

Modelling kinetics and dynamics of chemicals at the U.S. Environmental Protection Agency using the httk open-source platform

John Wambaugh, Sarah Davidson-Fritz, Annabel Meade, Miyuki Breen, Risa Sayre, Taylor Wall, Elaina Kenyon, Marina Evans, Barbara Wetmore, and Caroline Ring Center for Computational Toxicology and Exposure

Symposium:

"Next generation risk assessment of food chemicals, environmental contaminants and pharmaceuticals using open-source modelling platforms: Perspectives from regulatory agencies, academia, and industry"

> The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

Send Questions to: wambaugh.john@epa.gov

http://orcid.org/0000-0002-4024-534X

US EPA Office of Research and Development

- The Office of Research and Development (ORD) is the scientific research arm of EPA
- 539 peer-reviewed journal articles in 2021
- Research is conducted by ORD's four national centers organized to address:
 - Public health and environmental assessment
 - Computational toxicology and exposure
 - Environmental measurement and modeling
 - Environmental solutions and emergency response
- 13 facilities across the United States
- Research conducted by a combination of Federal scientists, including uniformed members of the **Public Health Service**; contract researchers; and postdoctoral, graduate student, and post-baccalaureate trainees

ORD Facility in Research Triangle Park, NC

Next Generation Risk Assessment Requires Toxicokinetics

3 of 39 Office of Research and Development

Next Generation Risk Assessment (NGRA)

- Next generation risk assessment (NGRA) must incorporate endpoints from new approach methodologies (NAMs) that are often *in vitro*
- There is a need to translate *in vitro* measures into recognizable risk assessment concepts (*in vivo* point of departure, margin of exposure)
- This requires in vitro in vivo extrapolation (IVIVE)
- Powerful tools (such as physiologically-base toxicokinetic modeling) exist for one-chemical-at-a-time IVIVE (such as SimCYP, Gastroplus, PK-Sim)

Toxicokinetics

 Toxicokinetics describes the absorption, distribution, metabolism, and excretion of a chemical by the body:
Chemical-

Breen et al. (2021)

Most Chemicals Do Not Have TK Data

- We need chemical-specific toxicokinetics (TK) for *in vitro-in vivo* extrapolation (IVIVE) (Coecke et al, 2013), **but:**
- Most non-pharmaceutical chemicals for example, flame retardants, plasticizers, pesticides, solvents – do not have human *in vivo* TK data
- Non-pesticidal chemicals are unlikely to have any *in vivo* TK data, even from animals

Chemicals that also have TK Data/Models

High Throughput Toxicokinetics

- NAMs often include multiple assay formats as part of a screening battery
- NAMs are intended to allow screening of large libraries of chemicals – hundreds to thousands
- High throughput tools are needed for IVIVE
- High(er) throughput toxicokinetics (HTTK) provides the needed IVIVE for NGRA

High Throughput Toxicokinetics (HTTK): A New Approach Methodology (NAM) for Exposure

- HTTK methods have been used by the pharmaceutical industry to determine range of efficacious doses and to prospectively evaluate success of planned clinical trials (Jamei, *et al.*, 2009; Wang, 2010)
 - In addition to using a standardized (generic) model, this approach also standardizes the parameters and *in vitro* measurements needed to describe a chemical
- HTTK can provide open-source data and models for evaluation and use by the broader scientific community (Pearce et al, 2017)
- While there is more data for pharmaceuticals, these data are often proprietary

In vitro toxicokinetic data

In vitro toxicokinetic data

Typically, intrinsic hepatic clearance and fraction unbound in plasma

In vitro toxicokinetic data + generic toxicokinetic model

In vitro toxicokinetic data + generic toxicokinetic model = high(er) throughput toxicokinetics

Open Source Data

14 of 39 Office of Research and Development

Chemical-Specific HTTK Data

• A decade of publications have made available *in vitro* data characterizing > 1,000 chemicals

