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What will be covered

• Background on PFAS
• Summary of work in our 

Center related to PFAS
• The Robarts et al. study

• Why we did it
• What we found

PFAS = Per- and poly-fluoroalkyl substances

https://www.xdd-llc.com/remediation/pfas-introduction-and-chemical-
properties/



Why do we care about PFAS?

• They are everywhere and 
environmentally persistent

• Globally distributed, detected 
in water, air, house dust, soil, 
sediment, sludge from 
wastewater treatment plants, 
biosolids

• Non-biodegradable in 
environment

• Found in consumer products

Slide modified from Dr. Chris Lauhttps://pinellas.gov/per-and-polyfluoroalkyl-substances-pfas/



Why do we care about PFAS?

• They are present in the blood of humans and wildlife

Serum Levels (ppb) PFOS (C8) PFOA (C8) PFHxS (C6) PFNA (C9) PFDA (C10)
Production workers 1,500-2,000 500-1,000 ~500 N/A N/A
NHANES ‘99-’00 30.4 5.2 2.1 0.6 N/A
NHANES ‘01-’02 20.8 3.7 2.8 0.6 N/A
NHANES ‘03-’04 20.7 3.9 1.9 1.0 N/A
NHANES ‘05-’06 17.1 3.9 1.7 1.1 0.36
NHANES ‘07-’08 13.2 4.1 2.0 1.2 0.29
NHANES ‘09-’10 9.3 3.1 1.7 1.3 0.28
NHANES ‘11-’12 6.3 2.1 1.3 0.9 0.20
NHANES ‘13-’14 5.0 1.9 1.4 0.7 0.19
NHANES ‘15-’16 4.7 1.6 1.2 0.6 0.15
NHANES ‘17-’18 4.3 1.4 1.1 0.4 0.19
Arnsburg, Germany ‘06 5.8-10.5 23.4-25.3 1.1-2.5 N/A N/A
Little Hocking, WV ‘07 19.2 32.9 3.3 1.4 0.4
Lake trout 121 4.4 0.6 2.9 N/A
Polar bear ~1,200 ~10 -- ~100 N/A

Slide modified from Dr. Chris Lau

https://thehill.com/



• People can be exposed to PFAS 
through multiple routes
– food (fish, some edible plants), 

migration from food packaging
– drinking water (contamination 

sites)
– house dust, air
– Consumer products

Slide modified from Dr. Chris Lau

Why do we care about PFAS?

https://www.nature.com/articles/s41370-018-0094-1/figures/1



• Toxic effects have been identified in animal studies 
– Hepatotoxicity, reproductive and developmental 

toxicity, immunotoxicity, tumor induction, 
endocrine disruption, neurotoxicity

• Epidemiology studies indicate adverse effects in 
humans

• Human health risks assessed by regulatory bodies 
internationally
– Legally enforceable Maximum Contaminant 

Levels (MCLs) for 5 PFAS in drinking water 
were issued by the US EPA on 4/10/2024: 

• PFOA (4 ppt), 
• PFOS (4 ppt) 
• PFHxS (10 ppt), 
• PFNA (10 ppt), 
• HFPO-DA (GenX, 10 ppt)  

Slide modified from Dr. Chris Lau

Why do we care about PFAS?

https://enveurope.springeropen.com/articles/10.118
6/s12302-023-00721-8/figures/2



• Some PFAS are very persistent in the blood of humans

PFBS 
(C4)

PFHxS 
(C6)

PFOS (C8)
PFBA 
(C4)

PFHxA 
(C6)

PFHpA 
(C7)

PFOA (C8) PFNA (C9)
PFDA 
(C10)
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hours

1.4 
days

26-27 
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Slide modified from Dr. Chris Lau

Why do we care about PFAS?

Serum half-life estimates of some per- and polyfluoroalkyl substances
F-53B



Center for Computational Toxicology and Exposure – 
Understanding the potential risks to PFAS exposure

• Considering the universe of PFAS 
(thousands) 

• Tiered testing strategies
• Tier 1 – high throughput testing examining 

cellular transcript or phenotypic changes in 
different cell lines; computational approaches 
for extrapolating test concentrations to exposure 
in humans; grouping by structure and biology 
allowing read across

• Tier 2 – in vitro assays that are part of our new 
approach methodologies (NAMs)

• Tier 3 – expose rats to different doses of 
individual PFAS to generate benchmark doses 
(EPA transcriptomic assessment product; ETAP)

Thomas et al. (2019) ToxSci 169(2):317-332



Background and Goal of Study

• Goal of study: Use available archived transcript profile data to identify 
molecular targets of legacy and alternative PFAS

• Are there differences?
• How do alternative PFAS toxicities compare to toxicities of legacy PFAS?

