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Objectives

» |dentify PFAS sources from residual streams
« Assess existing PFAS treatment technologies
 Review PFAS removal performance for novel adsorbents

* Propose an alternative PFAS treatment train for removal
and destruction
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The PFAS Cycle
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Presenter Notes
Presentation Notes
PFAS are produced by industrial manufacturers for use in a wide range of commercial, occupational, and household uses. Such products include firefighting foams, non-stick pans, water-repellent clothing. PFAS repel water/oil/heat and are very stable. PFAS compose a family of over 10,000 chemicals. 


PFAS can enter the environment through residual waste streams.
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Presenter Notes
Presentation Notes
While PFAS have remarkable properties and are important for many users, these properties also make PFAS resistant to degredation, highly mobile in the environment, toxic, and bio-accumulative.


PFAS technologies vary in feasibility and development.
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Presenter Notes
Presentation Notes
Existing technologies for PFAS treatment vary in viability and stage of development. PFAS can be removed, or concentrated, from aqueous streams using various technologies. The most viable technologies include activated carbon, ion exchange, ozofractionation, and polymeric adsorbents. The technologies in greatest need of additional development are polymeric adsorbents and flocculation / electrocoagulation. 


PFAS technologies produce complex waste streams.
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Presenter Notes
Presentation Notes
While PFAS removal technologies can be effective at removing PFAS and other micropollutants, removal technologies produce concentrated waste streams containing high concentrations of PFAS, inorganic ions, and organic compounds. Membrane-based technologies, such as reverse osmosis and nanofiltration, are one of the most prominent removal technologies. The concentrated streams must be treated prior to release or disposal due to their complexity and high concentration range.

https://texasmembranerestoration.com/pfas-solutions

PFAS degradation technologies vary in feasibility and development.
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Presenter Notes
Presentation Notes
PFAS can also be degraded, or destroyed, from aqueous streams using various technologies. The most viable degredation technologies include electrochemical oxidation and Sonolysis. The technologies in greatest need of additional development are fungal enzymes, AOP / ARP, and photolysis. 


PFAS removal AND degradation technologies combined promise improved feasibility.
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Presenter Notes
Presentation Notes
Incorporating both PFAS removal and degradation technologies in a single treatment train provides a promising solution to eliminating PFAS from the environment. Degredation technologies can combat the PFAS-laden waste streams produced by removal technologies, allowing for safe disposal and improved water quality. In our work, we focus on combining novel polymeric adsorbents as the removal technology and electrochemical oxidation as the destruction technology.


PFAS have unique properties that can result in varied removal via adsorption.
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Presenter Notes
Presentation Notes
To remove PFAS from contaminated water, we must first consider the complex structure of PFAS that can complicate removal with novel adsorbents. PFAS consist of a hydrophobic tail containing multiple carbon-fluorine bonds, which is one of the strongest single chemical bonds. PFAS also consist of an ionized head containing carbon bonded with oxygen, hydrogen, and/or sulfate-containing groups. While the hydrophobic tail interact with organic matter, the ionic heads can provide stronger electrostatic interactions. Different PFAS will have different interactions due to different structures (chain-length, ionic functional group). For effective adsorption, the hydrophobic and electrostatic properties of PFAS must interact favorably with the properties at the adsorbent surface.


Polymeric adsorbents can be developed to target PFAS for effective removal.
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Presenter Notes
Presentation Notes
To produce PFAS-free water from contaminated streams, next-generation adsorbents must be tailored to target PFAS. This can be achieved by integrating functional groups into the adsorbent structure. Such functional groups can include amines, styrene, and methacrylate. Adsorbent structure becomes increasingly important with more complex matrices containing high concentrations of diverse impurities. The next-generation adsorbents provided in this presentation have been evaluated in simple matrices but have yet to be thoroughly vetted for PFAS removal in complex streams.


B-cyclodextrin adsorbents can be tailored to target PFAS for effective removal.
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Presenter Notes
Presentation Notes
One example of a next-generation adsorbent are β-cyclodextrin polymeric adsorbents, which have been shown to target PFAS for effective removal. β-cyclodextrin adsorbents provide a high yield, high surface area, and provide modular synthesis. β-cyclodextrin adsorbents can be modified to contain permanent functional groups with or without a permanent charge. Functional groups can alter the hydrophobic and electrostatic interactions exhibited between the adsorbent and target chemical. Such functional groups that have been investigated for PFAS removal include: 1 styrene (hydrophobic), 2 methy methacrylate (hydrophilic), 3 methyl methacrylate benzyl ammonium sulfate (zwitterionic), and 4 methyl methacrylate benzyl ammonium (cationic).


