

Targeted RNA-sequencing of testes from fetal rats exposed to dicyclohexy phthalate informs potency and adverse outcome pathway development Carolyn R. Waterbury^{*a}, Justin M. Conley^b, L. Earl Gray^b, and Leah C. Wehmas^c

^aOak Ridge Associated Universities, U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27711 ^bU.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27711 ^c U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27711

- correlated with testicular dysgenesis syndrome.
- mechanisms of toxicity of DCHP.

- gRT-PCR dataset.
- DCHP toxicity.

U.S. Environmental Protection Agency Office of Research and Development

Carolyn Waterbury I hamman.carolyn@epa.gov I 919-541-3404

athways with the lowest median BMD pathway highlighted in red, a table of the top canonical athways, and the BMD accumulation chart. GO pathways and accumulation plot generated and analyzed in BMDExpress (v. 2.3) and canonical pathways analyzed in IPA

Conclusions

- A potency estimate was developed that was close to, but slightly more sensitive, than a previously identified developmental and reproductive BMDL₁₀ estimate of 68 mg/kg-day.
- Certain genes changed expression levels in a dose-dependent manner, which is something that has been established for DCHP.
- Targeted RNA-Seq identified genes that weren't included in the qRT-PCR arrays, including *Testin*. These genes should potentially be monitored with the other known biomarker genes.
- Ingenuity pathway analysis identified potential mechanisms of action through analysis of pathways and upstream regulators that could have resulted in the downregulation of hormone regulation and synthesis.
- Targeted RNA-Seq is an efficient means of collecting a large amount of transcriptomic data that can subsequently be used to inform chemical potency and mechanisms of toxicity.

Acknowledgements

- The Chemical Safety for Sustainability National Research Program which funded this research.
- The Oak Ridge Associated Universities research program, an interagency agreement between the
- Environmental Protection Agency and the Department of Energy.

narker genes unique to qRT-PCR arrays								
DC1 (K1 (K3 RT2 /L1 /L2 BP A3B /X2 BP1 DPS GF8	FGF9 GUSB HOXA2 HSD17B3 INHBB LDHA LDLR LOC691504 NR1D1 NTF3 NTRK3 PCAF	PDGFA PTGDS2 RARA RGD1563046 RGD1564999 RHOX10 RXRB SFRP1 SFRP1 SFRP2 SFRP5 SMO SOX8	TLE1 TLE2 TSPO VLDLR WNT7A					
00 mg/kg	a 300 mg/kg	600 mg/kg	900 mg/kg					
Тор	downregulated ge	enes						
-1.646	-4.665	-8.072	-22.852					
-1.755	-2.558	-4.452	-12.438					
-1.558	-2.63	-3.939	-5.851					
-2.186	-3.55	-5.838	-5.642					
-1.769	-2.912	-4.417	-4.198					
-2.539	-2.916	-3.626	-4.118					
-1.7	-2.151	-2.768	-3.176					
-1.3	-2.004	-2.39	-3.119					
-1.93	-2.401	-3.266	-3.045					
-1.493	-1.939	-1.986	-2.54					
Top upregulated genes								
2.009	4.641	5.072	7.316					
2.113	1.949	2.541	3.094					
1.856	1.896	2.084	2.514					
1.676	1.938	1.704	1.987					
1.349	1.405	1.445	1.663					
1.317	1.229	1.385	1.322					
1.232	1.362	-1.250	1.314					
1.205	1.128	1.190	1.213					
1.154	1.164	1.24	1.212					
1.138	1.153	1.119	1.160					
fold cha	anges. Data ge	enerated in IPA	. *indicates					

n known DCHP mechanisms								
Best BMD Accumulation Plot								
nic potency 9 mg/kg-day	abbababab		to other					
190 	Best BMD	,		1000				
cal Pathway	100 mg/kg	300 mg/kg	600 mg/kg	900 mg/kg				
		Z-Scores						
holesterol Biosynthesis	N/A	-2.887	-3.873	-3.606				
Biosynthesis I	N/A	-2.646	-3	-3				
esis II (via Desmosterol)	N/A	-2.646	-3	-3				
l (via 24,25-dihydrolanosterol)	N/A	-2.646	-3	-3				
Stem Cell Pluripotency	2.449	1.633	N/A	2.53				