
EPA Office of Research and Development

Homeland Security Research

COVID-19 Research: Ozone and Aerosol Treatment

HSRP Webinar Series
August 12, 2021

Lukas Oudejans, Ph.D. 
Katherine Ratliff, Ph.D.

ORD’s Center for Environmental Solutions and Emergency Response



Overview

• Cleanup Guidance
• Technical Support
• Preparedness/Mitigation

• Pesticide Registration (FIFRA)
• FIFRA Enforcement
• Test Method Development

• Aerosol Treatment
• Surface Cleaning and Disinfection
• Pesticide Application
• Pesticide Devices
• Residual Antimicrobial Coatings
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Outline

• Ozone: Disinfection of Surfaces

• Research Objectives

• Background

• Setup and Test Matrix

• Results

• Aerosol Treatment Research

• Background and Research Objectives

• Methods and Test Chamber

• Results

• Bipolar Ionization

• Grignard Pure

• 3-Stage Air Filtration and Purification System
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Research Objectives: Evaluating
Alternative Surface Disinfection Methods

Assessment of methods to disinfect challenging materials (e.g., porous 
surfaces) and application methods suitable for large or complex areas

• Supplemental methods to regular surface disinfection approaches

Initial selection:
1. UV light – webinar on January 21, 2021

2. Ozone – discussed in this webinar

3. Steam – research in progress

Disinfection Performance Goal:

• Three (3)-log reduction* (99.9%) in viable/infective virus post-
treatment

*: Virucidal Claim: A product should demonstrate a ≥3 log10 reduction on every surface in the presence or absence of cytotoxicity. 
- EPA 810.2200 Disinfectants for Use on Environmental Services

https://www.epa.gov/emergency-
response-research/covid-19-uv-c-

devices-and-methods-surface-
disinfection-webinar
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Ozone as a Disinfectant

• Ozone is a strong oxidizing agent and inhalation 
carries a health risk (damage to respiratory 
system)

• Ozone Immediately Dangerous to Life and Health 
(IDLH) is 5 ppm

• NIOSH recommended exposure limit (REL) for 
ozone is 0.1 ppm [OSHA PEL 8h-TWA is also 0.1 
ppm]

• Ozone is our friend in the stratosphere but a 
pollutant in the air we breathe

Ozone
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Ozone as a Disinfectant

• Antiviral and antimicrobial properties of ozone are 
well studied
• Mostly with ozone in water

• At start of the study, data on disinfection ability of 
ozone against SARS-CoV-2 was limited to small 
number of studies

• Need more information for more realistic field 
conditions (e.g., on various materials, inoculum types, 
realistic exposure conditions)

• Large variability in reported inactivation rates due to 
different test conditions

Ozone
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Ozone Setup and Generation

Rack to hold coupons; 
added fan to promote air 
circulation

Test chamber within Bio Safety Level (BSL)-3 facility Ozone Generator 
Queenaire QT Storm
(Corona discharge)

Example of layout Coupons
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Ozone Test Matrix

SARS-CoV-2

Ozone Concentrations 10 ppm or 20 ppm

Relative Humidity 50% or 70-80%

Contact Times 30 and 60 minutes

Materials (2.5 cm x 4.0 cm)
301 Stainless Steel
ABS Plastic
Bus Seat Fabric (pile; 85% wool, 15% nylon)

Inoculum Application 10 x 10 µL Droplets

Inoculum Matrix
Tissue Culture (TC) Media with 5% FBS or
Simulated Saliva (ASTM)

Inoculum Presence Wet / Dry Droplets
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Virus Recovery

• Aseptic retrieval of material coupon followed by 
placement into sterile conical tubes with 
extraction buffer

• Vortexing (2 min)
• For SARS-CoV-2, samples were split with one part 

stored for RV-PCR analysis (in progress)
• Culture on a well plate titer with varying dilutions 

of the testing fluid are added to the wells.
• SARS-CoV-2 Eluents were tested for viable virus by 

cell culture (Median Tissue Culture Infectious 
Dose, TCID50 assay)

Efficacy:
Log Reduction (LR) =  Mean log10 recovery (Positive Controls) - Mean log10 recovery (Test Coupons) 
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Method Development

Prior to the ozone testing, we demonstrated that:

• Sufficient SARS-CoV-2 high recoveries (low 105 PFU/coupon) 
can be obtained from all materials
• Typically, lower recoveries for SARS-CoV-2 in simulated saliva (high 