B-cyclodextrin adsorbents can be tailored to target PFAS for effective removal.

Cont.

Contaminated
Water

}

PFAS-Free
Water @

Figure courtesy of Mohamed Ateia, modified.

wEPA

B-cyclodextrin

Stydex/Styrene

Stydex/MA

.........

Hydrophobic Hydrophilic
O,
_o's*‘o

Stydex/Z

................

e

+
NI

Zwitterionic

Stydex/+

Cationic

v" High yield >85%
v" High SA > 300 m2g-

v" Modular synthesis

Office of Research and Development

Wang, R. et al., ACS Central Science 2022



Presenter Notes
Presentation Notes
β-cyclodextrin adsorbent modified with methyl methacrylate benzyl ammonium have provided the most promising PFAS removal in simple matrices.


Matrix components can impact interactions between the adsorbent and PFAS.
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Presenter Notes
Presentation Notes
β-cyclodextrin adsorbent modified with methyl methacrylate benzyl ammonium provided efficient PFAS removal, achieving near 100% removal in nanopure water. Here, removal efficiency for perfluoroalkyl carboxylic acids (PFCAs) are shown as a function of carbon chain-length and in the presence of interfering ions. The adsorbent provides the most efficient removal in nanopure water with decreasing efficiency in the presence of calcium chloride, sodium chloride, and sodium sulfate. The adsorbent also removes longer chain PFCAs (six to ten carbons) more effectively than shorter chain PFCAs (four and five carbons). Varied removal efficiency depending on carbon chain length and matrix components reinforces the importance of considering electrostatic and hydrophobic interactions in designing next-generation adsorbents.


Hydrogel adsorbents can be tailored to target PFAS for effective removal.
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Presenter Notes
Presentation Notes
Another next-generation adsorbent are hydrogel polymeric adsorbents, which have also shown effective PFAS removal. Hydrogel adsorbents are regenerable or reusable, hydrolytically stable, and only require one-step for monomer synthesis. Hydrogel adsorbents are polymer-based hydrophilic gels or resins that incorporate charged functional groups, which can interact electrostatically with charged PFAS. Shown here is an ionic hydrogel composed from perfluoropolyethers (PFPEs) with end-functionalization using pentafluorostyrene (PFS). This ionic fluorogel also contains positively charged amines.


Hydrogel adsorbents have high removal efficiency for a broad range of PFAS
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Presenter Notes
Presentation Notes
The unique, stable structure of the ionic fluorogel provides consistent and efficient removal across PFAS of different chain lengths and of different structures from carboxylic acids, sulfonic acids, ether acids. The minimum removal efficiency at near 40% was for PFMOAA, which is a short ether acid containing only two perfluorocarbons. The lower removal efficiency of four short-chain PFAS may suggest the PFAS analytes do not exhibit sufficient fluorophilic interaction for removal. However, 14 of the 21 PFAS tested for removal in conventional water demonstrated near 100% removal. The improved PFAS sorption selectivity relative to GAC or IX resins is attributed to fluorous and electrostatic interactions, which provided stable PFAS binding even when organic matter was present.


Polymer adsorbents may be regenerated...
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Presenter Notes
Presentation Notes
Despite high performance for PFAS removal, no adsorbent has unlimited capacity. Once adsorbent sites are occupied, adsorbents must be regenerated to restore performance. Adsorbents are traditionally regenerated with an organic or salt-based solution. 


Polymer adsorbents may be regenerated...and regeneration solution recycled.
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Presenter Notes
Presentation Notes
The regeneration solution extracts pollutants sorbed to the adsorbent surface. Once the pollutants are removed, the adsorbent can be used once again for pollutant removal. The regeneration solution can be evaporated for reuse.


Polymer adsorbents may be regenerated... but produce concentrated waste
streams.
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Presenter Notes
Presentation Notes
Although a partial volume of the regeneration solution can be reused, the pollutants are retained in the remaining liquid. This presents a concentrated waste or residual stream that requires treatment prior to disposal or release.


PFAS-laden regeneration streams can be redirected back to adsorbents for
removal.
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Presenter Notes
Presentation Notes
The concentrated residual stream resulting from adsorbent regeneration can be redirected to fresh or regenerated adsorbents for treatment.


Treating PFAS-laden regeneration streams can decrease adsorbent

performance.
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Presenter Notes
Presentation Notes
However, redirecting the concentrated residual stream back to a removal technology ultimately allows PFAS to persist and does not provide a solution for safe disposal. Treating the concentrated residual stream may decrease adsorbent capacity and lifetime while increasing process cost. Moreover, the effect of matrix components will impact adsorbent performance for PFAS uptake.


