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Modeling Background

• Motivation for modeling
• Design and interpret water treatment studies
• Optimize treatment systems
• Inform cost/benefit analysis

• Subject of research: Provide useable models to 
support real-world systems and help leverage 
laboratory and pilot-scale testing. Perfluorooctanoic acid 

(PFOA) 
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Granular 
Activated Carbon

Anion Exchange Resin

Preliminary Models on GitHub: 
https://github.com/USEPA/Water_Treatment_Models

https://github.com/USEPA/Water_Treatment_Models
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Adsorption Modeling Overview

GAC Capacity Calculation
𝑞𝑞 = 𝐾𝐾𝐶𝐶1/𝑛𝑛

Competitive Ion Exchange (IEX) isotherm
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Mass Transfer and Fouling

MTZ
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Breakthrough Curves (BTCs)
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Column Configurations

• Single column system typically discards some 
potential sorption capacity on changeout.

• Media use efficiency can be improved at the 
cost of system complexity.

• When some breakthrough is acceptable, parallel 
systems can run media past exhaustion.

• Lead-Lag system increases media efficiency 
when breakthrough threshold is low and can 
provide increased margin of safety. Single 

column
Staged-Parallel 

system
Lead-Lag 
system
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Data Collection Effort - Scott Summers

• Effort to collect PFAS effluent 
data from GAC or IEX systems at 
pilot or full scales

• Provide expanded comparison 
between multiple medias and 
conditions 

• Predict media use rates
• Expand data available for 

modeling

• GAC (80 datasets)
• Surface 38, Ground 42
• Pilots 68, Full Scale 12
• 13 carbons
• EBCTs: 1.85 – 24 minutes

• IEX (19 datasets)
• Surface 10, Ground 9
• Pilot 19
• 7 SBA resins 
• EBCTs: 0.4 – 3 minutes
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All the Data
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Variability between sites/conditions → Applying pilot/full-scale results to different system would be challenging
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State Levels Impact on Media Use Rate

8

Media Use Rate from Study
Lowest Media Use Rate 
of Study 
– Trigger Level not exceeded*

*Influent may not have exceeded trigger level
*Study may not have been run long enough for 
trigger level to be exceeded

one at 49 
not shown

Response Level Action Level Health Adv. Reg. Level 9/20

Reg. Level 8/20 Health Based 
Guidance

Reg. Level 10/19 Reg. Level 6/20

Reg. Level 7/20 Health Adv. Reg. Level 3/20 Action Level 
1/22
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Fitting GAC Pilot Data

• Automated fitting of Freundlich isotherm parameters based on field data (Mar. 2022): 
doi.org/10.1061/(ASCE)EE.1943-7870.0001964 

PSDM = Pore and Surface Diffusion Model 
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Fouling of Media
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Ideal Capacity

Realistic Capacity

Surface 
diffusion

Pore 
diffusion

Flow
Film transfer resistance

See Jarvie et al. 2005 for more details on GAC fouling
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Single Site Snapshot
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Shaded Area: ± 10% K & 1/n
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Pilot to Full Scale

Raw Data
Test Various Conditions

Compare 
Blended Effluent 
Conditions

Fit parameters for model

Helps predict current/future treatment for a 
given system

Media replacement intervals informs costs
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Burkhardt et al. 2022 JEE
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Lead Lag Modeling
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• A little more complicated
• Requires iteration

• Must “pre-load the lag column”
• Predict effluent from lead
• Supply effluent concentrations to 

lag for initial period as influent, 
then raw influent (simulates its life 
as lead vessel).

• Modeling tools can do this 
automatically!

• Breakthrough profiles occur earlier as lead vessels 
are loaded more during periods as lag vessel

• Higher effluent concentrations 
• May require 4+ cycles for lead-lag vessel cycling to 

stabilizes for a replacement cycle
• First replacement cycle won’t necessarily be 

good indicator of future performance
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Variations on Lead Lag
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Compare Designs

GAC→IEX

GAC→GAC

IEX→GAC

IEX→IEX
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Illustrating Additional Model Uses

• Illustrative Example: Highlights the ability to model to a range of 
treatment objectives

• Consistent cases used here, but site-specific information would be 
used for analysis of given system

• Shouldn’t be generalized to other case – shows what can be done.
• Can be used to understand how different EBCTs impact treatment
• Similar Media Use Rates translate to different change out frequencies, 

which has practical implications

Same System – Different State Levels

GAC

NJ: Adopted Regulation (6/20) PFNA, PFOS < 13, PFOA < 14 ppt
Mass: Adopted Regulation (9/20) Sum of PFOA, PFOS, PFNA, PFHxS, PFHpA, PFDA < 20 ppt
Wash: Action Levels (1/22) PFOA<10, PFOS<15, PFNA<9, PFHxS<65, PFBS<345 ppt
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Predicting Operating Conditions

Impact of Influent Concentration on MUR Impact of Column Configuration on MUR
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Multi-Site Considerations

Same System – Different State Levels (Reg. or AL) Same State Level – Different Site Effective Capacities
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Effect of Natural Organic Matter 
(NOM) on Ion Exchange Pilot 

Performance
Jonathan Burkhardt

Levi Haupert
Boris Datsov
Tom Speth

Scott Summers
David Hand
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Data/Modeling Overview

• Strategy: Use laboratory data to estimate PFAS 
breakthrough on NOM-free waters and compare to 
actual breakthrough curves.