TK Process	In Vitro Assays	In Vivo TK Predicted	Assay Limitations	Chemical Limitations	Time and Labor	Impact	QSPR
Metabolism	Hepatocyte suspension,	Hepatic Metabolism	Relatively short timescales (< 4h)	Soluble, non-volatile chemicals	High Throughput	Clearance, steady-state concentration, half-life	Yes (pharma and commercial chemicals)
	microsome assays	Metabolism (including liver, kidney, gut, lung)	Many individual microsomes to be assayed	Soluble, non-volatile chemicals	High Throughput	Individuals microsomes can be expressed in multiple tissues and allow insight into human variability	Yes (pharma)
	Hepatocyte spheroids	Hepatic Metabolism	Expense, throughput	Soluble, non-volatile chemicals	In vitro but low throughput	Two week or greater running times for slowly metabolized chemicals	No
	individual bacterial species, intestinal content culture	Gut metabolism	anaerobic conditions, probably pH dependent, microbe-dependent	Soluble, non-volatile chemicals	low throughput	absorption of chemicals, alternative metabolism	No
	Vmax and KM	intrinsic clearance	Low Throughput, ideally would have method for parent and metabolites	soluble, non-volatile chemicals	low throughput	Saturation (non-linear) metabolism	No
Distribution	Plasma protein binding		Tradeoffs between speed and sensitivity	Soluble, non-volatile chemicals	High Throughput	Peak conc., partition coefficients	Yes (pharma and commercial)
	Blood:plasma ratio	Blood:plasma ratio, first pass hepatic metabolism		Soluble, non-volatile chemicals	High Throughput	More accurate prediction of systemic bioavailability	Yes (pharma and commercial)
	Transporters						
Absorption	Caco2, PAMPA		Mostly qualitative, skewed toward predicting "well absorbed"	Soluble, non-volatile chemicals	In vitro but low throughput	Identifies key routes of exposure	Yes (pharma only)
Elimination	Plasma protein binding		Tradeoffs between speed and sensitivity	Soluble, non-volatile chemicals	High Throughput	Peak conc., partition coefficients	Yes (pharma and commercial)

15 of 39 Office of Research and Development

See Coecke et al. (2013), Breen et al. (2021)

Analytical Chemistry is a Key Bottleneck

- Most HTTK *in vitro* assays require chemical-specific method to quantify changes in chemical concentration
- Assays requires ~2 mg neat compound sometimes hard to procure
- For some chemicals "typical" methods like liquid or gas chromatography mass spectrometry do not work
- Other chemicals are obscured by matrix effects for example, similar biological components of the assay

Lots of help from Kathy Coutros and Tony Williams

Best Practices for HTTK Data

- Multiple governments and organizations continuing to collect *in vitro* data for HTTK
- Various approaches, including R package "httk" try to summarize these data
- EPA is interested in standardizing data analysis
 - Project led by Sarah Davidson-Fritz
 - Working on new R package "invitroTKstats"
 - Ensure all necessary measurements and metadata are recorded
 - Structure data to support potential future databases

Pharm Res (2019) 36: 113 https://doi.org/10.1007/s11095-019-2645-0

RESEARCH PAPER

Interlaboratory Variability in Human Hepatocyte Intrinsic Clearance Values and Trends with Physicochemical Properties

Check for

updates

Christine M. Bowman¹ • Leslie Z. Benet¹ ()

Received: 7 March 2019 / Accepted: 10 May 2019 / Published online: 31 May 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Open Source Models

18 of 39 Office of Research and Development

Generic PBK/PBPK/PBTK Models

- A standardized physiology is assumed, regardless of chemical:
 - The same parameters such as volumes, flows, and rates are used
 - The same processes are included (hepatic metabolism, glomerular filtration) or omitted
- A fixed set of descriptors (such as rate of metabolism and protein binding) are varied from chemical to chemical and potentially measured in vitro
- The generic model is implemented once, reducing the likelihood of coding errors and enhancing documentation
- We can estimate the accuracy of a generic model for a new chemical using performance across multiple chemicals where data happen to exist

Open Source, Verifiable, Reproducible

TOXICOLOGICAL SCIENCES **126(1)**, 5–15 (2012) doi:10.1093/toxsci/kfr295 Advance Access publication November 1, 2011

Physiologically Based Pharmacokinetic Model Use in Risk Assessment—Why Being Published Is Not Enough

Eva D. McLanahan,*^{,1} Hisham A. El-Masri,† Lisa M. Sweeney,‡ Leonid Y. Kopylev,|| Harvey J. Clewell,§ John F. Wambaugh,¶ and P. M. Schlosser||

"Although publication of a PBPK model in a peerreviewed journal is a mark of good science, subsequent evaluation of published models and the supporting computer code is necessary for their consideration for use in [Human Health Risk Assessments]"

Key considerations during PBTK model development, evaluation, and applications for Human Health Risk Assessment

