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New Approach Methodologies:
High Throughput Toxicokinetics (HTTK)

* Most industrial chemicals, ranging from
industrial waste to dyes to packing

materials, are covered by the Toxic
Substances Control Act (TSCA) and

regulated by EPA

Hazard

 New approach
methodologies (NAMs) are
being considered to inform
prioritization of
chemicals for testing

Chemical Risk

Toxicokinetics Exposure and evaluation
(Kavlock et al., 2018)

Three Components for Chemical Risk (NRC, 1983)
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Toxicokinetics (TK) describes the
Absorption, Distribution, Metabolism,
and Excretion (ADME) of a chemical

* Most industrial chemicals, ranging from
industrial waste to dyes to packing
materials, are covered by the Toxic

by the body Substances Control Act (TSCA) and
TK relates external exposures to Hazard regulated by EPA

internal tissue concentrations
of chemical * New approach

methodologies (NAMs) are
being considered to inform
prioritization of
chemicals for testing

Chemical Risk

Toxicokinetics Exposure and evaluation
(Kavlock et al., 2018)
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Three Components for Chemical Risk (NRC, 1983)



wEPA Selecting Chemical Priorities

United States
Environmental Protection

Agency High Throughput Screening + HTTK can estimate doses
needed to cause bioactivity (Wetmore, et al., 2012, 2015)
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Exposure intake rates
can be inferred from
biomarkers

(Wambaugh et al., 2014)

107.

Estimated Equivalent Dose or
Predicted Exposure (mg/kg BW/day)

Chemicals Monitored by CDC NHANES

National Health and Nutrition Examination Survey (NHANES) is an ongoing survey that
covers ~10,000 people every two years

Most NHANES chemicals do not have traditional PK models (Strope et al., 2018)
m Office of Research and Development R|ng et al, (2017)
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New Version 1.10 of HTTK Coming Soon ‘/emPaushetal (in clearance]
https://CRAN.R-project.org/package=httk

Agency
; : ~ : : ) - O x
2! Git and Bitbucket - HTTK - NCCT X M Inbox (393) - jfwambaugh@gmz X R CRAN - Package httk ¥ [} SOT Exposure Specialty Section | X +
& & & https://cran.r-project.org/web/packages/httk/index.htm i O (2]

P oApps & Trave

Request For

httk: High-Throughput Toxicokinetics

Functions and data tables for simulation and statistical analysis of chemical toxicokinetics {("TK") as in Pearce et al. {2017) =doi1:10.18637 /135 v079.104>. Chemical-specific in vitro data have been
obtamned from relatively high throughput experiments. Both physiologically-based ("PBTK") and empirical (e g, one compartment) "TK" models can be parametenized for several hundred chemicals and
multiple species. These models are solved efficiently, often using compiled (C-based) code. A Monte Carlo sampler 1s included for simulating biological vanabality (Ring et al | 2017

<do1:10.1016/. envint. 201 7.06.004>) and measurement limitations. Calibrated methods are included for predicting tissue:plasma partition coefficients and volume of distribution (Pearce et al., 2017

& Confluence

=doi:10.1007/510928-017-25348-7=). These functions and data provide a set of tools for in vitro-in vive extrapolation ("IVIVE") of high throughput screening data (e.g.. Tox2 1, ToxCast) to real-world
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License:

URL:
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Citation:
Materials:
CRAN checks:

Downloads:

Reference manual:

Vignettes:

exposures via reverse dosimetryv (also known as "BTK") (Wetmore et al, 2013 <do1:10.1093toxscikfvl T1=).
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deSolve, msm_ data table, survey, mvinorm, truncnorm, stats, utils, magrittr

geplot?, knitr, rmarkdown, Rorsp, GGally, gplots, scales, EnvStats, MASS. RColorBrewer, TeachingDemos, classInt, ks reshape?, gdata, vinidis, CensRegMod, gmodels, colorspace
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httk results

httk pdf

Honda et al. :
Creari.ngtParrition Coefficient Evaluation Plots \Y 1 . 1 O fe at ures 9 3 3 tOta I C h émica I S

