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Distribution/variance of data
Linear correlation of descriptor values in RDKit, CORINA, MOE: the first four rows in each grid are dependent variables, showing near-zero linear correlation between X and Y

Normalized Y (log LD50) values             Selected scaled X values                Variability of individual values in Molecular Operating Environment descriptors

Measurement uncertainty in LD50 values
We calculated the precision and variance for the 560 substances for which there 
were 3 or more LD50 values. The mean coefficient of variation (      ) of these values 
was 60%. The magnitude of the 95% confidence interval for many of the substances 
was greater than the span of values. The substances with a higher number of point 
estimates (as many as 48) did not have significantly more precise or less variable 
results. Without metadata, it is not possible to identify the source of uncertainty. 
This measurement uncertainty bounds the performance of any LD50 model.

Uncertainty from parameterization with SMILES 
All descriptors were calculated from SMILES (simplified molecular-input line-entry 
system), so several substances may have a common structure. The 41 multi-
substances structures had a mean coefficient of variation of 62%. There are too few 
values to determine whether this is a significant source of additional uncertainty.

Skew
Y values: Skewed values are well modeled by some available algorithms.
X values: Although vectors are distributed normally once scaled, some highly 
variable values (shown at left) within those vectors are likely to contribute more 
heavily to descriptions, regardless of their importance in the system.   

Algorithmic uncertainty
Stochastic optimization is variable by design. We used 
Monte Carlo dropout (Gal 2016) for cross-validation. 
The change in R2 due to this type of uncertainty was 
normal for each model, with standard deviations 
between 0.004 and 0.012. The effect of algorithmic 
uncertainty (as well as the model error) on some point 
value estimates is shown at right; it is likely smaller 
than the measurement uncertainty.

Training performance
The model learned efficiently. The learning rate 
reduction and early stopping prevented overfitting, as 
intended. 

Here are the steps we took to generate our predictions:
1. Calculate quantitative descriptors of the chemical structures
Using the cheminformatics tools Molecular Operating Environment 
(MOE), CORINA Symphony, and RDKit, we generated 0D (such as an 
atom count), 1D (fragment counts), and 2D (topostructural) descriptors 
from the provided canonical QSAR-ready SMILES

2. Clean and transform data (7660 rows) for optimal modeling
Y values (LD50 values)
• Log mol/kg LD50 values to make them more normally distributed
• Normalize from 0 to 1 for application to more functions
X values (structural descriptors)
• Discard rows with SMILES that did not generate mol
• For single-value descriptors, aggregate into vectors by source
• Scale vectors to zero mean with unit variance for function input
Divide into sets for training and validation of model

3. Develop neural network for each vectorized descriptor
• Take a random batch_size of chemical descriptors x and multiply 

them by random weights w
• Fit Σwx to the activation function act to find the error E in 

predicting the LD50 value 
• Change w according to optimization function opt with learning rate 

η to minimize E as defined by loss function loss
• Keep updating the rates, reducing η when E stops dropping, until E

< δ for 10 epochs
• Use final w in output function out to generate predicted LD50 value 

Hyperparameters and descriptors used in final models
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The approach and perspectives described in this poster do not necessarily reflect EPA policy.

We developed a deep learning QSAR model that predicted LD50 values above our target accuracy measures (R2=0.644, RMSE=0.533).

Availability, ease of use, degree of technical competency required to use
• Every tool used (except MOE) is openly available
• Written in a Jupyter notebook for portability
• Easy to add new descriptors for inclusion in the consensus by reading in a CSV file
• Requires very little user interaction and no expert knowledge to create predictions
• Previously trained models can be easily stored with HDF5 for future use. They do not take much space (<1000 KB)
• Creating new predictions for trained models takes only one line of code, and runs very quickly
• Mostly built on existing functions, so was fairly easy to develop
• Interpretation of results requires some statistical knowledge, but this is likely true with any method

Future work
Once fully optimized, this approach can be implemented 
on NCCT’s Chemistry Dashboard. It would be easy to 
pipeline the model to run predictions for all substances 
with QSAR-ready SMILES to be stored as a chemical 
property. In the future, we hope it will be possible to 
quickly generate LD50 predictions just by drawing a
structure.