HT-PBTK Models from EPA

Evaluation with Legacy In Vivo Data

22 of 39 Office of Research and Development

CvtDB: An In Vivo TK Database

https://github.com/USEPA/CompTox-PK-CvTdb

- The most important thing for evaluating PBK/PBPK/PBTK is evaluation data
- EPA has developed a public database of concentration vs. time data for building, calibrating, and evaluating TK models
- Curation and development is ongoing, but to date includes:
 - >200 analytes (EPA, National Toxicology Program, Showa Pharmaceutical University, literature)
 - Routes: Intravenous, dermal, oral, sub-cutaneous, and inhalation exposure
- Efforts led at EPA by Risa Sayre and Taylor Wall

Sayre et al. (2020)

- To evaluate a **chemical-specific TK model** for "chemical x" you can compare the predictions to *in vivo* measured data
 - Can estimate bias
 - Can estimate uncertainty
 - Can consider using model to extrapolate to other situations (dose, route, physiology) where you have no data

- To evaluate a chemical-specific TK model for "chemical x" you can compare the predictions to *in vivo* measured data
 - Can estimate bias
 - Can estimate uncertainty
 - Can consider using model to extrapolate to other situations (dose, route, physiology) where you have no data
- However, we do not typically have TK data

- To evaluate a chemical-specific TK model for "chemical x" you can compare the predictions to *in vivo* measured data
 - Can estimate bias
 - Can estimate uncertainty
 - Can consider using model to extrapolate to other situations (dose, route, physiology) where you have no data
- However, we do not typically have TK data
- We can parameterize a generic TK model, and evaluate that model for as many chemicals as we do have data
 - We do expect larger uncertainty, but also greater confidence in model implementation
 - Estimate bias and uncertainty, and try to correlate with chemical-specific properties

Predicted Concentrations

Cohen Hubal et al. (2019)

- To evaluate a chemical-specific TK model for "chemical x" you can compare the predictions to *in vivo* measured data
 - Can estimate bias
 - Can estimate uncertainty
 - Can consider using model to extrapolate to other situations (dose, route, physiology) where you have no data
- However, we do not typically have TK data
- We can parameterize a generic TK model, and evaluate that model for as many chemicals as we do have data
 - We do expect larger uncertainty, but also greater confidence in model implementation
 - Estimate bias and uncertainty, and try to correlate with chemical-specific properties
 - Can consider using model to extrapolate to other situations (chemicals without *in vivo* data)

Cohen Hubal et al. (2019)

- To evaluate a chemical-specific TK model for "chemical x" you can compare the predictions to *in vivo* measured data
 - Can estimate bias
 - Can estimate uncertainty
 - Can consider using model to extrapolate to other situations (dose, route, physiology) where you have no data
- However, we do not typically have TK data
- We can parameterize a generic TK model, and evaluate that model for as many chemicals as we do have data
 - We do expect larger uncertainty, but also greater confidence in model implementation
 - Estimate bias and uncertainty, and try to correlate with chemical-specific properties
 - Can consider using model to extrapolate to other situations (chemicals without *in vivo* data)

Х

Evaluating the Confidence in HTTK

- WHO recommends TK model predictions generally be within a factor of 2, on average
- For HTTK, summary statistics such as peak concentration and time-integrated ("area under the curve" or AUC) concentration:
 - Wang (2010): For 54 pharmaceutical clinical trials the predicted AUC differed from observed by 2.3x
 - Linakis et al. (2020): RMSE = 0.46 or 2.9x for peak concentration and RMSE = 0.5 or 3.2x for AUC
 - Wambaugh et al. (2018): For 45 chemicals of both pharmaceutical and nonpharmaceutical nature, RMSE of 2.2x for peak and 1.64x for AUC
 - Pearce et al. (2017b): The calibrated method for predicting tissue partitioning that is included in httk predicted human volume of distribution with a RMSE of 0.48 (3x)

Key Exposure Routes

30 of 39 Office of Research and Development

High Throughput Translation of In Vitro PODs

The combination of *in vitro* TK measurements or structure-based predictions with a high throughput PBTK model allows *in vitro* points of departure to be translated into *in vivo* equivalent doses

IVIVE with Dermal HTTK Model

Distribution of EADs for 8 hours expsoure to 10% of skin SA which result in "safe" plasma concentrations (10th percential of AC50 via IVIVE)

Do we need to wear gloves?

