorinated carboxylic acid from the production of polyvinylidene fluoride (PVDF) plastic <u>Per</u> fluorinated = fully fluorinated

Perfluorooctanoic acid (PFOA, C-8)

Perfluorooctanesulfonate (PFOS)

PEPA Per- and Polyfluoroalkyl Substances (PFAS)

- A class of man-made chemicals that are ubiquitous due to:
 - · Wide variety of industrial and consumer uses
 - Persistence
 - High mobility
- They are a concern due to:
 - Known or suspected toxicity, especially for PFOS and PFOA
 - Bioaccumulation
 - Long half lives (e.g., several years), especially in humans
 - Mobility shorter chain PFAS tend to be highly mobile, longer chain PFAS less mobile
- Information on PFAS is rapidly evolving

Thousands of Chemicals: More Than Just PFOA and PFOS

PFAS: EPA Cross-Agency Research List

United States Environmental Palection 2017)
Agency

https://comptox.epa.gov/dashboard/chemical_lists/epapfasrl

Curation

- ✓ Correct misspelled names
- ✓ Correct CASRN
- ✓ Fix errors in mappings of anions, salts, parents
- ✓ Create unique acronym
- ✓ Map to unique DTXŚID

EPAPFASRL

19 lists collapsed to
single list of 194 unique
DTXSID substances

DTXSID Substance_Name		Substance	Source_Name (incorrect or	Source_CASRN	Source_Acronym	Unique_Acronym	
		_CASRN	ambiguous)	(incorrect or	(incorrect or		
				invalid)	ambiguous)		
DTXSID20874028	2H,2H,3H,3H-Perfluorooctanoic acid	914637-49-3	5:3 Polyfluorinated acid	914637-49-3	5:3 acid	5:3 PFOA	
DTXSID7027831	N-Methyl-N-(2-	24448-09-7	N-Methyl		NMeFOSE, MeFOSE	NMe FOSE	
	hydroxyethyl)perfluorooctanesulfonamide		perfluorooctanes ulfonamide oethanol				
DTXSID10892352 Perfluoro-2-{[perfluoro-3-(perfluoroethoxy)- 74 2-propanyl]oxy}ethanesulfonic acid		749836-20-2	Ethanesulfonic acid, 2-[1-[difluoro(1,2,2,2-	749836-20-2	PFESA Byproduct 2	PFESA Byproduct 2	
			tetrafluroroethoxy)methyl]-1,2,2,2-				
			tetrafluoroethoxy]-1,1,2,2-tetrafluoro				
		175905-36-9	Perfluoropent <mark>ansul</mark> fonate	2706-91-4	PFPeS	PFPeS_ion	
DTXSID8071354	DTXSID8071354 Ammonium perfluoropentanesulfonate		Ammonium perfluoropentansulfonate	68259-09-6		APFPeS	
		919005-14-4	2,2,3-Trifluoro-3-(1,1,2,2,3,3-hexafluoro-3-	919005-14-4	ADONA	ADONA parent acid	
			(trifluoromethoxy)propoxy)propanoic acid				
		958445-44-8	Ammonium 4,8-dioxa-3H-	958445-44-8	ADONA	ADONA	
			perfluorononanoate				
DTXSID3037707	Potassium perfluorobutanesulfonate	29420-49-3	Potassium perfluoro-1-butanesulfonate		PFBS	PFBS-K	
DTXSID5030030	Perfluorobutanes ulfonic acid	375-73-5	Perfluorobutanes ulfonic a cid	375-73-5	PFBS	PFBS	

PFAS Library and Chemical Selection

EPA DSSTox Database: > 758K chemicals

- Chemical structures, downloadable files
- Predicted phys-chem properties External links & list overlaps

PFAS Chemical Landscape:

DSSTox-registered >5000 PFAS substances

→ Spanning public lists of interest to EPA

(>3 F, alkyl)

~2000

→ Attempt to procure (chemicals w/ structures)

~450

→ PFAS Standards library

~200

Increased Quality Curation Level

← EPA's prioritized list for PFAS research (exposure, occurrence, health data)

~75

→ PFAS Reference subset (Phase 1) (tiered toxicity & toxicokinetic testing) https://comptox.epa.gov/dashboard

Per(poly)-fluorinated substances (PFAS)

- PFAS chemical names, acronyms, synonyms
- PFAS chemical structure categories

Workflow to prioritise structural categories to inform the United States Environmental Property Practice of the Property Practice

