

Using Computational Toxicology to Enable Risk-Based Chemical Safety Decision Making

Richard Judson U.S. EPA, National Center for Computational Toxicology Office of Research and Development

Drug Safety Gordon Conference Stonehill College, Easton MA

June 26 2016

Office of Research and Development

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

Problem Statement

Too many chemicals to test with standard animal-based methods

-Cost, time, animal welfare

Need for better mechanistic data

- Determine human relevance
- What is the Adverse Outcome Pathway (AOP)?

Computational Toxicology

- Identify biological pathways of toxicity (AOPs)
- Develop high-throughput *in vitro* assays
 - -Test "Human Exposure Universe" chemicals in the assays
- Develop models that link in vitro to in vivo hazard
 - -Use pharmacokinetic models to predict activating doses
- Develop exposure models
- Add uncertainty estimates
- Create high-throughput risk assessments

Zebrafish and Developmental Toxicology

- Goal: Use zebrafish as an *in vivo* model of vertebrate developmental toxicity
- Build in vitro to in vivo models using ~700 human assays
- ~1000 Chemicals
 - -pharmaceuticals, pesticides, industrial chemicals, personal care product chemicals and food ingredients

Zebrafish Imaging and scoring

Parameter	Description					
Area	Area within the mask drawn around the fish, calculated as pixel count or micrometers					
Perimeter-area (P)	A ratio of the outer perimeter of the fish to the area					
SL	A line drawn approximately down the middle of the fish from the tip of the larvae's head to the tip of its tail The maximum distance perpendicular to the Spine Length					
Width						
Length-width ratio	A ratio of SL to width					
HTD	A direct line drawn from the tip of the larvae's head to the tip of the tail					
Straightness	A ratio of HTD to SL					
Convexity	A ratio of the fish area to the area of the hull					

C Acceptable

Unacceptable

D

Deal et al. J Applied Tox. 2016

Example chemicals

100% = death <100% = malformations

Most chemicals display a "burst" of potentially nonselective bioactivity near cell-stress / cytotoxity conc.

Judson et al. Tox.Sci. (2016)

Schematic explanation of the burst

United States

Agency

Environmental Protection

Heatmap of stress and cytotoxicity assays in 1000 chemicals **Environmental Protection**

United States

Agency

Office

Judson et al. ToxSci (2016)

10

Observation about logP

Human in vitro cell stress behaves ~ zebrafish toxicity

Office of Researc National Center fo

EPA United States Environmental Protection Among

"Excess Toxicity" points to specific target activity

Office of Research and Development National Center for Computational Toxicology

Chemicals with excess toxicity tend to fall in a few target MOA classes

ACHE

- Ion channel blockers
- HMGCR
- Mitochondrial disruptors
- PPO inhibitors (disrupts plant cell membranes)
- Chemicals reacting with protein SH groups
- Thyroid hormone receptor blockers
- Some of these classes are over-represented in overall hit predictivity and in excess potency for hits

Look for specific targets by controlling for stress-related assay confounding

 Are potent actives against specific targets more likely than chance to be ZF-active?

Filter on Z-score (AC50 relative to cytotoxicity)

Filter on AUC (potency x efficacy) Measure of reproducibility across multiple assays