Brennan et al. (2021) Intl J Environ Res Pub Health 18:10900

The levels of alternative PFAS are 
increasingly detectable

• Increased blood levels of per- 
and polyfluoroalkyl ether acids 
(PFEAs) 
• Kotlarz et al. (2024) EHP 

132(2):27701; 132(2):27702
• Rosen et al. (2022) EHP 

130(9):97002

The levels of legacy PFAS in human 
blood are decreasing

Straight 
chain 
PFAS

Nafion BP2



Methods

Archived 
transcript 
profiles

Treat mice with 11 
legacy or 

alternative PFAS

Collect liver;
Isolate RNA;

Measure 
transcript profile 
changes using 
microarrays or 

RNA-Seq

Compare to gene lists 
and biomarkers to 

understand biological 
effects 

Illumina’s BaseSpace 
Correlation Engine



Liver is a major site for chemical-induced 
carcinogenesis in rodents

Marketed Pharmaceuticals in Rats

From Sistare et al. Toxicol Pathol. 2011 Jun; 39(4):716-44.

• Results of 628 two-sex carcinogenicity studies (n = 324 rat, n = 304 
mouse) available in ToxRefDB

• Studies covered 336 unique compounds (n = 307 rat, n = 288 
mouse), 259 of which were tested in both species

From Hill et al. Toxicol Sci. 2017 Jan; 155(1):157-169

Environmental Chemicals in Mice and Rats

Liver

LiverLiver



• Rooney et al., (2018) Tox Appl Pharm 356:99–
113

• Corton et al. (2020). Tox Sci. 177(1):11-26
• Lewis et al. (2020). Toxicology. 443:152547

• Six major AOPs lead to rodent liver 
tumors

• The AOPs converge on the key event of 
selective clonal expansion

• Measure MIEs with gene expression 
biomarkers

• Past studies have revealed that PPARα 
and CAR are targets of the legacy PFAS

Major Adverse Outcome Pathways That Lead to Rodent Liver Tumors



Compiled Studies Examined

• Studies in the public 
domain

• Two main profiling 
platforms (Affymetrix 
microarrays, RNA-Seq)

• All profiles from male 
mouse liver

• Exposures were 7-28d
• One to four doses
• Examined 11 PFAS and 

5 PPARα activators



Structural similarity 
of the compounds 
examined in the 

study
• Used ToxPrint to determine 

structural relatedness
• PPARα agonists clustered 

together
• PFAS cluster based on the 

head groups

GenX

Sulfonic Acid
Headgroup

Carboxylic Acid
Headgroup



Structural similarity 
of the compounds 
examined in the 

study
• Used ToxPrint to determine 

structural relatedness
• Removed the head groups
• Clustered based on 

whether straight chain or 
contains ether linkages



Examination of the role of 
nuclear receptors
• Use the upstream activator analysis 

function of Ingenuity Pathways Analysis 
(IPA)

• Most PFAS activate PPAR family 
members

• A subset of PFAS activate CAR and/or 
PXR

• No major distinctions between legacy 
and alternative PFAS

• Qualifier: the gene lists in IPA have not 
been characterized for prediction – they 
are hypothesis generating tools

PXR
CAR



• Rooney et al., (2018) Tox Appl Pharm 356:99–
113

• Corton et al. (2020). Tox Sci. 177(1):11-26
• Lewis et al. (2020). Toxicology. 443:152547

• The liver is the most frequent target of 
chemical tumorigens

• Six major AOPs lead to rodent liver 
tumors

• The AOPs converge on the key event of 
selective clonal expansion

• Hypothesis: measurement of the six 
MIEs will be sufficient to predict 
rodent liver tumors

• Approach: measure MIEs with gene 
expression biomarkers

Major Adverse Outcome Pathways That Lead to Rodent Liver Tumors



Gene expression biomarkers

• Biomarker is defined as “a characteristic that is objectively measured and evaluated as an 
indicator of normal biological processes, pathogenic processes, or pharmacologic 
responses to a therapeutic intervention.” (1998, the National Institutes of Health 
Biomarkers Definitions Working Group)

• A gene expression biomarker is a short list of genes and associated fold-change values or 
ranks used to predict the activity of a factor important in mediating effects of chemicals or 
toxicity

• Can be used to 
• Identify mode of action
• Predict tumorigenic potential
• Determine a benchmark dose

• Very few examples of well characterized gene expression biomarkers with known 
accuracies

• Gene lists as signature/pathway analysis often used as hypothesis generators



Biomarkers that predict key events in the livers of mice 
and rats

p53

AhR

CAR

PPARα   

NRF2

Estrogen
Receptor α

STAT5b

SREBP

• Oshida et al. (2015). Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-
Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium.  PLoS One.  
10(2):e0112655.

