Determining the Relative Importance of Water Column and Sediment Methylation Rates in the Nacimiento Reservoir, California

Major Finding: Profundal sediment derived MeHg accounts for half of summer hypolimnion concentrations.

Geoffrey Millard^{1*}, Chris Eckley², Todd Luxton¹

¹U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH ²U.S. Environmental Protection Agency, Region 10, Seattle, WA *Presenting Author

Where we are Going: Simplified MeHg Conceptual Diagram

Roadmap

- Mercury
- Nacimiento Reservoir
- Experimental set up
- Analysis
- Summary

The Problem with Mercury

- Global pollutant
- Used in gold mining
- Ionic Hg converted to organic MeHg in anoxic conditions
- MeHg strongly bioaccumulates and biomagnifies

Nacimiento Reservoir

Hg Isotope Spike

- Top 4 cm of sediment were spiked
 - (1 cm increments)
- ¹⁹⁸Hg and ²⁰⁴MeHg equilibrated with lake water to assess methylation and demethylation rates

Surface Water Seasonal Variation

U.S. Environmental Protection Agency

ITED STATES

GENCY

Surface Water Mercury Variation

U.S. Environmental Protection Agency

STED STATES

Surface Water Relationships

Sediment Variation

 Concentration of THg (A) and MeHg (B) found in the top 4 cm of sediment

Sediment Variation

Rate of methylation

 (A) and
 demethylation (B) in
 the first 4 cm of
 sediment

Profundal Sediments are Important!

$$MeHg_t = K_m * K_{dm} * Hg_i^{2+} * (1 - e^{-k_{dm}*t})$$

$$Load = \frac{Dispersion * [MeHg]}{Dispersion Length}$$

12/9/2020

Acknowledgements

• Jenny Goetz, etc?