United States Environmental Pro

Step 0: Characterising the PFAS library

Structural Categories

- Manually annotated the 'procurable' substances into structural categories
- · Categories built upon those defined by Buck et al (2011)
- Characterised on the standard nomenclature fluorotelomers, perfluorinated substances etc.
- Identified 53 unique structural categories
- These represent a generalised description of a category
- · In some cases these can be subcategorised into greater detail
 - e.g. n:2 fluorotelomer alcohol vs fluorotelomer alcohols

Step 0: Characterising the PFAS library

- Availability of *in vivo* toxicity information in the context of the pre-defined structural categories
- Representation of PFAS of interest to the Agency in the context of the pre-defined structural categories

Workflow to prioritise structural categories to inform the PFAS for targeted testing

Steps 1-3: Maximising read-across

Known information on the property of a substance (source chemical) is used to make a prediction of the same property for another substance (target chemical) that is considered "similar" i.e. Endpoint & often study specific

	Source chemical	Target chemical		
Property		0		

- Reliable data
- Missing data
- Use of information for "PFAS source substances" is used to infer (read-across) missing information for a related similar PFAS target
- Similarity context as a pragmatic starting point is "structural similarity" using the structural categories that have been defined
- Requirement is in vivo toxicity information
- Depending on the structural diversity within the structural category opportunities may exist to explore trends in activity impact of chain length C4 vs C6 vs C8; impact of n:H in fluorotelomer alcohols n:3 vs n:3 vs n:1; impact of position of ether linkage etc.

Workflow to prioritise structural categories to inform the United States Environmental Property Practice of the States Environm

Steps 4-5: Capturing Structural Diversity

- · Characterising the biological activity of the PFAS landscape that comprises substances of current interest to the Agency
- Characterising the biological activity of the PFAS landscape beyond substances of current interest to the Agency
- Testing broad PFAS landscape may enable detection of hotspots in activity that could help in prioritising future PFAS research and anticipating future problem areas

Considerations for PFAS selection

Aspect Name	Scoring				
1) Structural diversity within a category	Approximated by category size, with score ranging from 1 (20 or more members) to 0 (1 member)				
2) Data availability	Availability of in vitro ToxCast data (score=0.5) or ToxVal in vivo data (score=0.75) or both (score=1)				
3) Data quantity	Number of ToxVal records for a substance indicating a stronger source-analogue for read-across, with scores ranging from 0.15 (for 1 record) to 1 (for 20 or more records)				
4) Read-across category- level weight	Value of substance for anchoring read-across trends within a category (e.g., chain length etc.), serving as a source analog (score=0.5) or target analog (score=0.25), or as a target analog for capturing structural diversity (score=0.15)				
5) Numerical indicator of EPA interest	Wkgrp-31 (score=1), other EPA-PFAS (score=0.75), only in PFAS-Landscape (score=0.5)				
6) Phys-chem indicators of testability	Both LogKow and Vapor Pressure favorable (score=0.75), one favorable (score=0.5), both unfavorable (score=0). E.g. LogKow < 4.5, Vapor Pressure < 10 ³ mmHg considered favorable.				
7) Figure. 1 Workflow Step	Step 1 (score=1), Step 2 (score=0.75), Step 3 (score=0.5), Step 4 (score =0.25), Step 5 (score=0)				
Total Score	Summation of scores from the preceding considerations used to rank each PFAS substance				

