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EPA Office of Research and Development

• The Office of Research and Development (ORD) is the 
scientific research arm of EPA

• Research is conducted by ORD’s three national laboratories, 
four national centers, and two offices

• Includes National Center for Computational Toxicology 
and National Exposure Research Laboratory 

• 14 facilities across the country and in Washington, D.C.

• Six research programs
• Includes Chemical Safety for Sustainability

• Research conducted by a combination of Federal scientists; 
contract researchers; and postdoctoral, graduate student, 
and post-baccalaureate trainees

ORD Facility in Research Triangle Park, NC
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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemicals in pooled human blood samples, many 
appear to be exogenous

• A tapestry of laws covers the chemicals people are exposed to in the United 
States (Breyer, 2009)

• Different testing requirements exist for food additives, pharmaceuticals, and 
pesticide active ingredients (NRC, 2007)

• Most other chemicals, ranging from industrial waste to dyes to packing materials 
are covered by the recently updated Toxic Substances Control Act (TSCA)

• Thousands of chemicals on the market were either “grandfathered” in or 
were allowed without experimental assessment of hazard, toxicokinetics, or 
exposure

• Thousands of new chemical use submissions are made to the EPA every year
• Methods are being developed to prioritize these existing and new 

chemicals for testing November 29, 2014



Office of Research and Development4 of 18

High-Throughput Risk Prioritization

High throughput risk prioritization needs:

1. high throughput hazard characterization

2. high throughput exposure forecasts

3. high throughput toxicokinetics (i.e., dosimetry)

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro
with Reverse 

Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk

National Academy of Sciences, January, 2017:
“Translation of high-throughput data into risk-based 
rankings is an important application of exposure data for 
chemical priority-setting. Recent advances in high-
throughput toxicity assessment, notably the ToxCast and 
Tox21 programs… and in high-throughput computational 
exposure assessment… have enabled first-tier risk-based 
rankings of chemicals on the basis of margins of 
exposure…”

Providing predictions for novel compounds will need to rely on screening 
massive chemical libraries and drawing inference from chemical structure 
(e.g., quantitative structure activity relationships, QSAR)
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High throughput screening (HTS) 
for in vitro bioactivity allows 
characterization of thousands of 
chemicals for which no other 
testing has occurred

Exposure

High-Throughput
Risk 

Prioritization

Toxicokinetics

Hazard

High-Throughput Risk Prioritization
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High-Throughput Screening

 Tox21: Examining >8,000 chemicals using ~50 assays 
intended to identify interactions with biological 
pathways (Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 chemicals ran 
>1100 additional assays (Kavlock et al., 2012)

 Most assays conducted in dose-response format 
(identify 50% activity concentration – AC50 – and 
efficacy if data described by a Hill function, Filer et al., 
2016)

 Bioactivity profile for untested chemicals can be 
compared with profiles observed for reference 
chemicals with known toxicities
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CERAPP: Collaborative Estrogen 
Receptor Activity Prediction Project

 ToxCast can only test those compounds that can be 
procured in relatively pure form and are not volatile
 Need QSAR models

 CERAPP combined multiple models developed in 
collaboration with 17 groups in the United States 
and Europe to predict estrogen receptor (ER) activity 

 Mostly used a common training set of 1,677 
chemicals tested by ToxCast to make predictions for 
32,464 chemical structures

 Predictions were evaluated on a set of 7,522 
chemicals curated from the literature

 A consensus model was built by weighting models on 
scores based on their evaluated accuracies

Mansouri et al., (2016)
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Toxicokinetics allows in vitro-in vivo 
extrapolation (IVIVE) to establish 
real world context for HTS data (µM 
concentrations converted to mg/kg 
BW/day dose rates)
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High-Throughput Risk Prioritization
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High-Throughput Toxicokinetics (HTTK)
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Wetmore et al., (2012, 2014, 2015)

• Toxicokinetics describes chemical absorption, distribution, metabolism and excretion (ADME) by the body
• Most chemicals do not have TK data – we use in vitro methods adapted from pharma to fill gaps (i.e., HTTK)
• In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted concentrations 

are typically on the order of values measured in clinical trials (Wang, 2010)
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Predicting Error in HTTK Predictions

