

Strategies for reducing uncertainties in modeled urban stormwater runoff and contaminant loads in Puget Sound nearshore streams

Bob McKane¹, Jonathan Halama¹, Brad Barnhart¹, Paul Pettus¹, Allen Brookes¹, Kevin Djang², Vivian Phan¹ Ed Kolodziej³, Kathy Peter³, Zhenyu Tian^{3,4}, Stefano Mazilli³, Marielle Larson³, Tessa Francis³

¹U.S. Environmental Protection Agency, Corvallis; ²CSRA, Corvallis, OR ³University of Washington Tacoma, Puget Sound Institute; ⁴Northeastern University, Boston, MA

Presented July 26, 2022 – Puget Sound Marine Water Quality Workshop

We gratefully acknowledge financial support provided by U.S. EPA Region 10 and EPA-ORD's Safe and Sustainable Water Resources Research Program. Disclaimer: The views expressed here are those of the author[s] and do not necessarily represent the views or policies of the U.S. EPA.

Longfellow Creek watershed, West Seattle, WA

The Seattle Times

Stormwater pollution in Puget Sound streams killing coho before they can spawn October 18, 2017

1 of 2 | Coho salmon, including females full of eggs, are dying before they can spawn in Puget Sound streams polluted with stormwater runoff. (NOAA Fisheries)

Science Tian et al. 2021 6PPD-quinone 10.1126/science.abd6951 (2020). A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon

Zhenyu Tian^{1,2}, Haoqi Zhao³, Katherine T. Peter^{1,2}, Melissa Gonzalez^{1,2}, Jill Wetzel⁴, Christopher Wu^{1,2}, Ximin Hu³, Jasmine Prat⁴, Emma Mudrock⁴, Rachel Hettinger^{1,2}, Allan E. Cortina^{1,2}, Rajshree Ghosh Biswas⁵, Flávio Vinicius Crizóstomo Kock⁵, Ronald Soong⁵, Amy Jenne⁵, Bowen Du⁴, Fan Hou³, Huan He⁵, Rachel Lundeen^{1,2}, Alicia Gilbreath⁷, Rebecca Sutton⁷, Nathaniel L. Scholz⁸, Jay W. Davis⁹, Michael C. Dodd³, Andre Simpson⁶, Jenifer K. McIntyre⁴, Edward P. Kolodzie^{11,2,3,40}

Halama et al. in review

Sources of uncertainty in modeled stormwater runoff and contaminant loads

Sou	urces of Uncertainty	Key Questions	
1)	Model equations and parameters	Does the model adequately represent the processes controlling the outputs of interest? For example, runoff via natural (soil matrix) and engineered (stormwater infrastructure) flow paths.	
2)	Data for model implementation	Do the data accurately represent the system at the scales required to model the outputs of interest?	
3)	Calibration methods	Has the problem of equifinality been minimized? Can we systematically disqualify solutions for which calibrated parameters provide the right answers for the wrong reasons?	
4)	Propagation of uncertainty among submodels	Has model calibration reduced model uncertainty and its propagation among submodel components? <i>What model performance tests can help address these questions?</i>	

Sources of Uncertainty	Key Questions
 Model equations and parameters 	Does the model adequately represent the processes controlling the outputs of interest? For example, runoff via natural (soil matrix) and engineered (stormwater infrastructure) flow paths.

6PPD-Q Sample Site # 6PPD-Q Sample Site 6PPD-Q Deposition (g/m^2) Roadway daily additions of 6PPD-Q (g m⁻² d⁻¹) 1.0E-6 2.0E-6 3.0E-6 4.0E-6 5.0E-6 6.0E-6 7.0E-6 8.0E-6 Delineation Parameters used to - Longfellow Creek calculate roadway tire Longfellow wear particle (TWP) watershed High Low deposition and 6PPD-Q References daily loads Range Range value Function of • TWP deposition per Kole et al. 2017 TWP mg/km per vehicle 100 600 car/truck traffic • Traffic count data per City of Seattle & counted (cars) (trucks) count data WSDOT 6PPD g / tire rubber g 0.004 0.02 0.02 Tian et al., 2021 6PPD-Q yield g / 6PPD g 0.01 0.75 0.38 Tian et al., 2021

Figure 4. Spatial pattern of 6PPDQ deposition (g m⁻² d⁻¹) on roads within the Longfellow Creek upper watershed, based on methods described in section 2.3.2.

Sources of Uncertainty	Key Questions
2) Data for model implementation	Do the data accurately represent the system at the scales required to model the outputs of interest?

VELMA Urban Spatial Data Layers (5-meter Grid)

Halama et al., In review. Improved urban runoff prediction using high-resolution land-use, imperviousness, and stormwater infrastructure data applied to a process-based ecohydrological model.

Sources of Uncertainty	Key Questions
3) Calibration methods	Has the problem of equifinality been minimized? Systematically disqualify solutions for which calibrated parameters provide the right answers for the wrong reasons.

VELMA is calibrated using a Multi-Objective Evolutionary Algorithm (MOEA) that optimizes overall model performance for multiple outputs, e.g., runoff, soil moisture, decomposition, plant growth.....

Sources of Uncertainty		Key Questions
4)	Propagation of uncertainty among submodels	Has model calibration reduced model uncertainty and its propagation among submodel components? What model performance tests can help address these questions?

Severe performance test: Are parameters calibrated for one location transferable to other locations?

VELMA model parameters calibrated for a single forest calibration site (HJ Andrews *) accurately predict, with minimal adjustment, forest ecohydrological processes at other sites (*) located across steep regional climate and soil nutrient gradients *Possible exception, currently under study

Reference: U.S. EPA. Comparative Assessment of the Impacts of Prescribed Fire Versus Wildfire (CAIF): A Case Study in the Western U.S. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-21/197, 2021.

	So	urces of Uncertainty	Key Questions
	4)	Propagation of uncertainty among submodels	Has model calibration reduced model uncertainty and its propagation among submodel components? What model performance tests can help address these questions?
ana	to	linked external mod	els

Integrated terrestrial-marine models are needed to

Modeling Framework (2018 unpublished). Bob McKane, Tarang Khangaonkar, Isaac Kaplan, Chris Harvey, Hem Nalini Morzaria Luna, Tessa Francis, Phillip Levin, Emily Howe, Jesse Israel, Michael Schmidt, Jonathan

Halama, Allen Brookes, Kevin Djang