Lists of PFAS on the Dashboard

https://comptox.epa.gov/dashboard/chemical_lists /?search=PFAS

SEPA United Environ Agence	d States Inmental Protection Home Advanced Search	Batch Search Lists	Predictions Downloads	Share ▼ Q Search all data
List Acronym •	List Name	Last Updated 🕏	Number of Chemicals ♥	List Description
EPAPFAS75S1	PFAS EPA: List of 75 Test Samples (Set 1)	2018-06-29	74	PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFAS75S2	PFAS EPA: List of 75 Test Samples (Set 2)	2019-02-21	75	PFAS list corresponds to a second set of 75 samples (Set 2) submitted for testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFASCAT	PFAS EPA Structure-based Categories	2018-06-29	64	List of registered DSSTox "category substances" representing PFAS categories created using ChemAxon's Markush structure-based que representations.
EPAPFASDW	PFAS EPA: New EPA Method Drinking Water	2019-04-17	26	EPA is developing and validating a new method for detecting these PFAS in drinking water sources.
EPAPFASDW537	PFAS EPA: Existing EPA DW Method 537.1	2019-04-17	19	EPA has recently revised method 537.1 for the PFAS on this list to detect them in drinking water.
EPAPFASDWTREAT	PFAS EPA: Drinking Water Treatment Technology	2019-04-17	9	EPA is gathering and evaluating treatment effectiveness and cost data for removing these PFAS from drinking water systems.
EPAPFASINSOL	PFAS EPA: Chemical Inventory Insoluble in DMSO	2018-06-29	43	PFAS chemicals included in EPA's expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.
EPAPFASINV	PFAS EPA: ToxCast Chemical Inventory	2018-06-29	430	PFAS chemicals included in EPA's expanded ToxCast chemical inventory and available for testing.
EPAPFASINVIVO	PFAS EPA: In Vivo Studies Available	2019-04-17	23	These PFAS have published animal toxicity studies available in the online HERO database.
EPAPFASLITSEARCH	PFAS EPA: Literature Search Completed:	2019-04-17	23	A literature review of published toxicity studies for these PFAS

United States Environmental

Manual Structural categories: examples used

- Fluorotelomer acrylates 6 members
- Methacrylate & acrylates
- \cdot n= 2, nCF2 = 6-10

- Fluorotelomer alcohols 21 members
- \cdot n = 1-4, nCF2 = 2-11

•
$$n = 1$$
, $nCF2 = 2-6$

- Fluorotelomer carboxylates 5 members
- \cdot n = 2, nCF2 = 3-5

Structural Categories

- · Pragmatic approach for the initial PFAS library but...
- · Subjective, manual..
- · How to efficiently chart the PFAS landscape that is being tested against other PFAS inventories/libraries of interest e.g. OECD?

PFAS "Categories": Per & Poly-fluorinated alkyl

- substances
- "Expert"-assigned PFAS categories manual, subjective
 - Buck et al. (DuPont), based on chemical & series informed by synthetic pathways (e.g., fluorotelomers)
 - data-gathering, occurrence reports, ecotox
 - OECD PFAS listing (>4500 chemicals) manually assigned groupings

Poly- and Perfluorochemicals

Acyclic - Pure

Atoms: N, P, O, S, Si, Cl, Br, I = NOT

AND # of

of Cycles = 0

Cyclic - Pure

Atoms: N, P, O, S, Si, Cl, Br, I = NOT

AND

of Cycles ≥ 1

Carboxylic Acids

Atoms: N, P, S, Si, Cl, Br, I = NOT

			•	
	Class	Category_Name1	Category_Name2	
	Alcohol	Fluorotelomer alcohols	Fluorotelomer (linear) n:2 alcohols	
Τ	Sulfonic Acid	Perfluoroalkyl sulfonic acids	Perfluoroalkyl (linear C4-C10) sulfonic ac	ids
			Polyfluoroalkyl carbovylatos	

Perfluoroalkyl ethers
Fluorotelomer phosphates

National Cente Computational Polyfluorinated alcohols
Fluorotelomer sulfonates
N-alkyl perfluoroalkyl sulfonamidoacetic acids
N-alkyl perfluoroalkyl sulfonamidoethanols

Perfluoroalkyl aldehydes

Perfluoroalkyl amides

Expert category

Fluorotelomer acrylates

Fluorotelomer alcohols

Perfluoroalkyl carboxylates

Perfluoroalkyl acyl fluorides

Perfluoro vinyl esters

Perfluoroalkyl ketones

Semi-fluorinated alkenes

Perfluoroalkyl vinyl ethers

Perfluoroalkyl alkyl ethers

Fluorotelomer amines

Perfluoroalkyl sulfonamides

OECD Database of PFAS

- Released May2018
- Substance Count4729
- Category Count: 173

http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/

Toward a new comprehensive Global Database of Per- And Polyfluoroalkyl Substances (PFASs) —

Read the New Comprehensive Global Database of PFASs and the methodology report.

"Expert-assigned" OECD PFAS Categories,

e.g.