103 PFU/coupon)

• No cytotoxicity of materials observed

• Based on TCID50 procedures, a detection limit of 6.3 
virions/coupon was established
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Ozone Results at High RH

Wet droplets at start of ozone exposure; 
(24 °C; 70-80% RH)
• Positive control recoveries were >105

PFU/sample (lower [104] for sim. saliva, 60 min)

• Ozone can inactivate the SARS-CoV-2 virus

• A 2- to 3- log reduction can be obtained
• Residual virus remaining on surfaces except 

for 60 min Stainless steel, simulated saliva

• No noticeable material dependence

• 30 min timepoint appears twice as it was the 
longest time for Test1 and shortest for Test2
• High reproducibility of tests (except for one 

datapoint – bus seat fabric) 11



Dried droplets at start of ozone exposure; 
High RH (24 °C):
• Positive control recoveries were >104

PFU/sample for tissue culture media; >103

PFU/sample for simulated saliva

• Minimal (less than 1 log reduction; <90%)) 
inactivation of the SARS-CoV-2 virus

• No appreciable improvement in efficacy for 
longer exposure times

• No noticeable material dependence

• 30 min timepoint appears twice as it was the 
longest time for Test1 and shortest for Test2
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Side by side comparison of results for wet droplets vs dried droplets at start of ozone exposure

Ozone Results at High RH
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Ozone Results at Lower RH

Wet droplets and dried droplets at start of ozone 
exposure; (24 °C; 50% RH)
• Positive control recoveries were >105

PFU/sample (lower [104 range] for sim. saliva)

• Achieved a 3-log reduction level (99.9%) after 1 
hour at 10  ppmv ozone for initial wet droplets 
for most material/media combinations

• Again, a significant difference in log reduction 
between wet and dried droplets with no 
noticeable material dependence

• Dataset at 20 ppmv ozone (not shown; same 
exposure times) show similar results in efficacy 
but the larger variability in recoveries from 
controls makes interpretation difficult 14
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Ozone Disinfection Conclusions

➢ Inactivation of the SARS-CoV-2 virus on various surfaces via ozone 
fumigation (10 ppm; 1 hour) was observed [2-3 log reduction (99-
99.9%)] 

➢ SARS-CoV-2 is noticeably more difficult to inactivate when present 
in dried droplets on surfaces (most likely operational scenario)  

➢ Lack of water (in dried droplets) diminishes inactivation

➢ Increase in RH (50% vs 70-80%) did not improve inactivation for 
dried droplets

➢Wet droplet results are consistent with ozone inactivation data 
against SARS-CoV-2   15



Outline

• Ozone: Disinfection of Surfaces

• Research Objectives

• Background

• Setup and Test Matrix

• Results

• Aerosol Treatment Research

• Background and Research Objectives

• Methods and Test Chamber

• Results

• Bipolar Ionization

• Grignard Pure

• 3-Stage Air Filtration and Purification System

16



Aerosol Transmission and COVID-19

• Studies have documented the spread of COVID-19 in enclosed spaces (e.g., buses, 
hospital rooms, restaurants, offices)

• Growing focus on the transmission of COVID-19 via aerosolized SARS-CoV-2

• Increasing focus on air treatment technologies
• Many technologies are devices, which are not registered by EPA.

• Challenges:
• Growing need and desire repopulate indoor spaces

(schools, offices, restaurants, public transit, events
and gatherings, etc.)

• Social distancing not always feasible

• Many air cleaning technologies on the market,
lack of independent testing data
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Aerosol Treatment: Project Objectives

• How effective are commercially-available aerosol treatment technologies at 
reducing concentrations of infectious SARS-CoV-2 in the air?

Niazi et al. (2020), Environmental Pollution

• Research Goals:

• Assess efficacy of aerosol treatment
products and devices at a real-world scale

• Develop reliable and standardizable methods for 
testing air treatment technologies

• Establish expertise to extrapolate understanding 
of treatment technologies to inform estimation of 
efficacy of novel, untested technologies
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Aerosol Treatment Technologies

• UVC devices: e.g., upper-room 
germicidal UVC, in-duct UVC

• Chemical products and devices: in-room 
or in-duct; e.g., low-concentration 
ozone, low-concentration hydrogen 
peroxide, bipolar ionization

• Physical removal: e.g., MERV-13 and 
specialized filters, portable air cleaners