Use dermal HTTK to translate *in vitro* points of departure to concentration (PPM) in solution needed to achieve POD in blood after soaking hands for eight

Statistic hours

Bioactivity

Needs Protection EAD<1ppm Possibly "Safe" 1ppm<EAD<1 million ppm "Safe" EAD>1 million ppm Infinite EAD EAD=infinity

Work by Annabel Meade

IVIVE with Dermal HTTK Model

Distribution of EADs for 8 hours expsoure to 10% of skin SA which result in "safe" plasma concentrations (10th percential of AC50 via IVIVE)

Do we need to wear gloves?

Use dermal HTTK to translate *in vitro* points of departure to concentration (PPM) in solution needed to achieve POD in blood after soaking hands for eight

Statistic hours

Needs Protection EAD<1ppm Possibly "Safe" 1ppm<EAD<1 million ppm "Safe" EAD>1 million ppm Infinite EAD EAD=infinity

Work by Annabel Meade

IVIVE with Dermal HTTK Model

Distribution of EADs for 8 hours expsoure to 10% of skin SA which result in "safe" plasma concentrations (10th percential of AC50 via IVIVE)

Do we need to wear gloves?

Use dermal HTTK to translate *in vitro* points of departure to concentration (PPM) in solution needed to achieve POD in blood after soaking hands for eight hours

Statistic

Mean Median

Bioactivity

Needs Protection EAD<1ppm Possibly "Safe" 1ppm<EAD<1 million ppm "Safe" EAD>1 million ppm Infinite EAD EAD=infinity

Work by Annabel Meade

Accessibility

Open-Source Tools and Data for HTTK <u>https://CRAN.R-project.org/package=httk</u>

CCD S Article Reque	est 🧭 PeoplePlus 🦁 Iravel 🛹 EHP 💝 Change Password 🧔 Virtual Machine 🥥 RAPID 🧧 Bitbucket 🥥 Jira 🧭 HERO 🛃 STICS 🍕	Sharedrive Request	S Concur 📗 Employee Express S FAITAS S Confluence 💘 Congratulations - S S dexp
httk: High-T	hroughput Toxicokinetics		
Pre-made model toxicokinetics (" characterizing to one compartmen species. High the statistical evalua compiled (C-bas parameter uncert distribution (Pea	Is that can be rapidly tailored to various chemicals and species using chemical-specific in vitr 'TK") and in vitro-in vivo extrapolation ("IVIVE") into bioinformatics, as described by Per- oxicokinetics have been obtained from relatively high-throughput experiments. The chemic nt) "TK" models included here can be parameterized with in vitro data or in silico predictic roughput toxicokinetics ("HTTK") is the combination of in vitro data and generic models. ation of HTTK predictions for chemicals where in vivo data do exist. The models are syste sed) code for speed. A Monte Carlo sampler is included for simulating human biological va- tainty (Wambaugh et al., 2019 < <u>doi:10.1093/toxsci/kf2205</u> >). Empirically calibrated meth- parce et al. 2017 <doi:10.1007 s10928-017-9548-7="">). These functions and data provide a set</doi:10.1007>	o data and ph ot al (2017 R	Discrete tools allow incorporation of chemical Discrete tools allow incorporation of chemical Discrete tools and tools and data for high
experiments (for Version:	r example, Tox21 To 101 double difference of the		throughput toxicokinetics (httk)
Depends:	$R (\geq 2.10)$	•	Available publicly for free statistical
Imports: Suggests:	deSolve, msm, data.table, survey, mvtnorm, truncnorm, stats, graphics, utils, magrittr, ggplot2, knitr, rmarkdown, R.rsp, GGally, gplots, scales, EnvStats, MASS, RColorBre		software R
Published: Author:	2023-02-20 John Wambaugh (D) [aut, cre], Sarah Davidson (D) [aut], Robert Pearce (D) [aut], C: Dustin Kapraun (D) [aut], Miyuki Breen (D) [ctb], Shannon Bell (D) [ctb], Xiaoqing	•	(IVIVE) and physiologically-based
Maintainer: BugReports:	[ctb], James Sluka () [ctb], Nisha Sipes () [ctb], Barbara Wetmore () [ctb], Wood John Wambaugh <wambaugh.john at="" epa.gov=""> <u>https://github.com/USEPA/CompTox-ExpoCast-httk</u></wambaugh.john>	٠	toxicokinetics (PBTK) Human-specific data for 987 chemicals
License: Copyright:	<u>GPL-3</u> This package is primarily developed by employees of the U.S. Federal government as pa	• It of men on	Described in Pearce <i>et al.</i> (2017a)
	https://www.ena.gov/chemical-research/rapid-chemical-exposure-and-dose-research		•

Modules within R Package "httk"