Age distributions

L iaton it  Open source, transparent, and peer-reviewed tools

and data for high throughput toxicokinetics (httk)
* Allows in vitro-in vivo extrapolation (IVIVE) and
physiologically-based toxicokinetics (PBTK)

(submutted): Updated Armitage et al. (2014) Model °

Global sensitiviy analysis « Now allows propagation of uncertainty

Global sensitivity analvsis plotting

——
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https://cran.r-project.org/package=httk

wEPA In Silico HTTK Predictions
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Predicting Metabolic Clearance Rates for Drug Leads and Environmental Chemical Risk Assessment
8 am, Tuesday — Room CC309

Daniel Mucs: “Implementation and Evaluation of State-of-the Art In Silico Models for In Vitro and In Vivo
Endpoint Predictions”

Michael Lawless: “Applying in silico-in vitro-in vivo extrapolation (IS-IVIVE) techniques to predict exposure
and guide risk assessment”

Christopher Kirman: “Quantitative Property—Property Relationship for Screening-Level Prediction of
Intrinsic Metabolic Clearance”

Brandall Ingle: “Designing QSARs for metabolic clearance and plasma protein binding in diverse chemical
space using pharmaceutical data”

Prachi Pradeep: “Using Chemical Structure Information to Develop Predictive Models for In Vitro
Toxicokinetic Parameters to Inform High-Throughput Risk Assessment”

7 of 23 Offi fR h and D | t . . .
BEEIEEN ofice of Research and Developmen httk v1.10 includes uncertainty propagation
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= Most chemicals do not have TK data (Wetmore et al., 2015; Bell et al., 2017)

* In order to address greater numbers of chemicals we collect in vitro, high throughput
toxicokinetic (HTTK) data (Rotroff et al., 2010; Wetmore et al., 2012, 2015)

« HTTK methods have been used by the pharmaceutical industry to determine range of
efficacious doses and to prospectively evaluate success of planned clinical trials

(Jamei et al., 2009)

* To use these methods for non-pharmaceuticals we must quantify the confidence

m Office of Research and Development
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= Most chemicals do not have TK data (Wetmore et al., 2015; Bell et al., 2017)

* In order to address greater numbers of chemicals we collect in vitro, high throughput
toxicokinetic (HTTK) data (Rotroff et al., 2010; Wetmore et al., 2012, 2015)

« HTTK methods have been used by the pharmaceutical industry to determine range of
efficacious doses and to prospectively evaluate success of planned clinical trials

(Jamei et al., 2009)

* To use these methods for non-pharmaceuticals we must quantify the confidence

= We recognize that what we can do now is a product of the moment:

* We are not the first to ask (Yoon et al., 2014), rather more public tools now exist to
answer the questions

* Further, we accept that pharma has already pursued these approaches
(Wang et al., 2010)

m Office of Research and Development
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TOXICOLOGICAL SCIENCES, 2018, 1-18
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S OT Tb]ﬂ Advance Access Publication Date: January 27, 2018
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OXFORD

Evaluating In Vitro-In Vivo Extrapolation of

Toxicokinetics

John F. Wambaugh,**1 Michael F. Hughes:r Caroline L. Ring,"‘***2

Denise K. MacMillan," Jermaine Ford," Timothy R. Fennell,® Sherry R. Black,’
Rodney W. Snyder,® Nisha S. Sipes,! Barbara A. Wetmore,! Joost
Westerhout,!' R. Woodrow Setzer,* Robert G. Pearce,”* Jane Ellen Simmons,'
and Russell S. Thomas™
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New Data for Evaluating IVIVE

Estimated from In Vivo Data
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Wambaugh et al. (2018)
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= EPAis developing a public database of concentration 35 9

vs. time data for building, calibrating, and evaluating

TK models

442 147

= Curation and development ongoing, but to date

includes:

e 198 analytes (EPA, National Toxicology Program,
literature)

* Routes: Intravenous, dermal, oral, sub-cutaneous,
and inhalation exposure

= Database will be made available through web
interface and through the “httk” R package Other: 12 7

