

Evaluation of a Solidification/Stabilization Process for PFAS Contaminated Soils

Edwin Barth¹, John McKernan¹, Diana Bless¹, Diana Cutt¹, Sharon Hartzell², Kavitha Dasu³

¹ CESER, ORD, USEPA
² Region II, USEPA
³ Battelle Columbus

Remedial Action Objective: Minimize PFAS Contaminated Soils Contributing to Groundwater Contamination

Office of Research and Development

Definitions of Solidification/Stabilization

"*stabilization*" – conversion of waste to a less soluble, less mobile, or less toxic form (the physical nature may not change)

"*solidification*" – encapsulation of the waste into a monolithic solid with structural integrity (micro-encapsulation and macro-encapsulation)

- "immobilization" (or "fixation"): either solidification or stabilization (or both)
- related processes might fit the term "immobilization"
- reference: Barth, E., P. Bishop, P. Colombo, J. Conner, and J. Buelt. 1994. Innovative Site Remediation Technology Monograph Series. Solidification/Stabilization. Volume 4. American Academy of Environmental Engineers and Scientists Monograph on Solidification/Stabilization. (EPA 542-B-94-001)

Mechanical Delivery System

Office of Research and Development

Literature Review/Experience

- Pre-2019: Limited information on immobilization processes for PFAS contaminated soils
- Post-2019: Increase in relevant lab, pilot, and field evaluations; however many articles lack:
- peer review
- description/name of sorbent
- quantity of materials used
- consistency in leaching protocols

 reference: Darlington, R., E. Barth, and J. McKernan. 2018. The Challenges of PFAS Remediation. 110(712): 58-60

Experimental Design: Phases I and II

- Phase I: Compare the sorptive properties of five viable sorbents (plus a control sorbent) for a dilute PFAS solution involving six PFAS compounds
- Phase II: Evaluate the best performing sorbent (in Phase I), with and without cement addition, to immobilize two different PFAS contaminated soils (obtained in the field).
- reference: Barth, E., J. McKernan, D. Bless, and K. Dasu. 2021. Investigation of an Immobilization Process for PFAS Contaminated Soils. Journal of Environmental Management 296 113609; https://doi.org/10.1016/j.jenvman.2021.113609

PFAS Analytical Method

- LC/MS-MS
- AB Sciex QTRAP 5500 Triple Quadrupole MS
- LC equipped with PEEKTM tubing and solvent delay column
- Negative electrospray ionization mode with multiple reaction monitoring (MRM)
- Column: Kinetex 2.6 μm C18 100 A 50 x 4.6 mm
- Run time: 10 minutes
- Quantitation Method: Isotope Dilution
- Detection Limits range (liquids): 0.14 1.36 ng/l (ppt)
- Detection Limits range (soils): 0.19 2.31 ng/g (ppb)

Phase I: Sorbents Evaluated

- Granular Activated Carbon (GAC)
- Modified Clay
- Activated Carbon/Clay Blend
- Biochar
- Biochar + Iron Blend
- Control (Ottawa sand)

Phase I: Sorbent physical characteristics

Sorbent	BET Surface Area (m²/g)	Micropore Surface Area (m²/g)	Pore volume (mL/g)	pH of solution @ day 20 - after sorption kinetic study
GAC	888.297	600.98	0.507	6.2
Fe-amended Biochar	0.1854	1.386	0.0002	4.6
Modified Clay	0.5296	0.1189	0.0022	5.2
AC/Clay Blend	441.67	182.338	0.311	5.2
Biochar	348.01	273.35	0.187	7.0

Phase I: Dilute PFAS solution for sorption studies

- non-buffered, dilute PFAS solution (500 ug/L each) for 6 selected short and long chained PFAS compounds (3,000 ug/L total); ranging from chain lengths from C4-C9:
- PFBA (C4-short)¹
- PFBS (C4-short)
- PFHxA (C6-short/long)
- PFOA (C8-long)
- PFOS (C8-long)
- PFNA (C9-long)

¹data later excluded due to background contamination

Phase I: Sorbent Screening isotherm/partitioning studies

5.0 mg: 50 mL sorbent to solution 0.01 M NaCl background electrolyte

Triplicates for all treatments including blanks and controls

> Spike PFAS target analytes Initial conc. 500 µg L⁻¹

Analysis on LC-MS/MS

Sample dilution Surrogates & Internal standard spiked

Shaked at 125 rpm, 23 \pm 1°C and sampled over 0-20 d

Phase I: Sorption Kinetic parameters

• Pseudo second order kinetic model:

$$\frac{t}{C_S} = \frac{1}{kC_e^2} + \frac{t}{C_e} = \frac{1}{v_0} + \frac{t}{C_e}$$

- C_s: analyte sorbent concentration at time t
- C_e: analyte sorbent concentration at equilibrium
- K: rate constant
- V₀: initial adsorption rate
- C_e: GAC higher values for PFBS (C4), PFHxA (6C), PFOS (C8); similar to carbon/clay blend and modified clay for PFOA (C8) and PFNA (C9); two biochars and control lower values
- V_o: activated carbon/clay blend higher for all the PFAS compounds in solution

