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EPA Office of Research and Development

• The Office of Research and Development (ORD) is the 
scientific research arm of EPA

• Research is conducted by ORD’s three national laboratories, 
four national centers, and two offices

• 14 facilities across the country and in Washington, D.C.

• Six research programs

• Research conducted by a combination of Federal scientists; 
contract researchers; and postdoctoral, graduate student, 
and post-baccalaureate trainees

ORD Facility in Research Triangle Park, NC
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Roadmap

 What comprises “Design”
 Special features of genomic concentration/dose – response 

(DR henceforth), and constraints on design
 Tools for evaluating an experimental design
 Classical toxicological design: BMD changed all that
 Classical Optimal Design for DR
 Injecting Realism
 Conclusions
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What Do I Mean by Design?

 Number of dose (concentration) groups
 What concentrations to use (e.g., control + 1, 10, 100 mg/kg in 

in vivo study)?
 How to distribute replicates among doses?
Resource and structural constraints will limit some or all of these.
E.g., it may not be feasible in a high throughput in vitro study to 
have unequal replication.
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Design Considerations of Features of 
Genomic Dose Response

 Most curves are likely to be sigmoid (approximated by a Hill 
model), but can be nonmonotonic, mainly at high doses.
 Thousands of endpoints (genes) – much worse than chronic 

bioassay!
 For a chemical, the design should function well over the full 

range of:
• gene-specific potencies (e.g., BMDs).
• gene-specific DR shapes (e.g. power parameter, limiting fold-change).
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 44 chemicals, TempO-Seq whole 
genome, gene expression in MCF7 cells.

 DR: 8 half-log doses, 0.03 - 100 µM + 
vehicle control

 3 biological reps – separate cultures, 
1/plate

 Hill model fits
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Conceptual Tools for Evaluating 
Experimental Design

 From Statistical Theory:
• Requires a statistical model: 

– specific (though maybe very flexible) DR model (e.g., Hill (or Emax), spline) + 
– error model (e.g., data are normal, lognormal, negative binomial, etc.)
– usually assumes the true model up to parameter values is known.

• Select a criterion to characterize the design:
– The general variance of all model parameters: the determinant of the asymptotic covariance matrix of the parameter 

estimates
– variance of a function of model parameters, e.g., the asymptotic variance of the log BMD.
– … 

• Explore the effect of different designs on the selected criteria.
• Computationally (relatively) straightforward
• Relies on asymptotic results

 Simulation
• Simulate replicate data sets using different designs, and estimate model parameters for the simulated data
• Use variances among replicate fits to characterize the performance of different designs
• Computationally challenging for large scale evaluations
• Captures the effects of finite, small sample sizes
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Classical Toxicology Design

 Goal: provide sufficient 
power to identify a dose 
where the response was 
“different enough” from 
background - POD

 Few doses, multiple replicates 
per dose.

 Analyzed with sequential 
tests against control

 Later, analyzed with BMD

Control
& 95% CI
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 Kavlock et al (1996): For BMD 
estimation, it does not hurt to decrease 
reps per dose and increase doses, and 
the increased number of doses help. 
Disposition of doses matters.

 Slob et al (2005): Performance of design 
depends on total number of subjects, 
regardless of number of doses. Dose 
placement is crucial – including more 
doses improves the chances of good 
dose placement.

 Why Increase number of doses?
• Robustness against range of DR curves
• Robustness against extra, dose-group 

level ‘noise’ (e.g., Slob & Setzer, 2014)

Modifications for Dose-Response and BMD 
Estimation
Hill Model
Total N = 24
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Optimal Design for Hill Dose-Response
 “Optimal Design” – design that minimizes the 

performance criterion, e.g.:
• D-optimal design: minimizes the determinant of 

the asymptotic parameter covariance matrix
• c-optimal design: minimizes the variance of a 

function of model parameters, e.g. the variance 
of the log(BMD).

 Optimal design depends on model parameter 
values: You have to know the truth to see it.

 For Hill w/lognormal error, D-optimal design 
has: 
• 4 doses: control, max dose, 2 bracketing the ED50.
• Equal weights
• The spacing between the 2 bracketing doses 

decreases as the power (“hill coefficient”) 
increases.

 There has been a lot of literature on this 
recently (see References).
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Adding Realism 

 In reality, we have to design to be able to estimate models over a pretty wide range of DRs.
No single optimal design will do.
Theoretical Alternatives:
• Multi-stage design – alternate experiment and optimization to close in on the best parameter 

estimates. –not practical for genomics DR
• Find the design that minimizes the maximum variance over the range of uncertain parameters: 

make a design in which the worst-fit DR is fit well enough
• Find the design that minimizes the criterion on average over a prior distribution of parameter 

values – Bayesian optimal design: make a design that does pretty well on average.
– Both tend to add dose levels to the design.

 Determinants of practical designs:
• the top and bottom doses
• the dose spacing required to cover the range of DR steepnesses (steeper curves require closer 

spacing) (may not be regular!)
• Replication both reduces variance, also protects against ‘outliers’
• Consider alternative DR models (including splines)
• Incorporate noise, and use simulation to evaluate proposed designs
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Conclusions

 Switching from the classical tox approach to DR to benchmark dose-like 
considerations leads to designs with more dose levels and fewer replicates per 
dose

 Classical optimal design considerations: “To see the truth, you have to know it 
first” – a design is optimal only for a single DR curve. Still, provides useful 
information about DR shape and dose spacing.

 Practical designs will have multiple dose levels, log-spaced, evenly weighted. 
 Dose spacing should depend on the range of steepnesses of the curves.
 The lower end of the dose-range is probably the most interesting – there will be 

tension between dose spacing, achieving low enough doses, and cost.
 Both simulation and theory jointly should inform designs used.
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