

Evaluating the efficacy of Cu and Ag ions for the inactivation of *Legionella pneumophila*

Chelsea Hintz¹, Brian Morris², and Helen Buse¹

¹US EPA, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Homeland Security and Materials Management Division, Cincinnati, OH ²Pegasus Technical Services, Inc, Cincinnati, OH

1

Legionella

- Opportunistic drinking water pathogen
 - > 50 species of *Legionella*
 - Legionella pneumophila (Lp) most infections, specifically serogroup 1
 - Infection through inhalation of contaminated aerosols
 - Legionnaires Disease, Pontiac Fever
 - First discovered in 1977 after an outbreak at an American Legion conference in Philadelphia, PA
- Ideal growing temperatures: 25 42°C
- Gram-negative bacteria
- Planktonic or in biofilms

Garrison et al., 2016

Legionella Control in Premise Plumbing Systems			
Chemical treatment technologies: Chlorine-based disinfection Coppor silver ionization (CSI)	 Physical treatment technologies: Thermal inactivation Filtration Ozonation 		
Emerging treatment technologies: Ultraviolet (UV) irradiation UV light emitting diodes (LEDs) Innovative point-of-use (POU) filters	Other strategies: • Superheat-and-flush disinfection • Shock hyperchlorination		
Carlson et al 2020	2		

*⇒***EPA**

Audience Questions

- 1. When was *Legionella* first discovered?
 - a) 1977 after an outbreak at an American Legion conference in Philadelphia, PA
 - b) 1776 at an American Legion conference in Philadelphia, PA
 - c) 1884 in the one of the first microbiology labs

- *2. Legionella* is Gram-negative bacteria.
 - a) True
 - b) False

Using copper-silver ionization (CSI) to control Legionella

- CSI: the use of positively-charged copper (Cu) and silver (Ag) ions as a bactericidal agent
 - Use of copper and silver salts (for example CuSO₄ and AgNO₃, respectively)
 - Electrolytic production of Cu and Ag ions via CSI units

Triantafyllidou et al., 2016

• Suggested mechanisms of action:

EPA

- Cu destroys cell wall permeability.
- Ag disrupts protein and enzyme synthesis.

Set EPA

CSI in buildings

- Often installed in hot water loops.
- Evaluated in hospitals or nursing homes with Cu and Ag ions being produced electrolytically (picture on top right).
- Levels of Cu and Ag ions produced through these units can vary.
 - Target levels set by manufacturer and literature.
 - Cu: MCL of 1.3 mg L^{-1} , SMCL of 1.0 mg L^{-1}
 - Ag: SMCL of 0.1 mg L^{-1}
- Various levels of success.
 - Controlling Lp vs eradicating Lp.
- Aesthetic concerns.

Triantafyllidou et al., 2016

€PA

CSI in buildings (cont.)

- Control of ion levels is difficult (Triantafyllidou et al., 2016, States et al., 1998).
- Regular monitoring may be needed for ion levels and voltage output.
- Importance of maintaining electrodes to prevent scaling.
- Other secondary treatments (e.g. water softeners) can affect ion concentration.

Sample Month	Mean Concentration µg/L Copper Silver	
1994 January* January* February March April May June July August September October November December 1995 January February March April May June July 1996 January	<100 <100 140 156 91 91 210 121 372 259 502 711 348 369 155 183 198 183 854 422 121	<1 <1 12 26 3 4 15 50 14 65 909 195 324 41 39 35 16 229 37 30
*Samples collected befor †Calculated from spread-		

Adapted from States et al., 1998

 Reduction of *Lp* positive sites but not eradication (States et al., 1998, Liu et al., 1994).