Ideas for approach improvement
Data inclusion
• Add additional open source descriptors, like Padel
• Calculate 3D and other descriptors
• Identify inclusion criteria for LD50 to reduce noise 
• Remove correlated descriptors, or descriptors that have the same value across the entire space to reduce training time
• Investigate correlation between descriptors and measurement variability

Data handling
• Use quantile normalization or scaling in log space to see if skew has an effect on calculation; normalize within vector
• Investigate if/how scaling and normalization reduce information on skewed data sets
• Does increasing vector size lead to R2 inflation?
• Allow any combination of descriptors, regardless of source

Model building
• Investigate effect of tuning to hyperparameters other than R2
• Are there things that make a model hold more information than high description value?
• Include a bias term to allow the function to shift to fit the curves
• Initialize model weights to introduce the idea of asymmetry more quickly
• Create models for all individual descriptors or any combination of descriptors
• Create models for each GHS or EPA category, then develop point estimate from submodels
• Use built-in GridSearch function with randomized inputs rather than “priors” 
• Use ensemble prediction (from some number of trials) for each descriptor type, allowing variation of hyperparameters
• Introduce weighting to each model’s contribution to the consensus instead of an average
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EPA’s National Center for Computational Toxicology (NCCT) develops and advances new alternative methods (NAMs) to support 
evaluation of the toxicity of thousands of chemicals to which Americans could be exposed. One such method is QSAR (quantitative 
structure-activity relationship); rigorous QSAR models can be used to predict the activity of new substances. 

Purpose: Develop an approach using deep learning to create a QSAR to describe a set of oral rat LD50 values (a common metric used by 
risk assessors to determine the hazard posed by a chemical) provided as part of the Predictive Models for Acute Oral Systemic Toxicity 
project hosted by the ICCVAM Acute Toxicity Workgroup with to support hazard characterization for a broad range of chemicals.

4. Tune models
• Sweep all network hyperparameters to maximize R2

5. Identify most supported models for each descriptor
• Threshold modified from Golbraikh & Tropsha 2002
QSAR criteria

6. Create ensemble prediction from average of all models
• One model above threshold (if more than one, model 

with maximum R2
validation) per descriptor

descriptor batch_size act opt out loss Q2 R2
moe_numeric_param 42 softsign Adagrad sigmoid binary_crossentropy 0.93 0.53
MACCS 43 softsign Adagrad sigmoid binary_crossentropy 0.95 0.55
rdkit_numeric_param 60 softsign Adadelta hard_sigmoid mean_absolute_error 0.78 0.50
toxprint_fp 46 softsign SGD hard_sigmoid binary_crossentropy 0.86 0.50

xkcd.com/1260

Y: 0.86612, X:║[0,1,1,0,1,0,0,1,1]║→ -0.0087
Y: 0.60361, X:║[1,0,1,0,0,1,1,1,0]║→  0.9130
Y: 0.49470, X:║[1,1,1,0,0,1,0,1,0]║→ -0.4909
Y: 0.83811, X:║[1,1,0,1,1,1,1,1,0]║→  0.6217

↑ Simplified simulation of prediction value generation       
Some examples of functions used ↓

We chose deep learning to build our QSAR for its ability to create robust models, even given the following difficulties : 
• Complexity: many biological processes involved in the death of an animal
• Outliers: not all chemicals will elicit predictably similar responses
• No assumption of domain knowledge: prevention of analytical bias
• Less sensitive to dimensionality of inputs: flexibility of feature selection
• Data uncertainty: no metadata, so reproducibility cannot be assessed (Hagan 2014) 

n: 71, 245, 2517 (based on various functions)
batch_size: 10 through 1000
act, out: linear, sigmoid, selu, relu, tanh, softmax, hard_sigmoid, 
softsign
opt: Adadelta , Adagrad, Adam, Adamax, Nadam, RMSprop, SGD
η: 0.0001, 0.001, 0.008, 0.01, 0.012, 0.1
loss: binary_crossentropy, cosine_proximity, hinge, 
kullback_leibler_divergence, logcosh, mean_absolute_error, 
mean_absolute_percentage_error, mean_squared_error, 
mean_squared_logarithmic_error, squared_hinge, poisson

toxprint names were removed, as they were too small to read

Domain of applicability
X values from the center of each distribution (see 
Selected scaled X values plot above) did not lead to 
significantly better predictions on the set than 
those from the tails. We deemed all tested and 
predicted structures to be within the domain of 
applicability for this approach.

Degree of error in incorrect estimates
No model consistently over- or under-predicted. 
Only 2.6% of consensus predictions had a greater 
residual than comparing any value to the mean. 
The average normalized RMSE of included models 
was 0.069 (compare to the RMSEmean of 0.120).

Results

Metric Description Acceptable value

Training R2 variance in prediction given observation on training LD50s > 0.5

Validation R2 variance in prediction given observation on validation LD50s > 0.5

RMSE summed accuracy error over the LD50 set < RMSEmean

Spearman ρ direction of association between descriptor and LD50 > 0.6, p-val <0.01 

yrand R2 prediction variance of the descriptors modeled in random LD50 values < 0.25

Effect of taking the mean for the consensus
The residual from the MACCS (Molecular Access 
System keys, calculated by RDKit) model was 
smaller than that from the mean 57.4% of the 
time. The R2 of the consensus prediction were 
better than any single model (0.644).

https://comptox.epa.gov/dashboard

Effect of algorithmic uncertainty on point estimates ↑
← Relationships between error and learning rate

batch_size

n
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