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Figure 3: Plot showing the within MSE of the ANOVA analysis for both K-Means and Hierarchal clustering of toxprint
chemotypes clustering methods. Data set for the ANOVA contained systemic toxicity studies from ToxRefDB of chemicals
that were studied at least twice. The coefficient, chemical treatment, were replaced by their cluster group number for each
analysis. Each analysis is defined as one run of “Number of Clusters”, as shown on the x-axis.

Two or More Studies Per 
Chemical

Two or More Studies & Study Type 
Per Chemical

Two or More Studies, Study Type, & 
Species Per Chemical

Models MSE p-value MSE p-value MSE p-value

Full Model 0.326 0.337 0.326

Chemical Removed 0.790 < 6.43x10-4 0.844 < 9.88x10-4 0.790 < 6.43x10-4

Strain group Removed 0.356 < 9.81x10-4 0.389 < 3.23x10-4 0.356 < 9.81x10-4

Study Type Removed 0.350 < 3.34x10-4 0.354 < 1.54x10-4 0.350 < 3.34x10-4

Admin Method Removed 0.327 9.16x10-2 0.338 2.92x10-2 0.327 9.16x10-2

Dose Spacing Removed 0.330 < 9.64x10-4 0.339 < 8.17x10-4 0.330 < 9.64x10-4

Number of Dose Removed 0.331 < 2.67x10-4 0.341 < 1.08x10-4 0.331 < 2.67x10-4

Study Year Removed 0.326 1.45x10-1 0.337 4.37x10-1 0.326 1.45x10-1

Substance Purity Removed 0.326 2.76x10-1 0.337 1.90x10-1 0.326 2.76x10-1

Study Source Removed 0.327 4.17x10-2 0.338 1.33x10-2 0.327 4.17x10-2

Gender Removed 0.330 < 4.29x10-4 0.339 1.02x10-4 0.330 < 4.29x10-4

Figure 2: Variance estimation of three chemical class. A comparison of
their variance were performed and results shown by the p-value.

Table 1: MSE results for the LOO analysis with ANOVA between each full model and a LOO model.

Figure 1: Flow chart of the three dataset used along with results of the
variance analysis. For each dataset, the number of unique chemical and
studies are shown along with the calculated variance of the POD.

Animal toxicology studies have long been considered the gold standard for hazard identification and characterization,
including point-of-departure (POD) determinations. Due to regulatory mandates and the sparsity of animal toxicology
data for thousands of environmentally-relevant chemicals, alternative approaches have been increasingly relied upon
for chemical safety decision-making. However, comparing alternative method performance to traditional approaches
without better understanding the underlying variability of the traditional methods is difficult and often misleading
because reproducibility within animal studies have long been a topic of concern1-4. Using the USEPA Toxicity
Reference Database (ToxRefDB) systemic toxicity POD values and associated study parameters, multilinear
regression and analysis of variance was performed to quantify the explained variability due to various study
parameters, (e.g., chemical treatment, study type, species, strain, dose spacing) and to estimate the remaining
unexplained variability.
The goal of the current work was to quantify the amount of variance that exists within systemic in vivo PODs
(explained and unexplained).
We hypothesize that the variance between observed POD from study to study can be characterized by the equation:

Var(Observed POD) = Var(“True” POD) + Var(Study Conditions) + Unexplained Variance

POD is defined as the Log10 mg/kg/day of the lowest dose in which a treatment related effect was observed per
study.

Analysis
Variance Calculations
• Multilinear Regression was used to partition the total variance in the observed POD into an unexplained component 

and a component attributable to different study design factors, and ANOVA was used to compare the significance of 
individual components.