class	Gene	annotation	assays	ТР	FP	FN	TN	Sens	Spec	BA	OR	PPV	p-value
	group												
endocrine	AR	Androgen receptor	1	17	3	443	523	0.04	0.99	0.52	6.7	0.85	0.0005
endocrine	CYP19A1	Aromatase	2	_				. 1		0.52	14.4	0.92	9E-07
endocrine	ESR	Estrogen receptor	1	En	do	crine	e pai	thway	'S	0.53	5.8	0.83	2E-05
endocrine	NR3C1	Glucocorticoid receptor	4	14	4	446	522	0.03	0.99	0.51	4.1	0.78	0.0084
endocrine	PGR	Progesterone receptor	2	15	3	445	523	0.03	0.99	0.51	5.9	0.83	0.0016
ER stress	SREBF1		1	36	10	424	516	0.08	0.98	0.53	4.4	0.78	1E-05
ER stress	XBP1		1	10	1	450	525	0.02	1.00	0.51	11.7	0.91	0.0039
GPCR	LTD4		1	11	1	449	525	0.02	1.00	0.51	12.9	0.92	0.002
growth factor	EGR1		1	19	1	441	525	0.04	1.00	0.52	22.6	0.95	8E-06
hypoxia	HIF1A		1	24	3	436	523	0.05	0.99	0.52	9.6	0.89	5E-06
inflammation	CEBPB		1	30	6	430	520	0.07	0.99	0.53	6.0	0.83	5E-06
inflammation	CREB3		1	23	1	437	525	0.05	1.00	0.52	27.6	0.96	5E-07
inflammation	PTGER2		¹ La	rae	elv :	stre	ss a	ctivitv	-		5.0	0.81	3E-05
inflammation	TNF	<u> </u>	-1		-) -)	10.01			- 4	-:+· (2.8	0.70	0.0026
ion channel	KCNH2			ore	po	tent	than	n Cyto	τοχιά	City	7.6	0.87	0.0026
oncogene	JUN		1	18	6	442	520	0.04	0.99	0.51	3.5	0.75	0.0062
oxidative stress	NFE2L2	NRF2, ROS Sensor	2	34	5	426	521	0.07	0.99	0.53	8.3	0.87	1E-07
transcription factor	POU2F1		1	17	4	443	522	0.04	0.99	0.51	5.0	0.81	0.0016
transcription factor	SMAD1		1	21	5	439	521	0.05	0.99	0.52	5.0	0.81	0.0005
transcription factor	SOX1		1	16	5	444	521	0.03	0.99	0.51	3.8	0.76	0.0072
transcription factor	SP1		1	18	2	442	524	0.04	1.00	0.52	10.7	0.90	6E-05
transporter	DAT		1	18	6	442	520	0.04	0.99	0.51	3.5	0.75	0.0062
xenobiotic metabolism	CYP1A	cytochrome P450	4	18	3	442	523	0.04	0.99	0.52	7.1	0.86	0.0003
xenobiotic metabolism	CYP2A	cytochrome P450	3	25	5	435	521	0.05	0.99	0.52	6.0	0.83	5E-05
xenobiotic metabolism	CYP2B	cytochrome P450	2	25	2	435	524	0.05	1.00	0.53	15.1	0.93	4E-07
xenobiotic metabolism	CYP2C	cytochrome P450	8					F	4		1E+06	1.00	8E-09
xenobiotic metabolism	CYP2D	cytochrome P450	3	Lar	gel	y di	le to	cona	zole	S	5.9	0.83	0.0016
xenobiotic metabolism	CYP2J	cytochrome P450	1	21	1	439	525	0.05	1.00	0.52	25.1	0.95	2E-06
xenobiotic metabolism	СҮРЗА	cytochrome P450	4	19	1	441	525	0.04	1.00	0.52	22.6	0.95	8E-06
xenobiotic metabolism	NR1I2	PXR	3	30	9	430	517	0.07	0.98	0.52	4.0	0.77	0.0001

The ideal *in vitro* to *in vivo* model Zebrafish, rat, mouse, human, ...

Read off the causal mechanisms from the diagonal In Vivo Concentration Equivalent Cytotoxicity Target X Other targets

Human In Vitro Concentration Equivalent

- Failure so far concentration equivalents require better understanding of relative kinetics, bioavailability
- Also concentration uncertainty on both axes is ~1 log unit (95% CI)

- –What types of harm would a chemical cause above that dose?
- Predictions are based on models
 - -Computational, statistical, "mental", in vitro, in vivo
- All models are based on data

Agency

- Data is always subject to noise, variability
- Therefore, all predictions are subject to uncertainty
- Our second goal is estimating prediction uncertainty

In vivo guideline study uncertainty 26% of chemicals tested multiple times in the

mouse CHR

mouse CHR

2

uterotrophic assay gave discrepant results

Anemia Reproducibility

Kleinstreuer et al. EHP 2015

Judson et al. In Preparation

3

0.43

0.40

In Vitro Assay Data is also subject to uncertainty United States Environmental Protection See Eric Watt poster

Uncertainty in data has big impact on model performance

As greater consistency is required from literature sources, QSAR consensus model performance improves

- Source: CERAPP project, Mansouri et al. EHP 2015
- Community development of estrogen receptor models tested against thousands of experimental data points

Given all the uncertainty, is modeling futile?

- Not in risk assessment
 - What's important is the difference between hazard and exposure
- Hazard Model:
 - -In vitro IC50 (μ M) with uncertainty
 - Use toxico / pharmacokinetic model to convert to mg/kg/day (with added uncertainty)
- Exposure model
 - -Based on NHANES, other biomonitoring data
 - -Add uncertainty
- Compare ranges for margin of exposure

Incorporating Dosimetry and Uncertainty into In Vitro Screening

Wetmore, Rotroff, Wambaugh et al., 2013, 2014, 2015

Population and Exposure Modeling

Estimating Exposure and Associated Uncertainty with Limited Data

24

High-throughput Risk Assessment for ER 290 chemicals with ER bioactivity

Retrofitting Assays for Metabolic Competence – Extracellular Approach

Alginate Immobilization of Metabolic Enzymes (AIME)

Prototype Lids

DeGroot et al. 2016 SOT poster #3757

Office of Research and Development

Amount of XME Activity in Microspheres

Small Molecule Inhibition of XME Activity

Compound	Mol. Wt. (g/mol)	Targeted P450	IC50 Free S9 (µM)	IC50 AIME (µM)
Furafylline	260.25	1A2	2.39	1.92
Thio-TEPA	189.22	2B6	7.46	2.86
Tienilic Acid	331.17	2C9	.053	.096
Ketoconazole	531.43	3A4	.086	0.12