• Combinations of the above

Focus on air treatment technologies and methods that can be 
continuously operating in occupied spaces (in-room or in-duct)
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Aerosol Treatment: Methods

• Evaluate efficacy of technologies 
against non-pathogenic virus (MS2)
• Expected to be more resistant to chemical 

inactivation than SARS-CoV-2

https://upload.wikimedia.org/wikipedia/commons/thumb/7/7e
/Ms2capsid_surface.png/1024px-Ms2capsid_surface.png
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2121

MS2 Phi6 MHV 229E SARS-CoV-2

Enveloped? No Yes Yes Yes Yes

Host Bacteria 
(E. coli)

Bacteria 
(P. syringae)

Mice Humans Humans

Genus Levivirus Cystovirus Betacoronavirus Alphacoronavirus Betacoronavirus

BSL 1 1 2 2 3

Advantage High resistance 
& persistence, 
fast and easy 
analysis

Moderate 
resistance & 
persistence, 
fast and easy 
analysis

Same genus as 
SARS-CoV-2, non-
human pathogen

Same Family as 
SARS-CoV-2

Actual agent of 
COVID-19

Surrogate? Comparison in progress Regulatory 
surrogate
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Aerosol Treatment: Methods



Aerosol Treatment: Methods

• Evaluate efficacy of technologies 
against non-pathogenic virus (MS2)
• Aerosolized using 6-jet Collison nebulizers

• Count median diameter of aerosolized particles 
~45 nm at the beginning of each test; increases 
in size over duration of test (100 nm at 120 min)

• Air sampling:
• SKC BioSamplers (enumerated via plaque assay)

• CCDC-CBC TACBIO 2 (real-time)

• Surface sampling:
• Inoculated 2 cm x 4 cm stainless-steel coupons

• Clean stainless-steel coupons for deposition

• 5 pairs co-located on chamber floor

• Onsite microbiology lab

• Particle size & count measurements

A B
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Aerosol Treatment: Methods

• Evaluate efficacy of technologies 
against non-pathogenic virus (MS2)

• Utilize specialized Aerosol Test Facility 
in Research Triangle Park, NC
• Large air treatment test chamber

10 x 12 x 25 ft (3000 ft3)

• Controlled temperature / humidity 

• 22 ± 2 °C 

• 30-35 % RH

• Mixing fans
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Aerosol Treatment: Methods
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• Evaluate efficacy of technologies 
against non-pathogenic virus (MS2)

• Utilize specialized Aerosol Test Facility 
in Research Triangle Park, NC

• Mock HVAC system designed and 
installed for evaluating technologies
• Negative air machine simulates mock 

cold air return with adjustable flow

• 350 CFM, ~7 air changes per hour

• Six branches (6”) from main line (8”), 
each outlet fitted with diffuser

• Galvanized steel duct materials

4’ 2”

25’

3’

8’ 4”
6’

4’ 2”
8’ 4”



Test Chamber & HVAC System
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Aerosol Treatment: Methods
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• Evaluate efficacy of technologies 
against non-pathogenic virus (MS2)

• Utilize specialized Aerosol Test Facility 
in Research Triangle Park, NC

• Mock HVAC system designed and 
installed for evaluating technologies

4’ 2”

25’

3’

8’ 4”
6’

4’ 2”
8’ 4”

Testing objective: Obtain high enough 
recoveries in control conditions 
throughout duration of testing to 
demonstrate a 3-log10 reduction



Aerosol Treatment: Technologies

Technology Type Intended Use

Bipolar Ionization Installed in-duct; intended for residential, commercial, 
industrial, education, health care settings

Grignard Pure
(active ingredient:
Triethylene Glycol)

Dispersed either in-room or in-duct; intended for use in 
indoor spaces for essential economic activities as determined 
by the state; e.g., health care, transportation, food processing

Knorr 3-Stage System: 
Electrostatic Filter, UVC, 
and Bipolar Ionization 
modules

3-stage air filtration and purification system designed to be 
installed (either new or as retrofit) in the HVAC system of rail 
transit vehicles; plan to evaluate components operating 
together & in isolation

Photocatalytic General indoor use; transit vehicles

Filtration For use in residential, commercial, transit settings
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Aerosol Treatment: Technologies

Technology Type Intended Use

Bipolar Ionization Installed in-duct; intended for residential, commercial, 
industrial, education, health care settings

Grignard Pure
(active ingredient:
Triethylene Glycol)

