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CONCLUSIONS

Human health risk assessment associated with environmental chemical exposure is limited by the tens of 
thousands of chemicals with little or no experimental in vivo toxicity data. Data gap filling techniques, such as 
quantitative structure activity relationship (QSAR) models based on chemical structure information, are commonly 
used to predict hazard in the absence of experimental data. However, variability in the experimental data leads to 
uncertainty in QSAR model predictions and impacts model quality estimates. 
This study presents three sets of QSAR models developed for systemic toxicity in vivo points of departure (POD, the 
point on the dose-response that marks the beginning of a low-dose extrapolation). The in vivo data is taken from 
the EPA’s ToxValDB, a compilation of information on ~3000 chemicals from a variety of public data sources. The first 
set of QSAR models were developed and evaluated to predict point estimates of POD values using structural and 
physicochemical descriptors. The second set of models were built to account for skewness in the training data. The 
third set of models were built to account for the known lab to lab variability in experimental POD values. The QSAR 
models were also evaluated for enrichment of most potent chemicals. These models will inform chemical screening 
and prioritization efforts. 

• Point-estimate model results demonstrate that independent study type and species combinations did not result in significantly better models than combining the data for all the classes and species together.
- The RMSE for the all the models are within the variance in the underlying POD data (Figures 2 and 6).
- Enrichment analysis results demonstrate the utility of these models for chemical screening and prioritization efforts. 

• Point-estimate with balanced dataset model results show improvement in the training set results but did not show improved results on the external test sets.
• Point-estimate with confidence interval models presented a technique to estimate uncertainty associated with model predictions. The results demonstrate the impact of variability in training data (experimental POD) on uncertainty 

associated with model results.

Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

1. Point-estimate Models • A single POD value predicted for each chemical.
• Experimental POD = Median POD value from all studies.

2. Point-estimate with 
Balanced Dataset Models

• Training data re-constructed to reduce skewness.
• A single POD value predicted for each chemical using the re-constructed data. The 

process was repeated 1000 times.
• Experimental POD = Median POD value from all studies.

3. Point-estimate with 
Confidence Interval 
Models

• A POD distribution was constructed for each chemical (µ = Median experimental 
POD value from all studies, σ = 0.5 log-units).

• 1000 bootstrap models were built with random sampling of POD values for each 
chemical from the pre-generated POD distribution.
• Predicted POD = mean of 1000 bootstrap predictions
• Confidence interval of POD = ±1 standard deviation of 1000 bootstrap predictions

Given the variability and skewness in the training dataset, 3 types of models were developed:

Study Type Species
Total number 
of POD values 

(studies)

Number of 
unique 

chemicals

Chronic (CHR)

Rat 13423 3047
Mouse 4130 690
Rabbit 342 240
Rat, Mouse, Rabbit 17895 3221

Subchronic (SUB)
Rat 6696 988
Mouse 2418 308
Rat, Mouse 9114 1030

Reproductive (REP)
Rat 2915 425
Mouse 244 62
Rat, Mouse 3159 460

Developmental 
(DEV)

Rat 2472 416
Rabbit 1540 273
Rat, Rabbit 4012 511

Subacute (SAC) Rat 1133 155
ALL (CHR, SUB, REP, 
DEV, SAC)

All (Rat, Mouse, Rabbit) 36013 3762

Table 1. Number of POD values (experiments/studies) and unique chemicals with 
data across different study types and species combinations with data on more 
than 50 chemicals.

Figure 2. (a) Distribution of the range of POD values per chemical as obtained from the ToxVal database for each study type combination. The 
mean (µ) of the distribution is used to estimate a bound on RMSE values for the QSAR models developed using these data, (b) Distribution of the 
standard deviation (σ) of the POD values for each chemical per study type and species combination. The mean standard deviation (µσ) gives an 
estimate of the experimental variability in the underlying data for each combination.

MOLECULAR FEATURES 
• PubChem fingerprints (881 bits)
• Chemistry development kit (CDK) descriptors (18)
• PaDEL descriptors (1875)

Models were developed using combinations of PubChem, 
CDK and/or PaDEL descriptors

CHALLENGES
1. Experimental Variability

• Data from different labs (sources) running the 
“same” experiment may get different answers 

• Sources of variability: Species, strain, dose range, 
dose spacing, length of study etc. 

2. Model Uncertainty

• A model gives a result (a POD), but this is an estimate 
of the “true” POD. The true POD is mostly unknown.

• Uncertainty in the evaluation data will lead to 
uncertainty in the model and our estimate of its quality
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2. Support vector 
regression (SVR)
3. Random forest (RF)
4. Gradient boosting 
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1. kNN: k, 
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algorithm
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gamma, kernel
3. RF: Max 
features, N trees
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function, learning 
rate

M
O

DE
L 

VA
LI

DA
TI

O
N

Internal 
validation
5-fold internal 
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20% test set

ENRICHMENT ANALYSIS

Each model was evaluated on 
the external test set for 
enrichment of N% most potent 
chemicals. 