• HSDM model with ion exchange isotherms can be 
used if parameter estimates are available.

• Resin IEX capacity
• Major counterion affinities
• PFAS affinities
• Kinetic parameters

• EPA has preliminary estimates of these parameters 
for two resins in the datasets Scott Summers 
compiled, covering 10 of the 19 available datasets.

19
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Back of the Envelope Calculation

• Assumptions
• Trace-level contaminants on large background
• Absence of chromatographic effects

• Γ𝑖𝑖: Bed volumes to 50% breakthrough for the i-th trace 
contaminant.

• 𝑄𝑄𝑓𝑓: concentration of ion exchange sites in the filter 
(meq/L)

• 𝛼𝛼𝑖𝑖,𝐵𝐵 : separation factor for ion i against reference ion A 
(chloride in this case). Relative affinity.

• 𝛽𝛽 : Background strength (meq/L)

• 𝐶𝐶𝑗𝑗 : Feed concentration of the j-th major ion (meq/L)

• Implication: It is not possible to simultaneously determine 
𝑄𝑄𝑓𝑓, 𝛼𝛼𝑖𝑖,𝐵𝐵 , and 𝛽𝛽 from a single breakthrough curve.

Γi ≈
𝑄𝑄𝑓𝑓𝛼𝛼𝑖𝑖,𝐵𝐵
𝛽𝛽

𝛽𝛽 = �
𝑗𝑗

𝐶𝐶𝑗𝑗𝛼𝛼𝑗𝑗,𝐵𝐵
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Presenter Notes
Presentation Notes
NOTE: Useful for estimating effect of background ion change, approximate viability based on major anions. NOTE: Frame this as a rapid precursor to running the full model. NOTE: HSDMIX does not makes these assumptions, but it does support them!
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Example Resin/Ion Parameters

• Filter IX capacity: Concentration of IX sites inside the 
resin bed, determined by EPA† using ASTM method 
D2187 − 17: 845 meq/L of packed media.

• Affinity: Quantified by chromatographic separation 
factor vs. chloride.

• Film Transfer: 4.7 x 10-3 cm/s based on simplified 
Gnielinski correlation for PFHpA at 20 °C.

• Intraparticle Diffusion: 5.0 x 10-10 cm2/s based on EPA 
column data† for PFHxA.

Name Average 
Conc. 

unit Chloride 
Sep. Factor

Source  †, ‡

Chloride 170 mg/L 1.0 definition
Nitrate 8.0 mg(N)/L 13.0 EPA
Sulfate 154 mg/L 1.54 * EPA
Bicarbonate 64 mg(C)/L 0.39 EPA
PFHpA 6.3 ng/L 3,300 Fang et al.
PFOA 23.6 ng/L 9,100 EPA
PFBS 8.2 ng/L 17,000 EPA
PFNA 2.1 ng/L 24,000 EPA
PFHxS 13.5 ng/L 130,000 EPA
PFOS 46.1 ng/L 2,000,000 EPA

* Sulfate is a divalent ion, so its separation factor depends on solution composition.
† EPA, preliminary findings and conclusions, subject to revision following EPA’s quality assurance review.
‡ Fang, et al. (2021). Removal of per-and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF) using ion-exchange and nonionic 
resins. Environmental Science & Technology, 55(8), 5001-5011.
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Presenter Notes
Presentation Notes
NOTE: EPA’s separation factor estimates are preferred, where available, because they are based on multi-point isotherm tests, rather than the single-point estimates Fang et al. provide. NOTE: Kinetic parameters will vary a bit by PFAS.ALSO NOTE: Viewers will be able to identify the resin by matching the separation factors to Fang et al. Is that a problem?
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Example IX Analysis: Initial Estimate

• Using all known parameters from the pilot system and 
the literature results in model with later breakthrough 
than observed.

• PFAS/PFAS competition was predicted to be negligible, 
so the error is not likely unaccounted for PFAS (unless 
concentration is very high).

• Under these conditions, it is not possible to 
differentiate errors in resin IX capacity from errors in 
background ion interference.

• However, some effect from natural organic matter is 
expected.

: Model
: System Effluent

22

Presenter Notes
Presentation Notes
NOTE: PFAS/PFAS competition doesn’t change the BTC, but it is noticeable on the final resin composition. There’s not a lot of PFAS on the resin, and the sorption fronts are wide and slow-moving, so overshoot is generally absent.
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Example IX Analysis: Refinement

• It was not possible to fit all four breakthrough curves 
with a single parameter adjustment.

• This suggests that NOM does not affect PFAS equally.