PFAS-laden regeneration streams can be eliminated with destruction
technologies.
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Presenter Notes
Presentation Notes
Alternatively, the concentrated residual stream can be fed into a degredation technology. Here, we focus on electrochemical oxidation as the degredation technology because electrochemical processes require little to no chemical inputs, do not suffer from mechanical energy losses, and can operate under high salinities.


PFAS-laden regeneration streams provide opportunity for electrochemical degradation.
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Presenter Notes
Presentation Notes
In electrochemical oxidation, there are two methods to initiate pollutant degredation. The first method requires direct electron transfer from the pollutant to the anode at the anode surface. For PFAS degradation, the ideal end products include fluoride, carbon dioxide, and protons. Direct electron transfer can be inhibited by anions and oxidant scavengers.


PFAS can be electrochemically degraded via direct or indirect mechanisms.
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Presenter Notes
Presentation Notes
The second electrochemical oxidation mechanism is indirect oxidation. Indirect oxidation results from the reactive species, such as the hydroxyl radical, that are generated during the electrolytic process. Indirect oxidation occurs near the cathode surface. Indirect oxidation can be inhibited by oxidant scavengers.



PFAS electrochemical degradation mechanisms are complex and not well-defined.

Degradation

Electrochemical
Oxidation

e e
Anode /, o \
> LaFans 0007 CqFane COO0" CoFrne1 509 CnFams1 50z
U
Cycle i
ia / cyclel AN Cycle
CretFines e Cr-1F3n-1
' t ' OH' cycle EnFines 0; cycle Ty
R0
Cycle IV ' \ .
\ o /\o:
CanE,;,\{J' Er:an+},D§ CoFap e 007 CnF2ne10°
"‘-\-\.,_.___ ) I:_llli.__.____.--"' | Fiuﬂ }-ﬂa.l-.
' ™
¥ HF ’ "
H,0 1o rRFO"+0, |}
e Gy Faney COO™ Cooy Fan oy COF COF;
L #/.-' 1}
CamiFana €00~ M0 g g
1 o e o b | o
Erl.—]Fz.m—lfﬂ'. {‘HF?”HI?H {.UH 1= gH‘lr'

H:0 eycle

Hall « \”r ﬂy

Cn-1Fan-1COH  CoFanOH" .0
T-\_.___'_,_,_,-'-""

F

Reduction Oxidation

Santiago, A. et al. Electrochimica Acta 2022; Radjenovic, J. et al. Environ. Sci. Technol. 2020

wEPA

Office of Research and Development 25



Presenter Notes
Presentation Notes
However, PFAS are proposed to have many different pathways for electrochemical oxidation. Multiple pathways can produce less than ideal end products, such as partially defluorinated PFAS. The figure here proposes four different pathways or cycles for PFAS oxidation via direct electron transfer.



Electrochemical PFAS degradation has been tested in other treatment trains.
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Presenter Notes
Presentation Notes
Despite the complex oxidation mechanisms in electrochemical systems, initial tests have shown promising PFAS degredation performance when combining electrochemical oxidation with a PFAS removal technology. As shown here, a pilot scale study established a treatment train where PFAS was first removed with foam fractionation and then the removed PFAS was degraded with electrochemical oxidation. The treatment train was established on-site at a landfill to test PFAS destruction using groundwater and landfill leachate.


Electrochemical systems can achieve ~50% PFAS degradation in other treatment trains.
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Presenter Notes
Presentation Notes
Although an overall degredation efficiency for all PFAS was near 50% for the treatment train, short-chain PFAS proved difficult to degrade with a much lower degredation efficiency of approximately 20%. Long-chain PFAS were degraded at a much higher efficiency of approximately 77%.  The TTR assay for groundwater suggests that degredation exceeds byproduct formation. While the electrochemical system provided more efficient degredation as a standalone unit, required higher energy use due to higher treatment volumes.


Novel adsorbents and electrochemical degradation provide a promising PFAS

treatment train.
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Presenter Notes
Presentation Notes
Removal and degredation treatment technologies for PFAS are still in development, but initial studies provide motivation to continue technology development, particularly for the technologies that have the largest perceived potential after reaching full maturity. Combining removal and degredation technologies in a single treatment train can provide a practical and realistic scenario for PFAS degredation. While initial treatment train studies provide promising results for PFAS degredation, other technology combinations should be investigated to identify viable options for treatment in diverse scenarios. 


Conclusions
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