- > 4730 PFAS in list
- ➤ 173 expert-assigned categories under 8 general headings (bold)
- Broad "catch-all" terms (in red)
- Structural elements, but NOT structure-based
- Requires expert to assign new chemicals to categories

perfluoroalkyl carbonyl compounds	CnF2n+1_C(O)_R
perfluoroalkyl carbonyl halides	R = F/CI/Br/I
perfluoroalkyl carboxylic acids (PFCAs), their salts and esters	R = OH, ONa, OCH3, etc.
other perfluoroalkyl carbonyl-based nonpolymers	to be refined
perfluoroalkyl carbonyl amides / amido ethanols and other alcohols	R = NH2, NH(OH), etc.
perfluoroalkyl carbonyl (meth)acrylate	$R = R'_OC(O)CH=CH2$
perfluoroalkyl carbonyl (meth)acrylate polymers	
1-H perfluoroalkyl carboxylic acids	H(CF2)nCOOH
perfluoroalkane sulfonyl compounds	CnF2n+1_S(O)(O)_R
perfluoroalkane sulfonyl halides	R = F/CI/Br/I
perfluoroalkane sulfonic acids (PFSAs), their salts and esters	R = OH, ONa, OCH3, etc.
perfluoroalkane sulfonyl-based nonpolymers	
per- and polyfluoroalkyl ether-based compounds	CnF2n+1_O_CmF2m+1_R
per- and polyfluoroalkyl ether sulfonic acids (PFESAs), their salts	
and esters, as well as derivatives	CnF2n+1_O_CmF2m+1_SO3H
fluorotelomer-related compounds	
perfluoroalkyl iodides (PFAls)	CnF2n+1_I
n:2 fluorotelomer-based non-polymers	CnF2n+1_C2H4_R, to be refined

Fluorotelomer (linear) sulfonic acids

DTXSID: DTXSID50892558 CASRN: NOCAS_892558 TOXCAST: -

Fluorotelomer (linear) alcohols

DTXSID: DTXSID10893581 CASRN: NOCAS_893581 TOXCAST: -

Fluorotelomer (linear) n:2 acrylates

DTXSID: DTXSID70893582 CASRN: NOCAS_893582 TOXCAST: -

Fluorotelomer (linear) n:2 methacrylates

DTXSID: DTXSID30893583 CASRN: NOCAS_893583 TOXCAST: -

Fluorotelomer symmetric diols

DTXSID: DTXSID90893584 CASRN: NOCAS_893584 TOXCAST: -

Fluorotelomer (linear) amines (secondary)

DTXSID: DTXSID50893585 CASRN: NOCAS_893585 TOXCAST: -

Fluorotelomer (linear) carboxylic acids

DTXSID: DTXSID10893586 CASRN: NOCAS_893586 TOXCAST: -

Fluorotelomer (linear) phosphate esters ...

DTXSID: DTXSID30893588
CASRN: NOCAS_893588
TOXCAST: -

Ivanie, cro cro aikyraiconoi

Organic Form: Parent

•

SEPA United States

Fluorotelomer phosphates

Translating Expert Categories to Markush

Example of Markush representation

PFASMASTER Markush Category Coverage

https://comptox.epa.gov/dashboard/chemical_lists/PFASMASTER

PFASKEMI (2396)

EPAPFASINV EPAPFASINSOL(43)
(430) (592)

PFASMASTER LISTS	PFASOECD	PFASKEMI	PFASTRIER	EPAPFASRL	EPAPFASINV	EPAPFASINSOL	EPAPFAS75S1	
PFASOECD	4730							OECD PFAS List
PFASKEMI	2206	2396						KEMI (Swedish Chem Agency) PFAS List
PFASTRIER	493	578	592					Community PFAS List (2015)
EPAPFASRL	132	116	71	199				EPA PFAS Research List
EPAPFASINV	309	324	226	61	430			EPA PFAS Inventory (DMSO Soluble)
EPAPFASINSOL	43	42	24	12	0	43		EPA PFAS Inventory (DMSO Insoluble)
EPAPFAS75S1	51	47	38	25	74	0	74	EPA PFAS 75 Test Sample (Set 1)

PFASTRIER(

Next steps

- Complete targeted testing
- Data analysis per NAM technology and integrated across technologies to inform both read-across efforts and structural categories
- Work to extend objective structural categories to facilitate harmonisation across different inventories

Acknowledgements

- Too many to name but include:
- · Ann Richard
- · Reeder Sams
- Rusty Thomas
- · Chris Grulke
- Brian Meyer
- Tony Williams
- Jason Lambert