⇔EPA

	L. pneumophila		Moon Concentration	
Sample	Positive	Mean Concentration	µg/L	
Month	percent	cfu/mL †	Copper	Silver
1994 January* January* February March April May June July August September October November December 1995 January February March April May June July 1996 January	100 100 30 14 9 26 35 30 23 14 4 23 18 9 13 9 13 9 18 5 17 13 9 9	30 57 1 <1 1 2 4 4 1 1 2 5 2 1 1 2 2 1 2 2 1	<100 <100 140 156 91 210 121 372 259 502 711 348 369 155 183 198 183 854 422 121	<1 <1 12 26 3 4 15 50 14 65 909 195 324 41 39 35 16 229 37 30
*Samples collected before a conner-silver insization system was activated				

*Samples collected before a copper-silver ionization system was activated †Calculated from spread-plate samples

States et al., 1998

- Reduction of *Lp* positive sites but not eradication (States et al., 1998, Liu et al., 1994).
- Reduction of *Lp* positive sites relatively quick (<1 month).</p>

EPA

 Size and complexity of building water systems influences ion concentrations (Liu et al., 1994).

Liu et al., 1994

• Long-term success is difficult to achieve (e.g. years).

SEPA

Lp resistance to Cu and Ag ions (Rohr et al., 1999).

- Building/municipal water chemistry influences effectiveness (Lin et al., 2002).
 - Effectiveness negatively influenced by high pH (>8.5).

Buildings have seen reduction in Lp positive sites at various levels of Cu and Ag.

Cu (ppm)	Ag (ppm)	Result	Study
0.14	0.012	Reduction in <i>Lp</i> positive sites	States et al., 1998
0.4	0.04	Reduction in <i>Lp</i> positive sites	Liu et al., 1994
0.2	0.006	$3.8 \log_{10}$ but decreased over time	Rohr et al., 1999
0.27	0.03	Saw no reduction in <i>Lp</i>	Lin et al., 2002
0.36	0.033	Reduction in <i>Lp</i> positive sites	Walraven et al., 2016

*Mean or median ion values reported.

Electrolytic production of ions.

SEPA

 Cu and Ag levels are not reported but success of CSI is, often as the reduction in Lp positive sites (Mietzner et al., 1997, Stout et al., 2003).

Individual effects of Cu and Ag

- Both Cu and Ag are independently effective against Lp
- Cu is faster (hours vs days)

SEPA

Deionized water buffered to pH 7 and Cu/Ag salts

Combined effects of Cu and Ag

Additive and synergistic effects have been observed

• 0.02 ppm Cu, 0.02 ppm Ag \rightarrow additive

EPA

• 0.02 ppm Cu, 0.04 ppm Ag \rightarrow additive

- 0.04 ppm Cu, 0.02 ppm Ag \rightarrow synergistic
- 0.04 ppm Cu, 0.04 ppm Ag \rightarrow synergistic

Lin et al., 1996

Combined effects of Cu and Ag

- With levels of 0.4 and 0.04 ppm of Cu and Ag, respectively, a 3-log₁₀ reduction was observed after 24 hours of contact (0 ppm Cl-) (Landeen et 1989).
- Chlorine works synergistically with Cu and Ag ions (panels on right) (Landeen et 1989).
- Test solution: well water

SEPA

• Cu and Ag ions produced electrolytically

FIG. 4. Reduction of *L. pneumophila* by exposure to electrolytically generated copper and silver (400 and 40 μ g/liter) and/or free chlorine (0.4 mg/liter).

FIG. 3. Reduction of *L. pneumophila* by exposure to electrolytically generated copper and silver (400 and 40 μ g/liter) and various concentrations of free chlorine.

13

€PA

Strengths and weaknesses of CSI

Strengths

- Not influenced by temperature.
- No harmful DBPs.
- Relatively affordable.
- Easy installation.
- Quick and effective in some studies.
- Effective against other bacteria.

Weaknesses

- Less effective at higher pH.
- Possible corrosion.
- Can form complexes (and hence reduces effectiveness).
- Control of electrolytically-produced ion levels is difficult.
- Lp resistance to Cu and Ag ions has been suggested.
- Aesthetic problems (color, taste, odor, staining).
- Scale build-up.
- Monitoring ion levels in real-time is difficult.

Current knowledge gaps

 In case studies, electrolytically-produced Cu and Ag levels fluctuate making it difficult to isolate what Cu and Ag levels are effective.