• Oshida et al. (2015). Identification of Chemical Modulators of the Constitutive Activated Receptor 
(CAR) in a Mouse Liver Gene Expression Compendium.  Nuclear Receptor Signaling. 13:e002.

• Oshida et al. (2015). Screening a Mouse Liver Gene Expression Compendium Identifies Effectors of 
the Aryl Hydrocarbon Receptor (AhR).  Toxicology. 336:99-112.

• Oshida et al. (2015). Disruption of STAT5b-Regulated Sexual Dimorphism of the Liver Transcriptome 
by Diverse Factors Is a Common Event. PLoS One. 11(3):e0148308.

• Oshida et al. (2015). Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of 
the Liver Transcriptome. PLoS One. 2016 11(3):e0150284.

• Rosen et al. (2017). PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by 
transcript profiling. Toxicology. 387:95-107.

• Rooney et al. (2017). Genomic Effects of Androstenedione and Sex-Specific Liver Cancer 
Susceptibility in Mice. Toxicol Sci. 160(1):15-29.

• Rooney et al. (2018) Activation of Nrf2 in the liver is associated with stress resistance mediated by 
suppression of the growth hormone-regulated STAT5b transcription factor. PLoS One. 
13(8):e0200004.

• Rooney et al. (2018).  Activation of CAR leads to activation of the oxidant-induced Nrf2. Toxicol Sci. 
167:172-189.

• Rooney et al. (2018). Adverse outcome pathway-driven identification of rat liver tumorigens in 
short-term assays. Toxicol Appl Pharmacol. 356:99-113. 

• Corton (2019). Frequent Modulation of the Sterol Regulatory Element Binding Protein (SREBP) by 
Chemical Exposure in the Livers of Rats. Comput. Toxicol. 10:113-129.



The mouse biomarkers have excellent 
predictive accuracy

Mouse Biomarker Number of Genes Mutant mice used
Predictive Accuracy 

for Activation Publication

PPARα 131 Ppara 98%
PLoS One. 2015 
10(2):e0112655

CAR 83 Nr1i3 97%
Nucl Recept Signal. 

2015 13:e002

AhR 63 Ahr 95%
Toxicology. 2015 

336:99-112

Nrf2 48 Nfe2l2, Keap1 96%
PLoS One 2018 
13(8):e0200004

Stat5b 144 Stat5b 97%
PLoS One 2016 
11(3):e0150284

Srebp 99
Srebf1a, Srebf1c, 

Srebf2, Scap 94%
Comp Tox 10 (2019) 

63-77

Regulates growth hormone responsive genes

Regulates genes involved in the synthesis of cholesterol and triglycerides

Activated by oxidative stress



Biomarker analysis
• Most PFAS suppress Stat5b – indicative of 

suppression of growth hormone signalling
• Most chemicals activate PPARα (not 

Nafion BP2, 6:2 FTSA and 6:2 FTCA) that 
regulates fatty acid and glucose 
metabolism

• Many activate CAR and Nrf2 – indicative of 
increases in xenobiotic metabolism and 
associated oxidative stress

• Many activate SREBP – linked to steatosis 
commonly observed in the livers of 
treated rodents

• No clear distinctions between the legacy 
and alternative PFAS

• 6:2 FTCA and 6:2 FTSA activate fewer 
factors - 6:2 FTCA is more quickly 
metabolized



Conclusions
• To understand the diversity of molecular targets of the PFAS in the mouse liver, 

we performed a comparative toxicogenomics analysis of the gene expression 
changes after exposure to 11 PFAS

• Using hierarchical clustering, pathway analysis, and predictive biomarkers, we 
found that most of the alternative PFAS modulate molecular targets that overlap 
with legacy PFAS

• Only three of the 11 PFAS tested did not appreciably activate PPARα (Nafion 
BP2, 6:2 FTSA, and 6:2 FTCA)

• Predictive biomarkers showed that most PFAS (PFHxS, PFOA, PFOS, PFNA, 
HFPO-TA, F-53B, HFPO4, Nafion BP2) activated CAR 

• PFNA, PFHxS, PFOA, PFOS, HFPO4, HFPO-TA, F-53B, Nafion BP2, and 6:2 FTSA 
activated NRF2

• A subset of PFAS activated SREBP that may underlie the steatosis observed

• The work highlights the similarities in molecular targets between the legacy and 
alternative PFAS

• We predict that the alternative PFAS (except 6:2 FTCA) would be no less toxic 
than the legacy PFAS



Thanks for listening!

Questions?
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