• Percent of variability that can be explained in a given data set was calculated by:  
Var(Observed POD) – Unexplained Variance

Var(Observed POD)
Importance of Each Study Condition

• Nested models using a Leave one out (LOO) approach were used to test each study condition’s contribution to the 
explainable variance

Assessing naïve chemical groupings (Dataset A only)
• Toxprint chemotypes were substituted for chemical treatment and then clustered using K-means and 
Hierarchical methods 
Stratification of Data by Chemical Class (Dataset A only)
• Chemicals were stratified into 3 classes (Conazoles, Phenols, and Carbamates), and MSE was estimated for each.
• Significance of the difference between variances was calculated by computing the F-distribution between the classes, 

pairwise. This is calculated as the ratio of the greater variance over the smaller. The upper confidence limit was then 
calculated for each pair. 

In a linear regression analysis of data from more than 3,500 in vivo studies,
• The spread around a predicted POD value is ~0.58 

• Since the standard deviation of the log10 transformed PODs is about 0.5, the 95% prediction interval 
for a POD covers more than 2 orders of magnitude (10^-2*0.58, 10^2*0.58)

• Estimated unexplained variance across all datasets: ~0.33 
• Chemical treatment explained: ~50% of the total variance, and so chemical features were explored further 

in an effort to account for additional variance.
• The estimated unexplained variance was consistent even when source data was stratified to be more 

homogeneous
• Stratifying chemical treatment across common classes with ≥15 members failed to explain additional 

variance, outside of phenols (which demonstrated ~20% unexplained variance)
• Replacing individual chemical treatments with chemical groups (clustered toxprint chemotypes) explained 

little additional variance

In all three datasets, the POD variance was approximately 1, the
MSE was approximately 0.33 (Figure 1), and the percent of
variability that can be explained is ~66% (not shown). Using the
MSE, we can calculate the RMSE ( 𝑀𝑀𝑀𝑀𝑀𝑀) to be about 0.58.
MSE remained constant across all three datasets even as the
datasets became more homogeneous, indicating that the amount
of variance that can be accounted for is constant. This provides
some level of confidence that the underlining unknown error is
inherit across all systemic toxicology studies.

By comparing the nested model with the full model, we quantified
the contribution of each study variable to the total variance
across all three datasets (Table 1). Chemical treatment had the
largest impact on the amount of explained variability, accounting
for upwards of 50% (0.790 – 0.84) or an MSE of ~0.8. The
results were consistent across datasets A, B, and C. The
removal of other study conditions (using LOO methods) did not
have as large an impact, but the covariates were statistically
significant >70% of the time. Study type, strain group, and dose
spacing were all consistently significant covariates across
datasets A, B, and C.

Three chemical classes (>15 chemical per class) represented
within dataset A, phenols, conazoles, and carbamates, were
used to stratify the dataset and MSE calculated for each group
(Figure 2). Carbamate and conazole datasets produced MSE
comparable to the MSE of the complete dataset A, despite
having a smaller variance. However, the phenol dataset had an
MSE of 0.18 potentially due to fewer chemical and study
numbers. The significance of the variances between the
chemical class and all comparisons produced a p-value > or =
0.05.

Replacing chemical treatment with groupings based on structural similarities did not account for as much
variance as using chemical treatment. The MSE for both K-means and Hierarchal clustering was not
comparable to the 0.33 found when using chemical treatment until over 600 clusters were created (Figure 3).
The MSE is equal to the residual sum of squares (RSS) divided by the degrees of freedom. The relationship
between the MSE and RSS indicates that as the number of clusters go up, both the MSE and RSS go down.
At 600 clusters, most clusters contained around one chemical, thereby mirroring the original analysis using
chemical treatment.
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Data Preparation

Data taken from: US EPA’s Toxicity Reference Database (ToxRefDB v1.3)
• Contains over 5,000 in vivo toxicity studies covering over 1,000 chemicals.
• Guideline or guideline comparable studies from various sources.

Data was filtered to only include:  
• Adult animals in the F0 generation
• Systemic toxicity studies (CHR, SUB, DEV, MGR, and SAC)
• Administration Route: Oral
• Species: mouse, rat, dog, and rabbit
• Non-control group data

Three datasets were created:
• Dataset A: Two or More Studies Per 

Chemical.
• Dataset B: Two or More Studies & Study 

Type Per Chemical.
• Dataset C: Two or More Studies, Study 

Type, & Species Per Chemical
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