Phase I: Partitioning Coefficients (log Kd in L/Kg)

Sorbents	PFHxA	PFOA	PFNA	PFBS	PFOS
GAC		7.4	NC		
Modified clay	4.0	5.3	6.4	4.7	6.1
Biochar	3.5	3.8	4.4	2.6	4.4
Fe amended Biochar	3.2	3.1	3.2	3.1	2.8
					3.5

NC: Not calculated due to ND concentration of analyte in the solution

Phase II: Contaminated soil properties

Properties	Soil 2	Soil 8
Textural Classification	Sand	Sandy/Clay Loam
Soil pH	5.7	8.1
% Moisture	7.8	6.5
% Organic matter	0.3	1.0
Cation Exchange Capacity (CEC) meq/100g	2.6	71.6
Ca (in ppm)	250	13,150
Mg (in ppm)	15	650

Phase II: Soil concentrations (ng/g dry weight)

Analytes			Analytes	Soil 2	Soil 8	
-	Soil 2	Soil 8				
	ND	91	NEtFOSAA	ND	ND	
	ND	296 D				
PFHxA	ND	650 D	PFBS	ND	137 D	
PFHpA	ND	109	PFPeS	ND	210 D	LOD: 0.5 – 2.5 ng/g
PFOA	20	751 D	PFHxS	10	2,363 D	LOQ: 5 ng/g
PFNA	ND	11	PFHpS	ND	177 D	ND– Analyte not
PFDA	31	6	PFOS	2,282 D	13,676 D	detected
PFUnA	21	ND	PFNS	100	26	
PFDoA	17	ND	PFDS	87	7	
PFTrDA	5	ND	4:2FTS	ND	118 D	
PFTeDA	ND	ND	6:2FTS	7	3,839 D	

Phase II: Immobilization Mix "Recipe"

Treatment	Sorbent	Cement	Water
Sorbent only	4%	0%	0%
Sorbent + cement	4%	15%	30%

Phase II Leaching protocol: EPA Method 1312

Soil/Sorbent/Binder Treatments in triplicates

Soil/Binder:

Soil + Sorbent(4%)

Soil/Sorbent/Binder: Soil + Sorbent(4%) + Binder(15%) + Millipore water (30%)

1:20 dilution, stationary incubation for 21 days; temperature $22 \pm 3^{\circ}$ C

Overnight extraction using pH 4.2 \pm 0.05 H2SO4/HNO3 (60:40) extraction solution

Sample dilution Surrogates & Internal standard spiked

Phase II: % Immobilization Results (Soil 2)

Phase II: % Immobilization results (Soil 2)

- 99.9% SPLP reduction: PFHxA, PFHpA, PFOA, PFNA, PFUnA, PFDoA, PFHxS, PFNS, 6:2 FTS
- <99.9% SPLP reduction: 8:2 FTS (99.5%), PFOS (98.2%), PFOSA (94.7%), PFDS (92.5%), PFDA (87.1%)

Phase II: SPLP leaching results (Soil 2)

Phase II: % Immobilization results (Soil 8)

Phase II: % Immobilization results(Soil 8)

- 99.9% SPLP reduction: PFBA, PFPeA, PFHxA, PFHpA, PFNA, PFDA, PFDoA, PFNS, PFDS, 4:2 FTS
- <99.9% SPLP reduction: PFPeS (99.3%), PFOA (98.9%), PFHxS (98.8%), PFHpS (98.2%), PFOS (98.0%), PFOSA (97.8%), PFBS (97.7%), 8:2 FTS (95.7%), 6:2 FTS (95.4%)

Phase II: SPLP leaching results (Soil 8)

Conclusions from laboratory-scale study

- GAC was slightly more effective than either the modified clay and the activated carbon/clay blend in the sorption studies involving a dilute solution of six selected PFAS (C4-C9) compounds, using the amount sorbed as the only deciding factor (not the kinetics)
- A treatment process involving GAC sorbent and cement binder (stabilization/solidification) resulted in an overall % immobilization range for detected (SPLP) leachable PFAS compounds: 87.1% -99.9%; as he addition of cement (binder) to the soil and sorbent mixture further reduced SPLP leaching concentrations for many of the PFAS compounds in the contaminated soils
- Although there was a substantial % immobilization of PFAS compounds, PFAS concentrations in the post-treatment (detectable) SPLP leachate values were greater than health-based criteria
- In general, PFAS compounds are not intended to be destructed or modified in immobilization processes (effects of specific binders, pH, and elevated temperature are not known)

Acknowledgements

 Patricia Smith, Chunming Su, Mark Johnson, Greg Helms, Greg Gervais, Owen McDonough, Page Jordan, Mohamed Ibrahim, Cissy Ma, Jane Bare, Mindy Pensak (USEPA)

