Computational modeling of the neurovascular unit to predict microglia mediated effects on blood-brain barrier formation. Zurlinden2 TJ, Saili2 KS, Silvin1 A, Schwab2 AJ, Hunter2 ES, Spencer3 RS, Baker3 NC, Ginhoux1 F, Knudsen2 TB. 1Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore; 2USEPA, ORD, RTP, NC; 3Leidos, RTP, NC.

Development of the neurovascular unit (NVU) involves interactions between endothelial cells, pericytes, neuroprogenitor cells, and microglia. The latter, our resident brain macrophage population, couples angiogenesis-neurogenesis with the microphysiological environment. We constructed an in silico model of the developing neuroepithelium in CompuCell3D rendering a cNVU that recapitulated a suite of critical signaling pathways (Notch/dll4, CSF-1, VEGF-A/C) and cellular behaviors (growth, migration, proliferation, differentiation, apoptosis). Imputing ToxCast in vitro profiling data into the simulated neuroepithelium enabled predictions of developmental neurovascular toxicity. For example, targeting CSF-1R in silico yielded a quantitative effect on microvascular arborization. Cybermorphs can now be qualified against in vivo phenotypes from CSF-1R ablation genetically or immunologically. The in silico models, in combination with in vitro cell-level data, can guide engineering of human cell-based NVU-devices to rank or prioritize untested environmental chemicals for further action. This abstract does not reflect US EPA policy.