3

Retrofitting Assays for Metabolic Competence – mRNA Intracellular Strategy

293T cells 21.5 h post transfection with 90 ng of EGFP mRNA using TransIT reagent

Pool in vitro transcribed mRNAs chemically modified with pseudouridine ad 5methylcytidine to reduce immune stimulation

Advantage of transfecting with mRNA

Titrate different CYPs to match different ratios in different tissues Efficiency of CYP3A4 Transfection in HepG2 Cells Begins to Decline Above 90 ng mRNA 1500

Developing Approaches for Tiered Testing

Comprehensive Characterization

Verification of Affected Processes/ Pathways and Temporal Evaluation

Interpretation of Affected Process/ Pathways and Population Variability

Planning for HT Transcriptomics

New Approaches to Comprehensively Assess Potential Biological Effects

Requirements and Potential Platforms for HT Transcriptomics

Requirements

- Measure or infer transcriptional changes across the whole genome (or very close to it) (e.g. not subsets of 1000, 1500, 2500 genes)
- Compatible with 96- and 384-well plate formats (maybe 1536?) and laboratory automation
- Work directly with cell lysates (no separate RNA purification)
- Compatible with multiple cell types and culture conditions
- Low levels of technical variance and robust correlation with orthogonal measures of gene expression changes
- Low cost (\$30 \$45 per sample or less)

Potential Platforms

- Low coverage whole transcriptome RNA-seq (3 5 million mapped reads)
- Targeted RNA-seq (e.g., TempO-seq, TruSeq, SureSelect)
- Microarrays (e.g., Genechip HT)
- Bead-based (e.g., L1000)

Technical Performance of the Three Sequencing Platforms

Data from MAQC II Samples

31

HT Transcriptomics Next Steps

- Perform pilot study (Summer) to validate workflow and refine experimental design
- Initiate large scale screen (Fall/Winter)
 - Cell type: MCF7
 - Compounds: 1,000 (ToxCast Phase I/II)
 - Time Point: Single
 - Concentration Response: 8 (?)
- Perform secondary pilot study looking at cell type selection/ pooling strategies (Fall/Winter)
- Integrate HT transcriptomic platform with metabolic retrofit solution to allow screening +/- metabolism (FY17)
- Explore partnerships to build community database of common chemical set across multiple cell types/lines

Other Ongoing Efforts

- <u>Curated chemical structure</u> database of >1 million unique substances
- Capability to retrofit high-throughput in vitro assays for metabolic competence
- Software infrastructure to manage, use and share big data in toxicology
- Methods to quantify <u>uncertainty</u> in all quantities
- <u>Read-across</u> approaches that quantitatively include uncertainty
- <u>Pharmacokinetic models</u> for hundreds of chemicals while understanding which chemical classes are well predicted and which ones have greater uncertainty
- <u>High-throughput exposure models</u> for thousands of chemicals with estimates of uncertainty
- <u>Non-targeted analytical measurements</u> of chemical constituents in hundreds of consumer products
- Framework for streamlined validation of high-throughput in vitro assays

Challenges

- Technical limitations/obstacles associated with each technology (e.g., metabolism, volatiles, etc.)
- Moving from an apical to a molecular paradigm and defining adversity
- Predicting human safety vs. toxicity
- Combining new approaches to have adequate throughput and sufficiently capture higher levels of biological organization
- Systematically integrating multiple data streams from the new approaches in a risk-based, weight of evidence assessment
- Quantifying and incorporating uncertainty and variability
- Dealing with the validation
 - Defining a fit-for-purpose framework(s) that is time and resource efficient
 - Performance-based technology standards vs. traditional validation
 - Role of *in vivo* rodent studies and understanding their inherent uncertainty
- Legal defensibility of new methods and assessment products

Acknowledgements

Stephanie Padilla Tamara Tal Eric Watt Matt Martin **Rusty Thomas** Agnes Karmaus Steve Simmons Danica DeGroot Keith Houck John Wambaugh Woody Setzer

NCCT Staff Scientists NCCT Postdocs **Rusty Thomas** Kevin Crofton Keith Houck Ann Richard **Richard Judson** Tom Knudsen Matt Martin Grace Patlewicz Woody Setzer John Wambaugh **Tony Williams** Steve Simmons Chris Grulke Jeff Edwards

NCCT Contractors Nancy Baker **Dayne Filer** Parth Kothiya **Doris Smith** Jamey Vail Sean Watford Indira Thillainadarajah Tommy Cathey

Todor Antonijevic Audrey Bone Swapnil Chavan Danica DeGroot Jeremy Fitzpatrick Jason Harris **Dustin Kapraun** Max Leung Kamel Mansouri LyLy Pham Prachi Pradeep Eric Watt

NIH/NCATS Menghang Xia Ruili Huang Anton Simeonov NTP Warren Casey Nicole Kleinstreuer Mike Devito Dan Zang

Office of Research and Development National Center for Computational Toxicology

https://www.epa.gov/chemical-research/toxicity-forecasting