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ORD Facility in
Research Triangle Park, NC

 The Office of Research and Development (ORD) is the scientific research arm of 
EPA

 539 peer-reviewed journal articles in 2021

 Research is conducted by ORD’s four national centers organized 
to address:

 Public health and environmental assessment
 Computational toxicology and exposure 
 Environmental measurement and modeling
 Environmental solutions and emergency response

 13 facilities across the United States

 Research conducted by a combination of Federal scientists, including 
uniformed members of the Public Health Service; contract researchers; 
and postdoctoral, graduate student, and post-baccalaureate trainees

US EPA Office of Research and Development
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Next Generation Risk 
Assessment Requires 

Toxicokinetics
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Next Generation Risk Assessment (NGRA)

 Next generation risk assessment (NGRA) must incorporate endpoints from 
new approach methodologies (NAMs) that are often in vitro 

 There is a need to translate in vitro measures into recognizable risk 
assessment concepts (in vivo point of departure, margin of exposure)

 This requires in vitro – in vivo extrapolation (IVIVE)

 Powerful tools (such as physiologically-base toxicokinetic modeling) exist for 
one-chemical-at-a-time IVIVE (such as SimCYP, Gastroplus, PK-Sim)
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Toxicokinetics

 Chemical-
specific
 Links exposure 

with internal 
concentrations

Breen et al. (2021)
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 Toxicokinetics describes the absorption, distribution, metabolism, and excretion 
of a chemical by the body:



6 of 39 Office of Research and Development

Most Chemicals Do Not Have TK Data

Figure modified from Bell et al. (2018)
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 We need chemical-specific toxicokinetics 
(TK) for in vitro-in vivo extrapolation 
(IVIVE) (Coecke et al, 2013), but:

 Most non-pharmaceutical chemicals –
for example, flame retardants, 
plasticizers, pesticides, solvents – do not 
have human in vivo TK data

 Non-pesticidal chemicals are unlikely to 
have any in vivo TK data, even from 
animals
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HTTK
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High Throughput Toxicokinetics

 NAMs often include multiple assay formats 
as part of a screening battery

 NAMs are intended to allow screening of 
large libraries of chemicals – hundreds to 
thousands

 High throughput tools are needed for IVIVE

 High(er) throughput toxicokinetics (HTTK) 
provides the needed IVIVE for NGRA

Concentration
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sp
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Effect as a function of dose



9 of 39 Office of Research and Development

High Throughput Toxicokinetics (HTTK):  
A New Approach Methodology (NAM) for Exposure

 HTTK methods have been used by the pharmaceutical industry to determine 
range of efficacious doses and to prospectively evaluate success of planned 
clinical trials (Jamei, et al., 2009; Wang, 2010)

 In addition to using a standardized (generic) model, this approach also 
standardizes the parameters and in vitro measurements needed to describe a 
chemical

 HTTK can provide open-source data and models for evaluation and use by the 
broader scientific community (Pearce et al, 2017)

 While there is more data for pharmaceuticals, these data are often proprietary
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The Elements of High Throughput Toxicokinetics
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In vitro toxicokinetic data + generic toxicokinetic model 
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The Elements of High Throughput Toxicokinetics
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.. .

In vitro toxicokinetic data + generic toxicokinetic model 
Typically, intrinsic hepatic clearance 
and fraction unbound in plasma
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In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

httk
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Open Source Data
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TK Process In Vitro Assays In Vivo TK Predicted Assay Limitations Chemical Limitations Time and Labor Impact QSPR

Metabolism Hepatocyte suspension, Hepatic Metabolism Relatively short timescales 
(< 4h)

Soluble, non-volatile 
chemicals

High Throughput Clearance, steady-state 
concentration, half-life

Yes (pharma and 
commercial chemicals)

microsome assays Metabolism (including 
liver, kidney, gut, lung)

Many individual 
microsomes to be assayed

Soluble, non-volatile 
chemicals

High Throughput Individuals microsomes can 
be expressed in multiple 
tissues and allow insight 
into human variability

Yes (pharma)

Hepatocyte spheroids Hepatic Metabolism Expense, throughput Soluble, non-volatile 
chemicals

In vitro but low throughput Two week or greater 
running times for slowly 
metabolized chemicals