Dispersed either in-room or in-duct; intended for use in 
indoor spaces for essential economic activities as determined 
by the state; e.g., health care, transportation, food processing

Knorr 3-Stage System: 
Electrostatic Filter, UVC, 
and Bipolar Ionization 
modules

3-stage air filtration and purification system designed to be 
installed (either new or as retrofit) in the HVAC system of rail 
transit vehicles; plan to evaluate components operating 
together & in isolation

Photocatalytic General indoor use; transit vehicles

Filtration For use in residential, commercial, transit settings

*
*

* Testing ongoing in August 2021 28



Bipolar Ionization Device

• Bipolar ionization generates charged ions that react 
with airborne contaminants, including viruses

• Cold plasma bipolar ionization device selected for 
evaluation
• Sized to treat 2000-4000 ft2 of living space

• Installed in-duct

• 30 to 90-minute ion buildup times in chamber prior 
to testing, resulting in ion counts of 1000-6000 
ions/cm3

29
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Bipolar Ionization Device
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Bipolar Ionization Device

• Average log10 reductions 
in aerosolized MS2 from 
initial tests range from 
-0.16 to 0.85 throughout 
test duration

• No additional virus 
recovered from surfaces

• No surface inactivation 
observed
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Grignard Pure

• Antimicrobial air treatment product
• Section 18 Emergency Exemptions for indoor use in 

GA, MD, NV, PA, TN, TX

• Triethylene glycol (TEG) active ingredient
• Commonly used in theatrical fog machines

• Historic publications on air disinfection date to 1940’s

• 1.2 – 1.5 mg/m3 concentration of TEG during testing 
(NIOSH Method 5523)

• Two different test sequences evaluated:
• Introduce product into aerosolized MS2

• Introduce MS2 into product in chamber already at 
target concentration
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Grignard Pure

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 10 20 30 40 50 60 70 80 90

S
a
m

p
le

d
 C

o
n

c
e
n

tr
a
ti

o
n

 (
P

F
U

/m
3
)

Sample Time (min)

Control - 5/19/21

Control - 5/27/21

Control - 6/3/21

Control - 6/10/21

GP into MS2 - 5/20/21

GP into MS2 - 5/24/21

GP into MS2 - 6/1/21

GP into MS2 - 6/8/21

MS2 into GP - 5/18/21

MS2 into GP - 5/25/21

MS2 into GP - 6/2/21

MS2 into GP - 6/9/21

GP = Grignard Pure

33

Limit of Detection (LOD)



Grignard Pure
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Grignard Pure

• Higher calculated efficacy when 
MS2 aerosolized with product 
present in test chamber

• Surface inactivation observed 
on inoculated coupons
• GP into MS2: average log10

reduction 1.6 ± 0.4 PFU/coupon

• MS2 into GP: average log10

reduction 1.9 ± 0.2 PFU/coupon

• Reduced MS2 recoveries on 
deposition coupons
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3-Stage Air Filtration & Purification

• System developed by Knorr Brake 
Company for transit vehicles
• Electrostatic filter – Merak Intense Field 

Dielectric (MIFD) filter
• Bipolar ionization – Merak Dielectric 

Barrier Discharge (MDBD) device
• UV-C radiation – low-pressure mercury 

vapor lamp (wavelength = 254 nm)

• Test unit in center of chamber
• Knorr blower: ~25 air changes per hour
• Recirculating HVAC still operating 

• Controls with and without MIFD 
arrest filter
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3-Stage Air Filtration & Purification
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3-Stage Air Filtration & Purification
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3-Stage Air Filtration & Purification

• Greater particle capture 
with MIFD operating

• MIFD arrest filters capture 
~0.5 log10 particles alone 
(without applied charge)

• MDBD and UVC components 
appear to contribute to MS2 
inactivation
• Reduced particle capture, 

but efficacy against MS2 is 
similar when MIFD is 
operating
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Aerosol Treatment Conclusions

➢Efficacy of different types of air treatment technologies can be evaluated using 
similar testing methodologies
➢Demonstrated efficacies range from < 1-log reduction to > 3-log reduction, depending on 

technology type and test sequence

➢Testing at large scale needed to extrapolate results to real world
➢Still need to consider many other factors, such as temperature/humidity, HVAC system 

design, air change rates, etc.

➢Design of control conditions impacts calculated efficacy

• Next steps: evaluate photocatalytic devices and filters (August 2021)
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