

EPA's Integrated Rad Remediation Decision Support Tool (IRRD-ST) to Optimize Radiological Cleanup Decisions

Dr. Bruce Letellier, Serco – North America

Timothy Boe, Paul Lemieux, Sang Don Lee, Jim Mitchell U.S. Environmental Protection Agency

> Molly Rodgers, Colin Hayes Eastern Research Group, Inc.

EPA Contract EP-C-16-015, Task Order 68HE0C18F0819

2019 U.S. EPA International Decontamination R&D Conference November 19-21, 2019

TOPICS

- Background/Drivers
- Project Overview
- Primary Objectives
- Methodology Overview
- Field Study
- Tool Enhancement
- Next Steps

BACKGROUND/DRIVERS

- EPA performs radiation field surveys in support of
 - Contamination assessments for industrial process decommissioning
 - Site remediation
 - National security response teams to characterize, restrict, reclaim areas damaged by intentional dispersion
- Variety of modern detection technologies presents opportunities ...
 - Accuracy, resolution, remote deployment, multichannel sensors and challenges ...
 - Data volume, range of operator experience, interface, integration
- Integrated Rad Remediation Decision Support Tool (IRRD-ST) is needed to address data management challenges, exploit technology advances, and achieve an efficient workflow

BACKGROUND/DRIVERS: EXAMPLE

microsieverts

Serco ERG

PROJECT OVERVIEW

- Methodology Development
 - Develop approach to combine semi-automated image processing with radiation physics
 - Streamline processing of 2-D composite gamma-optical imagery
 - Establish optimal field conditions
- Field Study
 - Image collection
 - Controlled sources
 - Typical industrial setting

- Module Development
 - Program features to process imagery and extract contamination area estimates
- Tool Enhancements
 - Integrate module into the IRRD-ST for estimating decontamination costs
- Stakeholder Feedback
- Final Product
 - Enhanced MS Excel-based Tool

IRRD-ST INCREMENTAL DEVELOPMENT TASK

- Import/ingest composite gamma-optical 2D images
- Facilitate accurate spatial contamination area calculations
- Compton-imaging detectors based on CZT or GeGI provide spatial gamma-ray "camera"

Graphic from PHDS Co website

6

2019 U.S. EPA International Decontamination R&D Conference

METHODOLOGY OVERVIEW

- 1. Identify camera position, orientation, optical properties
- 2. Establish image surroundings using semiautomated CAD
- 3. Extract contamination contours
- 4. Project contamination contours onto 3-D surfaces
- 5. Apply radiation transport corrections
- 6. Calculate orthogonal area as a function of intensity
- 7. Package in a simple GUI add-in for XLS tool

2019 U.S. EPA International Decontamination R&D Conference

Serco ERG

IMAGE CENTER AND MAXIMUM FIELD OF VIEW

- Image center aligns with camera view direction
- Max field of view defines spatial range
- Camera lens function maps polar angle to image pixels
- Extract parameters from image, or from raw data

TRACE FLOOR PLAN AND EXTRUDE ROOM

- Import a pdf drawing, or hand sketch
- Point and click on wall boundaries in field of view
- Identify detector location and view direction
- Enter ceiling height (or other fiducial reference)
- Enter detector height and inclination
- Extrude basic backdrop of the image in 3D space

VERIFY AGREEMENT

User Functions

- Image rotation
- Mercator / Lambert projections to remove distortion
- Select / measure image features

Key Parameters

- Camera location and orientation
- Spatial scale

Room boundaries mapped to

Lambert projection to map view

EXTRACT CONTOURS AND PROJECT

- Select contamination pixels from image
- Determine direction using image center and lens function
- Project outward onto 3D surfaces

6

4

2

0

10

00

RADIATION TRANSPORT CORRECTIONS

 Intensity at the detector is not the same as intensity at the source 3.5 Spatial attenuation 3 cumulative area (ft²) 5.7 5.5 5.7 • Scatter in air • Self shielding at source Intervening materials 0.5 0 θ_d 10² 10^{3} 10^{4} 10^{5} 10^{6} μ Ci/m² \hat{n}_{d} Cost of decontamination R and waste disposal scales with area and rad R θ_{s} 'n, ' θ, • intensity $A \cos \theta$

serco ERG

12

FIELD STUDY

- EPA planning to exercise data acquisition and analysis methods in cooperation with Kansas State University Department of Nuclear Engineering
- Live-source imaging in variety of perspectives emulating surface sources in industrial settings
- Practice and improve field technique
 - Detector position / orientation relative to surroundings
 - Build experience with detector operation including exposure time vs source intensity and distance
 - Establish data stream to post-process contamination area
- Validate area processing methods
 - Verify optical lens function
 - Reconstruct known areas at oblique angles
 - Identify potential limitations / uncertainties

TOOL ENHANCEMENT

- Will streamline the processing of the 2-D gammaray imagery
- User interface will package user actions in a module to:
 - Trace or import room dimensions
 - Import, rotate, and select image features (fiducial scale)
 - Identify contamination pixels (possibly automated)
 - Project contamination and calculate surface area (possibly automated)
 - More automation raises opportunity for batch processing
- Integrate module's contamination analysis output with the Integrated Rad Remediation Decision Support Tool (IRRD-ST)
 - Improve estimates to inform remediation strategies

NEXT STEPS

- Plan and conduct field study
 - Will provide data stream to process methods and allow for experimental feedback / refinements
- Refine methodology, as needed, based on results of field study
- Build module and program features to process imagery and extract contamination area estimates
- Integrate module into the IRRD-ST for estimating decontamination costs

DISCLAIMER

The U.S. Environmental Protection Agency, through its Office of Research and Development, is funding and managing the research described here under Contract #EP-C-16-015 to Eastern Research Group. Final publications will be subject to the Agency's review process.

Questions should be addressed to:

Mr. Timothy Boe U.S. Environmental Protection Agency Office of Research and Development National Homeland Security Research Center Research Triangle Park, NC 27711 Phone 919-541-2617

