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Disclaimer

 This presentation may not reflect official policy of the
US. EPA.
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Biological mechanisms of dose-response

and risk assessment




Typical high dose rodent data — what do
they tell us?
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The problem




Mode-of-action analysis
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Biologically-based
computational modeling

The solution




Partition the problem into manageable parts
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Motivations

Widespread recognition that chemical-specific high-
to-low dose extrapolation may differ from default
approaches.

Concern that some high dose mechanisms may not be
relevant.

Need to protect the public health.

Need to avoid unnecessary loss of access to useful
materials.

Need to do good science in support of human health
risk assessment.




Computational systems biology




Enabling (“Omic”) Technologies
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Descriptive

Systems biology
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Computational modeling as an adjunct to
laboratory research
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The state-of-the-art
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International e. coli Alliance

e Goal is to develop a
molecular-level
computational model of e.
coll.




Computational tools

ATM curated
Pathway from

Pathway Assist®




Computational tools
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Systems biology
workbench
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Example and technical challenges

e Skin 1irritation
— MAPK, IL-1a, and NF-kB computational “modules™

— High throughput overexpression data to characterize
[L-1a — MAPK interaction with respect to NF-kB




Skin Irritation
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Modular Composition of IL-1 Signaling
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Top IL-1 Signaling Module

Self-limiting
mechanism
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Constitutive NF-kB Signaling Module




NF-xB Module Simulation

Parameters from existing NF-kB model
(Hoffmann et al., 2002) and refined to fit
experimental data in literature
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The IB-NF-B Signaling Module: Temporal Control and Selective Gene Activation
Alexander Hoffmann, Andre Levchenko, Martin L. Scott, David Baltimore
Science 298:1241 — 1245, 2002

6 hr



MAPK intracellular signaling cascades

Insulin

#
L& ¥ 1
822 ':':‘i't'o. e

-
LK X ]
A EL I 1IY



Growth factor

&4

<

N

mm)> MAPKKK
9 U
MAPKK
il |

&= MAPK ﬁ
MKP



MAPK time-course and bifurcation after a
short pulse of PDGF
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IL-1 MAPK crosstalk and NFkB activation

Degraded

NFxB-dependent < |
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Arrayed, full-length genes

set in 384-well plates




Gain-of-function screen

Fold Induction
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NF-kB-dependent
Gene Expressio
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Homeostasis, health, and disease

Environmental

stressor . .
Adaptive changes in

biochemical and
physiological networks




Normal variation =2 frank toxicity
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Attractors and biology

The critical feature of a regulatory network is that eventually it will
reenter a state that it previously encountered and cycle repeatedly.;,




Health and disease




Practical and technical challenges

Identification of network topology
Parameter values
Level of detail

— Practical constraints
Lumping

“Functional modules”
— MAPK amplifier

— Cell cycle
— Toolbox

Coordination!!!!




Modular description of a cell

1
COK
linhbsior

Cytosol

[ ]
i W Eoond stale

0O B |
b s pimmateom

= @ctvation

: ApopiDEs i} = inhiftcn
; Module L i transcnplicnal

http://www.gnsbiotech.com/biology.php




Regulatory acceptance
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How compatible are research and risk
assessment?

Structurally complex models tend to illuminate
sources of uncertainty

— Models with hidden uncertainties may be preferred

Large databases and associated models tend to
1dentify questions for further research

— Lose focus on what the existing data are telling us

Sophisticated models require sophisticated evaluation

— Ad hoc review groups

— Balance interests rather than avoid real or perceived
conflicts of interest
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"“And that's why we need a computer.”

http://sbw.kgi.edu/