• It is possible that later eluting NOM fractions affect 
higher affinity PFAS more strongly.

• An alternate hypothesis might be non-exchange 
fouling.

• Differences in mass transfer efficiency may also 
contribute with PFBS.

: Model
: System Effluent

PFAS Affinity Multiplier

PFHpA 0.60

PFOA 0.45

PFBS 0.70

PFNA 0.35
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Example IX Analysis: Different Groundwater

• Same resin.
• Nearly same TOC (1.3 vs 1.23 mg/L).

• But the impact of NOM on this system was much 
larger overall and affected PFAS more uniformly.

• NOM composition matters but is difficult to quantify.
• More work is needed in this area.

: Model
: System Effluent

PFAS Affinity Multiplier

PFHpA 0.30

PFOA 0.28

PFBS 0.30
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Presenter Notes
Presentation Notes
Transition to Non detect (PFHxA data). Mention Sam and Dave’s column studies.
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Censored Data

• Modeling can provide additional insight into datasets 
with censored data.

• Example: suppose reporting limit is 1/3rd of maximum 
concentration.

• Multiple “ND” regions in influent and effluent data.
• Example: PFOA controls single column configuration but 

sum controls parallel configuration.
• Model can be used to extract worst-case parameters by 

assuming maximum concentration at ND points in 
effluent and zero concentration at ND points in influent.

• PFHxA performance for this ground water is only about 
30% of what is expected for NOM-free waters.

25

Presenter Notes
Presentation Notes
Time-varying influent capability is on full display. Be sure to point out. NOTE: PFOA performance was somewhere between 1/3rd to 1/4th of NOM-free expectation. 



Office of Research and DevelopmentWQTC 2022 Office of Research and DevelopmentWQTC 2022

PFOS in Short Contactors

• In one of the datasets, PFOS broke through earlier 
than expected on a 30 s EBCT contactor.

• Breakthrough appears early compared to PFBS even 
when concentrations are normalized.

• Data suggest that the contactor was too short for 
PFOS MTZ to fully develop.

• PFOS mass transfer kinetics seem significantly 
slower than short PFAS (not surprising).

• Non-detect data (below dotted line) complicate 
interpretation in this case.

• Further data/experiments needed to estimate mass 
transfer, affinity, and capacity of PFOS.

26

Presenter Notes
Presentation Notes
Unfortunately, the data here probably don’t allow a meaningful fit of Ds and effective affinity. Also mention that we’ve seen order reversal due to kinetics before.
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IX Modeling Summary

• PFAS treatment generally ranged from about 110% to 28% of that expected from 
NOM-free waters.

• This knowledge can help design pilot systems and laboratory experiments.
• Several additional datasets could be analyzed once we obtain:

• Resin IX capacities
• Major ion affinities
• PFAS affinities

• Obtaining this information would help in developing a better understanding of how 
NOM affects IX treatment efficiency.

• Would lead to more reliable design tools and cost estimates.
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EPA’s Drinking Water Cost Models

• Adsorptive media
• Anion exchange*
• Biological treatment*
• Cation exchange
• GAC*
• Greensand filtration
• Microfiltration / 

ultrafiltration
• Multi-stage bubble aeration*

• Non-treatment
• Packed tower aeration 
• POU/POE#

• Reverse Osmosis / 
Nanofiltration

• UV disinfection
• UV Advanced Oxidation

*Search: EPA WBS https://www.epa.gov/sdwa/drinking-water-treatment-technology-unit-
cost-models
# For POU/POE search: EPA small system compliance help
http://water.epa.gov/type/drink/pws/smallsystems/compliancehelp.cfm
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https://www.epa.gov/sdwa/drinking-water-treatment-technology-unit-cost-models
http://water.epa.gov/type/drink/pws/smallsystems/compliancehelp.cfm
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Model Development and Availability

Updated AdDesignS (originally Michigan Tech. U.) for Windows10 
https://github.com/USEPA/Environmental-Technologies-Design-
Option-Tool

• Converted PSDM GAC model into
Python.

• Automate parameter estimation
from lab and field data

• Simulate lead-lag and parallel system
operation

• Implemented Ion Exchange
Models

• https://github.com/USEPA/Water_
Treatment_Models

29

https://tdb.epa.gov/ - Treatability Database
https://comptox.epa.gov/dashboard/ - CompTox Database

https://github.com/USEPA/Environmental-Technologies-Design-Option-Tool
https://github.com/USEPA/Water_Treatment_Models
https://tdb.epa.gov/
https://comptox.epa.gov/dashboard/
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Questions?

Levi M. Haupert, Ph. D.
haupert.levi@epa.gov
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Jonathan Burkhardt, Ph.D.
burkhardt.jonathan@epa.gov
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https://github.com/USEPA/Water_Treatment_Models
https://tdb.epa.gov/
https://comptox.epa.gov/dashboard/
https://www.epa.gov/sdwa/drinking-water-treatment-technology-unit-cost-models
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