No

individual bacterial species, 
intestinal content culture

Gut metabolism anaerobic conditions, 
probably pH dependent, 
microbe-dependent

Soluble, non-volatile 
chemicals

low throughput absorption of chemicals, 
alternative metabolism

No

Vmax and KM intrinsic clearance Low Throughput, ideally 
would have method for 
parent and metabolites

soluble, non-volatile 
chemicals

low throughput Saturation (non-linear) 
metabolism

No

Distribution Plasma protein binding Tradeoffs between speed 
and sensitivity

Soluble, non-volatile 
chemicals

High Throughput Peak conc., partition 
coefficients

Yes (pharma and 
commercial)

Blood:plasma ratio Blood:plasma ratio, first 
pass hepatic metabolism

Soluble, non-volatile 
chemicals

High Throughput More accurate prediction 
of systemic bioavailability

Yes (pharma and 
commercial)

Transporters

Absorption Caco2, PAMPA Mostly qualitative, skewed 
toward predicting “well 
absorbed”

Soluble, non-volatile 
chemicals

In vitro but low throughput
Identifies key routes of 
exposure

Yes (pharma only)

Elimination Plasma protein binding Tradeoffs between speed 
and sensitivity

Soluble, non-volatile 
chemicals

High Throughput Peak conc., partition 
coefficients

Yes (pharma and 
commercial)

Chemical-Specific HTTK Data

See Coecke et al. (2013), Breen et al. (2021)

 A decade of publications have made available in vitro data characterizing > 1,000 chemicals 
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 Most HTTK in vitro assays require chemical-specific method to quantify changes in chemical concentration
 Assays requires ~2 mg neat compound – sometimes hard to procure
 For some chemicals “typical” methods like liquid or gas chromatography mass spectrometry do not work
 Other chemicals are obscured by matrix effects – for example, similar biological components of the assay

Analytical Chemistry is a Key Bottleneck

.

.
.

....
.. .1 2

Lots of help from Kathy Coutros and Tony Williams
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Number of Measurements (n)

 Multiple governments and organizations 
continuing to collect in vitro data for HTTK

 Various approaches, including R package “httk” 
try to summarize these data

 EPA is interested in standardizing data analysis
 Project led by Sarah Davidson-Fritz
 Working on new R package “invitroTKstats”
 Ensure all necessary measurements and 

metadata are recorded
 Structure data to support potential future 

databases

Best Practices for 
HTTK Data



18 of 39 Office of Research and Development

Open Source Models
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Generic PBK/PBPK/PBTK Models

 A standardized physiology is assumed, regardless of chemical:
 The same parameters such as volumes, flows, and rates are used
 The same processes are included (hepatic metabolism, glomerular 

filtration) or omitted

 A fixed set of descriptors (such as rate of metabolism and protein binding) 
are varied from chemical to chemical and potentially measured in vitro

 The generic model is implemented once, reducing the likelihood of coding 
errors and enhancing documentation

 We can estimate the accuracy of a generic model for a new chemical using 
performance across multiple chemicals where data happen to exist
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Open Source, Verifiable, Reproducible

“Although publication of a PBPK model in a peer-
reviewed journal is a mark of good science, subsequent 

evaluation of published models and the supporting 
computer code is necessary for their consideration for 

use in [Human Health Risk Assessments]”

Key considerations during PBTK model 
development, evaluation, and applications for 

Human Health Risk Assessment
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Media
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Dermal Exposure Route
EPA, Unilever

(Meade, in prep.)

Gas Inhalation 
Exposure Route

Linakis et al. (2020)

Aerosol Inhalation 
Exposure Route 

(including APEX model)
EPA, USAF

(Linakis, in prep.)

Human Gestational Model
EPA, FDA

(Kapraun et al, 2022)

MotherFetus
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Evaluation with Legacy 
In Vivo Data
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CvtDB:  An In Vivo TK Database

 The most important thing for evaluating PBK/PBPK/PBTK is 
evaluation data

 EPA has developed a public database of concentration vs. 
time data for building, calibrating, and evaluating TK 
models

 Curation and development is ongoing, but to date includes:
 >200 analytes (EPA, National Toxicology Program, 

Showa Pharmaceutical University, literature)
 Routes: Intravenous, dermal, oral, sub-cutaneous, and 

inhalation exposure

 Efforts led at EPA by Risa Sayre and Taylor Wall

23
Sayre et al. (2020)

https://github.com/USEPA/CompTox-PK-CvTdb

https://github.com/USEPA/CompTox-PK-CvTdb
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Building Confidence in TK Models

Predicted Concentrations
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

Cohen Hubal et al. (2019)
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Building Confidence in TK Models
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Building Confidence in TK Models
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 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties

Cohen Hubal et al. (2019)
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Building Confidence in TK Models

 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
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 However, we do not typically have TK data
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Building Confidence in TK Models