= Standardized, open source curve fitting software invivoPKfit used to calibrate models to all data:
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Office of Research and bevelopment— See Sayre et al Tuesday Morning, 1766/P142 Sayre et al. (in preparation)
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SEPA Building Confidence in TK Models
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* In order to evaluate a chemical-specific TK model for “chemical x”
you can compare the predictions to in vivo measured data
* Can estimate bias
* Can estimate uncertainty
* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

LY Xl Office of Research and Development

Observed Concentrations

Chemical
Specific
- X Model

»
>

Predicted Concentrations

Cohen Hubal et al. (2018)
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SEPA Building Confidence in TK Models

* In order to evaluate a chemical-specific TK model for “chemical x”
you can compare the predictions to in vivo measured data
* Can estimate bias
* Can estimate uncertainty
* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

* However, we do not typically have TK data
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Cohen Hubal et al. (2018)
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* In order to evaluate a chemical-specific TK model for “chemical x”
you can compare the predictions to in vivo measured data
* Can estimate bias
* Can estimate uncertainty
* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

* However, we do not typically have TK data

* We can parameterize a generic TK model, and evaluate that
model for as many chemicals as we do have data
* We do expect larger uncertainty, but also greater confidence in
model implementation
 Estimate bias and uncertainty, and try to correlate with
chemical-specific properties

YA P XIl Office of Research and Development
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Building Confidence in TK Models
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Cohen Hubal et al. (2018)
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* In order to evaluate a chemical-specific TK model for “chemical x”
you can compare the predictions to in vivo measured data
* Can estimate bias
* Can estimate uncertainty
* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

* However, we do not typically have TK data

* We can parameterize a generic TK model, and evaluate that
model for as many chemicals as we do have data

* We do expect larger uncertainty, but also greater confidence in
model implementation

 Estimate bias and uncertainty, and try to correlate with
chemical-specific properties

* Can consider using model to extrapolate to other situations
(chemicals without in vivo data)
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* In order to evaluate a chemical-specific TK model for “chemical x”
you can compare the predictions to in vivo measured data
* Can estimate bias
* Can estimate uncertainty
* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

* However, we do not typically have TK data

* We can parameterize a generic TK model, and evaluate that
model for as many chemicals as we do have data

* We do expect larger uncertainty, but also greater confidence in
model implementation

 Estimate bias and uncertainty, and try to correlate with
chemical-specific properties

* Can consider using model to extrapolate to other situations
(chemicals without in vivo data)
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See Linakis et al., Tuesday Morning, 1791/P167

Linakis et al. (in preparation)
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Using the generic HTTK PBTK model to inform IVIVE...

in vitro in vivo
(nominal testing concentration) (mg/kg bodyweight/day)
Red Plasma Tissue
o Blood
Tl Media/Air Cells
w Ce]
g A t [Cplisma]
=
E [Cblood]/Rb:p
Chemica [Cnominal] MEdIa '3‘ [Cfree,plasma] [Ctissue]
t} D _>§ ngpld 8 = =
—
<:> Endt . 8. > fup[Cplasma] Kp[cfree,plasma:|
: C. . . J=f [C. . rotein .
z E!azt.lc [ free,lnwtro] up[ nommal] Binding [ConC.] In Vitro
inding Cell Binding
I % Renal Clearance Restrictive Metabolic Clearance
= = — fup*QGFR*[Ckidnev,Plasma] Quiver * fup * [Cliver,plasma]
[Ccellular]ch[Cnominal] Qliver + fup * [Cliver,plasma]

OR Non-Restrictive Metabolic Clearance

Quiver * [Cliver,plasma]

Qliver + [Cliver,plasma]

Selecting the appropriate in vitro and in vivo concentrations for extrapolation

Office of Research and Development Honda et a| (SmeIttEd)



HTTK-based IVIVE

B PBTK ™ Random Dose
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Honda et al. (submitted)

Various Combinations of IVIVE Assumptions

Office of Research and Development
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“Scientists should resist the demand to describe any
model, no matter how good, as validated. Rather than
talking about strategies for validation, we should be
talking about means of evaluation.”

Naomi Oreskes

XY Ll Office of Research and Development
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