 For most compounds in the environment there 
will be no clinical trials 

 Uncertainty must be well characterized
 We compare to in vivo data to get empirical 

estimates of HTTK uncertainty
 Any approximations, omissions, or mistakes 

should work to increase the estimated 
uncertainty when evaluated systematically 
across chemicals

 Through comparison to in vivo data, a cross-
validated predictor of success or failure of HTTK 
has been constructed (Wambaugh et al., 2015)

 We also have categories for chemicals that do not 
reach steady-state or for which plasma binding 
assay fails

Error in Css
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ToxCast 
chemicals with 
ER Agonist Assay 
Activity (2636)

Chemicals with 
HTTK Data (543)

Chemicals with Exposure 
Estimates (7969)
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273

269
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Predicting Critical TK Parameters

• Two parameters currently are key to HTTK 
model:

• Plasma protein binding (PPB)
• Hepatic clearance (metabolism)

• Unfortunately, chemical specific-analytical 
chemistry methods are needed, and these take 
time and resources to develop

• Ingle et al. (2016) developed QSAR models for 
PPB that was shown to work for environmental 
chemicals

• If a hepatic clearance model can be developed 
we can provide tentative TK predictions for 
thousands of more chemicals

Figure from 
Dustin 

Kapraun
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Exposure

High-Throughput
Risk 

Prioritization

Toxicokinetics

Hazard

High throughput screening + in vitro-in vivo
extrapolation (IVIVE can predict a dose (mg/kg 
bw/day) that might be adverse

Need methods to forecast exposure for 
thousands of chemicals (Wetmore et al., 2015)

High-Throughput Risk Prioritization
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Consensus Exposure Predictions with the SEEM 
Framework

• We incorporate multiple models (including SHEDS-HT, ExpoDat) into consensus predictions for 1000s of chemicals 
within the Systematic Empirical Evaluation of Models (SEEM) framework

• We evaluate/calibrate predictions with available monitoring data 

• This provides information similar to a sensitivity analysis: What models are working? What data are most needed? 
This is an iterative process

Integrating Multiple Models

Wambaugh et al., 2013,2014
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Wambaugh et al. (2014)
• Five descriptors explain roughly 50% of 

the chemical to chemical variability in 
median National Health and Nutrition 
Examination Survey (NHANES) exposure 
rates

• Same five predictors work for all NHANES 
demographic groups analyzed

• What we are really doing is identifying 
chemical exposure pathway

• Chemical-Product Database 
(https://actor.epa.gov/cpcat/) provides 
chemical use information (Dionisio et al., 
2015)

• Data is incomplete, use quantitative 
structure-property relationships (QSPR) 
fill in the gaps (Phillips et al., 2017)

Heuristics of Exposure

https://actor.epa.gov/cpcat/
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Human Exposure Predictions 
for 134,521 Chemicals

Ring et al. (in prep.)

 Machine learning models 
were built for each four 
exposure pathways

 Pathway predictions can be 
used for large chemical 
libraries

 Use prediction (and accuracy 
of prediction) as a prior for 
Bayesian analysis

 Each chemical may have 
exposure by multiple 
pathways
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Life-stage and Demographic Specific Predictions
Change in Activity : Exposure Ratio

• We use HTTK to calculate 
margin between bioactivity 
and exposure for specific 
populations

Potential Exposure 
Rate

mg/kg BW/day

Potential hazard from in 
vitro

converted to dose by  
HTTK

Lower
Risk

Medium Risk Higher
Risk

Ring et al. (2017)
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Conclusions
 We are close to being able to predict potential risk as a function of hazard, toxicokinetics, and exposure from chemical 

structure alone

 High throughput screening (HTS) provides bioactivity data for thousands of chemicals as a surrogate for hazard

 Toxicokinetics for IVIVE provides real world context to hazards indicated by HTS
• Using in vitro methods developed for pharmaceuticals, we can predict TK for large numbers of chemicals, but we 

are currently limited by analytical chemistry

 Using high throughput exposure approaches we can make coarse predictions of exposure
• We are actively refining these predictions with new models and data
• In some cases, upper confidence limit on current predictions is already many times lower than predicted hazard

 All data being made public:
• R package “httk”: https://CRAN.R-project.org/package=httk 
• The Chemistry Dashboard (A “Google” for chemicals) http://comptox.epa.gov/
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