Predicted Concentrations
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
 Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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Evaluating the Confidence in HTTK

 WHO recommends TK model predictions generally be within a factor of 2, on average

 For HTTK, summary statistics such as peak concentration and time-integrated (“area 
under the curve” or AUC) concentration:
 Wang (2010): For 54 pharmaceutical clinical trials the predicted AUC differed from 

observed by 2.3x
 Linakis et al. (2020): RMSE = 0.46 or 2.9x for peak concentration and RMSE = 0.5 or 

3.2x for AUC
 Wambaugh et al. (2018): For 45 chemicals of both pharmaceutical and non-

pharmaceutical nature, RMSE of 2.2x for peak and 1.64x for AUC 
 Pearce et al. (2017b):The calibrated method for predicting tissue partitioning that is 

included in httk predicted human volume of distribution with a RMSE of 0.48 (3x)
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Key Exposure Routes
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High Throughput Translation of In Vitro PODs

Exposure in vitro bioactive 
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
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Toxicodynamic
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Breen et al. (2021)

 The combination of in vitro TK measurements or structure-based predictions with a high throughput PBTK 
model allows in vitro points of departure to be translated into in vivo equivalent doses

in vitro 
TK data

Toxicokinetic
IVIVE
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IVIVE with Dermal HTTK Model

Work by Annabel Meade

 Do we need to wear gloves?
 Use dermal HTTK to 

translate in vitro points of 
departure to concentration 
(PPM) in solution needed to 
achieve POD in blood after 
soaking hands for eight 
hours

ppm Administered Equivalent Dose (AED) in water (Log10 scale)
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IVIVE with Dermal HTTK Model

Work by Annabel Meade

 Do we need to wear gloves?
 Use dermal HTTK to 

translate in vitro points of 
departure to concentration 
(PPM) in solution needed to 
achieve POD in blood after 
soaking hands for eight 
hours

Need 
Protection

Need 
Protection

Need 
Protection

Need 
Protection

Do Not Need 
Protection

Do Not Need 
Protection

Do Not Need 
Protection

Do Not Need 
Protection

ppm Administered Equivalent Dose (AED) in water (Log10 scale)



35 of 39 Office of Research and Development

Accessibility
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Open-Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017a)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Modules within R Package “httk”
Feature Description Reference
Chemical Specific In Vitro 
Measurements

Metabolism and protein binding for ~1000 
chemicals in human and ~200 in rat 

Wetmore et al. (2012, 2013, 
2015), plus others

Chemical-Specific In Silico 
Predictions

Metabolism and protein binding for ~8000 
Tox21 chemicals

Sipes et al. (2017), Pradeep et 
al. (2020), Dawson et al. 
(2021)

Generic toxicokinetic models
One compartment, three compartment, 
physiologically-based oral, intravenous, and 
inhalation (PBTK)

Pearce et al. (2017a), 
Linakis et al. (2020),
Kapraun et al. (2022)

Tissue partition coefficient 
predictors Modified Schmitt (2008) method Pearce et al. (2017b)

Variability Simulator Based on NHANES biometrics Ring et al. (2017),
Breen et al. (2022

In Vitro Disposition Armitage et al. (2014) model Honda et al. (2019)

Uncertainty Propagation Model parameters can be described by 
distributions reflecting uncertainty

Wambaugh et al. (2019)



38 of 39 Office of Research and Development

Means of Obtaining HTTK

 SimCYP SimRFlow Tool (in use by EU-ToxRisk) (Khalidi et al., 2022)
 NICEATM Web-ICE (in use by NTP) (Bell et al., 2020)
 CompTox Chemicals Dashboard (in use by EPA) (Williams et al., 2017)
 TKPlate (in use by EFSA) (Dorne et al., 2018)
 R package “httk” (general informatics community, including EPA) 

(Pearce et al., 2017)

 All these tools make use of some or all data/models from R package “httk”
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Summary
 IVIVE is critical to next generation risk assessment
 NAMs are often high throughput, producing results for large numbers of chemicals

 HTTK is an approach the allows IVIVE for large numbers of chemicals

 HTTK relies on libraries of accessible, published, chemical-specific data

 Chemical-independent models exist to use these data to make predictions for various 
important scenarios including occupational and gestational exposures
 Confidence in these models can be assessed through evaluation with legacy in vivo 

data

 “httk” is an open-source R package developed by EPA for performing HTTK – provides the 
backbone for many different IVIVE tools The views expressed in this presentation are those of the author and do not necessarily 

reflect the views or policies of the authors’ institutions

Send Questions to: 
wambaugh.john@epa.gov
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