EPA

- Cu and Ag ions have rarely been evaluated alone (i.e. they are always evaluated in conjunction with one another).
- For lab studies, test solutions are inconsistent across studies making results comparisons of needed Cu and Ag ions difficult.
- Little is known regarding how other water chemistry parameters influence the effectiveness of Cu ang Ag ions.
- Variability across *Lp* serogroups in response to Cu ang Ag ions?

Research question

- What individual concentrations of Cu and Ag are required for *Lp* inactivation?
 - Isolate the effects of Cu and Ag on the inactivation of *Lp*.
 - Test different Lp strains and serogroups.

Longer-term goals:

- Scaling these bench-scale experiments up to a pilot study in drinking water test loop.
 - Applying optimized Cu and Ag concentrations to control L. pneumophila.
- Characterize the effects of the Cu and Ag ions on various drinking water quality parameters.
 - pH, chlorine, and phosphate.

Experimental conditions

- Test strain: *L. pneumophila* sg-1 strain
 - Drinking water isolate
- Test media: "DIC10" buffer

EPA

- → 10 mg/L inorganic carbon, pH 8, filtersterilized
- Ion solutions filtered at 0.22 um to obtain total and dissolved concentrations
 - Start and end ion concentrations via ICP analysis
- 22°C
- Timepoints: 0, 2, 5, and 24 hours

٠

15

20

25

Neutralizer: combination of 14% sodium thiosulfate and 10% sodium thioglycolate (Landeen 1989)

lon	Target Concentration	Actual Concentration
Cu	0.1 ppm	0.097 ppm
Ag	0.01 ppm	0.009 ppm

10

Timepoint (h)

5

⇔EPA

0

.

0

٠

lon	Target Concentration	Actual Concentration
Cu	0.1 ppm	0.097 ppm
Ag	0.01 ppm	0.009 ppm

⇔EPA

Neutralizer: combination of 14% sodium thiosulfate and 10% sodium thioglycolate (Landeen 1989)

٠

Neutralizer: combination of 14% sodium thiosulfate and 10% sodium thioglycolate (Landeen 1989)

lon	Target Concentration	Actual Concentration
Cu	0.1 ppm	0.097 ppm
Ag	0.01 ppm	0.009 ppm

⇔EPA

٠

Neutralizer: combination of 14% sodium thiosulfate and 10% sodium thioglycolate (Landeen 1989)

lon	Target Concentration	Actual Concentration
Cu	0.1 ppm	0.097 ppm
Ag	0.01 ppm	0.009 ppm

⇔EPA

SEPA

SEPA

0.009 ppm

SEPA

Ag

0.01 ppm

From this experiment:

- Toxicity of neutralizer?
 - Previous work has not shown a neutralizer control.
- Ion levels too low to see inactivation within 24 hours

Results – Holding Experiment

• Two timepoints: 0 and 48 h

€PA

- Combination of sodium thiosulfate and sodium thioglycolate is toxic.
- No toxic effects when used independently.
- → Sodium thiosulfate as neutralizer.

*₽***EPA**

⇔EPA

⇔EPA

Neutralizer: 10% sodium thiosulfate

Set EPA

Results – Experiment II

Neutralizer: 10% sodium thiosulfate

SEPA

Summary of results

- Successfully achieved and maintained target concentrations of Cu and Ag.
- Cu and Ag successfully inactivated Lp after 5 hours (green and red lines).
- Sodium thiosulfate successfully neutralized Cu and Ag ions (blue and yellow lines).
- Sodium thiosulfate did not negatively impact Lp (purple line).

€PA

What's next for this research?

- Evaluate earlier timepoints.
- Evaluate different independent concentrations of Cu and Ag.
- Look at combined effects of Cu and Ag at various concentrations and and synergistic effects with different disinfectants, e.g. chlorine, monochloramine.
- Evaluate the effects of Cu and Ag on different *Legionella pneumophila* strains and serogroups.

- Pilot study using Cu and Ag in a drinking water test loop.
- Biofilm-associated Lp

Sepa

THANK YOU

Chelsea Hintz Pathways Intern Hintz.Chelsea@epa.gov

L. pneumophila sg1 drinking water isolate grown on BCYE agar plates

Agar art courtesy of Helen Buse

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agency.