1. The chemicals in the 
predicted external test set were 
sorted in the order of potency.
2. X% of above sorted list was 
then evaluated for % 
enrichment of the N% most 
potent chemicals

RESULTS

RESULTS

Figure 6. Enrichment analysis for 5%, 20% and 50% most potent chemicals 
(observed) in the predicted set from the random forest model developed using 
the dataset with all study types and species and using study type and species 
as additional descriptors in the model. Over 75% of the 5% most potent 
chemicals were enriched within 10% of predicted potent chemicals.

Figure 5. Data and model performance results for the best model (random forest) developed using a combination of all study types (CHR, SUB, DEV, REP and SUB) and all species (rat, mouse and 
rabbit) and using species and study type as additional descriptors in the model. (a) Distribution of the training and training and test dataset relative to each other. (b) Observed versus predicted POD 
values (transformed scale) for 5-fold internal cross-validation (red scatter plot) and external validation (green scatter plot). The legend shows the performance metrics of each set where RMSE = root 
mean-squared error, σ = standard deviation of the dataset, and R2 = coefficient of determination. The blue dotted lines indicate an error interval of one standard deviation of the dataset. The points 
within the error interval are predicted within one standard deviation of the observed values.
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Figure 4. A summary of the best model metrics and 
the estimated error for each combination of study 
type (CHR: chronic, SUB: subchronic, REP: 
reproductive, DEV: developmental, SAC: subacute, 
and ALL: all study types) and species (r: rat, m: 
mouse, ra: rabbit, sp: species, st: study type, all: all 
species - indicated as subscripts to the study type) on 
the external test set for the point-estimate models. 
The estimated error is derived as the square-root of 
the mean POD for each combination as shown in 
Figure 2(a). As seen, there is not much variation in 
the performance metrics across different model 
combinations and the RMSE for all the models is 
comparable to the estimated errors from the 
underlying data. The ‘+sp+st’ in the ‘ALL’ 
combinations model indicates using species and 
study type as additional descriptors in the model.

Figure 3. (a). Workflow for development of QSAR models, and (b). Algorithm for model enrichment analysis. All the models were developed and evaluated for 
enrichment for each combination of study type and species. 

(b)(a)

1. Point-estimate Models
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3. Point-estimate with Confidence Intervals Models
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Figure 1: POD values were log-transformed before model 
development. (a) Histogram of untransformed POD data, (b) 
Histogram of transformed POD (PODtr) data

Models were developed for each study type and species 
combination. E.g. 
Model 1: study type = chronic | species = rat
Model 2: study type = chronic | species = mouse 
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Figure 9. Schematic outlining the bootstrapping process for development of point-estimate confidence interval models using 
Bisphenol A as an example chemical, and using POD data from all study types and species. A POD (log10-transformed) 
distribution is constructed where the mean (µ) of the distribution is set equal to the median POD value (= 1.57) and the 
standard deviation (σ) is set equal to 0.5 (based on typical lab-to-lab variability). Next, for each (of n) bootstrapped models the 
POD value for Bisphenol A is randomly drawn from the pre-constructed POD distribution. Finally, each cross-validated 
bootstrapped model predicts a POD value resulting in n POD predictions. The final point-estimate POD value is the mean of the 
n predictions and the confidence interval derived as the one standard deviation of the n predictions. In this work, n = 1000.

Figure 10. Model performance results calculated using n=1000 bootstrap models for (a). training set, and (b). test set. 50 chemicals 
from each, training and test, set were randomly selected and plotted. The predicted error bar for each chemical is calculated as the 
standard deviation of the predictions from the models. The observed error bar is calculated as the standard deviation of the 
experimental data for each chemical. The blue dotted lines indicate an error margin of 1-log10 unit.

Randomly 
sample 10% data 
From the long tail 

and add as 
duplicate data to 
the training data 

get a new 
training distribution

Figure 7. Schematic outlining the process for balancing the training dataset for development of point-estimate balanced dataset 
models. For each (of n) models, the 10% data is randomly sample from the original training dataset and duplicated to obtain a new 
training dataset. In this example iteration, the original training dataset which is left skewed with a skewness coefficient = -1.02 is 
balanced to such that the balanced dataset has a reduced skewness coefficient = -0.91. The balanced dataset is then used for 
training the models. This process is repeated n times where n = 1000.

Figure 8. Example model performance results calculated using n=1000 models using a balanced training dataset for (a). training set, 
and (b). test set. The average RMSE and  average R2 are shown for both the training and the test set. As shown, balancing the training 
dataset helps improve the model metrics for the training dataset but do not significantly affect the test set. The blue dotted lines 
indicate an error margin of 1-log10 unit.
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