

Simulating Hepatic Tissue Lesions as Virtual Cellular Systems

v-Liver™ The Virtual Liver Project

Imran Shah¹, John Wambaugh¹, Jason R. Pirone¹, Keith Houck¹, Beena Vallanat^{1,2}, Chris Corton², Mike DeVito², Richard Judson¹, David Dix¹, Thomas Knudsen¹, Rory Conolly¹

1NCCT, US EPA, RTP, NC, USA.
2NHEERL, US EPA, RTP, NC, USA.

March 2009

This work was reviewed by EPA and approved for publication but does not necessarily reflect official agency policy.

- ~10,000 HPV chemicals little/no biological data!
- Animal testing infeasible / uncertain value
- 2007 NRC Toxicity Testing 21st Century
- 2008 EPA Strategic Plan for Evaluating Chemical Toxicity
- → Liver injury frequent adverse effect
- → Develop in vitro-in silico proof of concept
- Evaluate using environmental chemicals

 National Center for Computational Toxicology

How to Predict Liver Toxicity?

Phenotypic anchoring valuable for prioritization

Difficult to elucidate mode-of-action / dose-response

SEPA Toxicity: Cell Alteration Inited States Environmental Protection

Swelling Steatosis, Macroves. Steatosis, Microves. **Necrosis** Hyperplasia Carcinoma

Agency

Toxicity: Cross-Scale Phenomena

Tissue lesions propagated by dynamic cellular networks Cell changes are caused by molecular pathways Use a cell-oriented view to deal with complexity ...

Virtual Liver: v-Liver™

Agent-Based Cellular Systems Model

Tissues

Key events in cell response

Molecular Logic Cell Changes

Cell Signaling

Spatial Cellular System

Blood Flow

v-Liver™: Proof of Concept

Goal: Simulate dose-dependent events in nuclear receptor-mediated hyperplasia

Modes-of-Action: Regenerative proliferation, Mitogen, DNA Damage

Approach: Cross-scale Cellular Systems Model

Carcinogenesis: Key Events

Which molecular pathways lead to cell death / division ?

Which cellular interactions/events propagate proliferative lesions?

Chemicals: Activities & Toxicity

ToxRefDB in vivo

ToxCast:

309 Chemicals 600 Assays Chronic Pathology

Office of Research and Developm National Center for Computational T

Cellular Pathways & Outcomes

Mine literature, DBs and prior data

(a) Cellular pathways & interactions involved in death / division

(b) Agent inputs, states and state transitions

Normal Adaptive/Injury Necrosis Apoptosis Proliferation Initiation

Cellular System: Agents

Data / Chemicals
Dose-response
data HTS, HCS:
Integrated response
from cell population

Dynamics

Data-driven dynamic probabilistic model of cell-response using population data

$$H_i^{t+1} = F(H_i^t, H_j^t, \mathbf{X_i^{in}})$$

 $H_i^t = Hepatocyte state at time t$

 $H_i^t = Hepatocyte\ neighbourhood\ at\ time\ t$

"Virtual Cellular System"

Hepatocyte

Kupffer

Multi-Agent System velocity [m/s]
1.0e-04
7.5e-05
5.0e-05
0.0e+00

Blood Flow

Virtual Lobule

v-Liver Response

v-Liver™ Architecture

Assays

v-Liver Knowledgebase

v-Liver Simulator

Outcomes

Env. Chems ToxCast HTS, HCS ex vivo Molecular Events Cell-Cell Events Cell Sys. & Blood Flow

Cellular & Tissue Effects

Summary

- Model tissues as "cellular systems"
- PoC: in silico platform to assess in vivo hepatic effects using in vitro data
- Focus on modeling lesions for ~20 +/- nongenotoxic carcinogens

Multi-disciplinary Team: Cross-EPA/ORD & External