Feature	Description	Reference
Chemical Specific In Vitro Measurements	Metabolism and protein binding for ~1000 chemicals in human and ~200 in rat	Wetmore et al. (2012, 2013, 2015), plus others
Chemical-Specific <i>In Silico</i> Predictions	Metabolism and protein binding for ~8000 Tox21 chemicals	Sipes et al. (2017), Pradeep et al. (2020), Dawson et al. (2021)
Generic toxicokinetic models	One compartment, three compartment, physiologically-based oral, intravenous, and inhalation (PBTK)	Pearce et al. (2017a), Linakis et al. (2020), Kapraun et al. (2022)
Tissue partition coefficient predictors	Modified Schmitt (2008) method	Pearce et al. (2017b)
Variability Simulator	Based on NHANES biometrics	Ring et al. (2017), Breen et al. (2022
In Vitro Disposition	Armitage et al. (2014) model	Honda et al. (2019)
Uncertainty Propagation	Model parameters can be described by distributions reflecting uncertainty	Wambaugh et al. (2019)

Means of Obtaining HTTK

- SimCYP SimRFlow Tool (in use by EU-ToxRisk) (Khalidi et al., 2022)
- NICEATM Web-ICE (in use by NTP) (Bell et al., 2020)
- CompTox Chemicals Dashboard (in use by EPA) (Williams et al., 2017)
- TKPlate (in use by EFSA) (Dorne et al., 2018)
- R package "httk" (general informatics community, including EPA) (Pearce et al., 2017)
- All these tools make use of some or all data/models from R package "httk"

reflect the views or policies of the authors' institutions

Send Questions to: wambaugh.john@epa.gov

- IVIVE is critical to next generation risk assessment
 - NAMs are often high throughput, producing results for large numbers of chemicals
- HTTK is an approach the allows IVIVE for large numbers of chemicals
- HTTK relies on libraries of accessible, published, chemical-specific data
- Chemical-independent models exist to use these data to make predictions for various important scenarios including occupational and gestational exposures
 - Confidence in these models can be assessed through evaluation with legacy in vivo data
- "httk" is an open-source R package developed by EPA for performing HTTK provides the backbone for many different IVIVE tools
 The views expressed in this presentation are those of the author and do not necessarily

References

- Bell, Shannon, et al. "An integrated chemical environment with tools for chemical safety testing." *Toxicology in Vitro* 67 (2020): 104916.
- Breen, Miyuki, et al. "High-throughput PBTK models for in vitro to in vivo extrapolation." *Expert Opinion on Drug Metabolism & Toxicology* just-accepted (2021).
- Coecke, Sandra, et al. "Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches." Toxicology in vitro 27.5 (2013): 1570-1577.
- Dorne, Jean-Lou, et al. "Reconnecting exposure, toxicokinetics and toxicity in food safety: OpenFoodTox and TKplate for human health, animal health and ecological risk assessment." *54. Congress of the European Societies of Toxicology (EUROTOX 2018)*. Vol. 295. No. Suppl. 1. 2018.
- Khalidi, Hiba, et al. "SimRFlow: An R-based workflow for automated high-throughput PBPK simulation with the Simcyp[®] simulator." *Frontiers in Pharmacology* 13 (2022).
- Lowe, Charles N., et al. "Predicting compound amenability with liquid chromatography-mass spectrometry to improve non-targeted analysis." *Analytical and bioanalytical chemistry* 413 (2021): 7495-7508.

- OECD (2021) OECD (Organisation for Economic Co-operation and Development) OECD guidance document on the characterisation, validation and reporting physiologically-based kinetic models for regulatory purposes. Series on testing and assessment no. 331
- Paul Friedman, Katie, et al. "Utility of in vitro bioactivity as a lower bound estimate of in vivo adverse effect levels and in risk-based prioritization." Toxicological Sciences 173.1 (2020): 202-225.
- Pearce, Robert G., et al. "Httk: R package for high-throughput toxicokinetics." *Journal of Statistical Software* 79.4 (2017): 1.
- Sipes, Nisha S., et al. "An intuitive approach for predicting potential human health risk with the Tox21 10k library." *Environmental Science & Technology* 51.18 (2017): 10786-10796.
- Wetmore, Barbara A., et al. "Incorporating high-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing." Toxicological Sciences 148.1 (2015): 121-136.
- Williams, Antony J., et al. "The CompTox Chemistry Dashboard: a community data resource for environmental chemistry." *Journal of cheminformatics* 9 (2017): 1-27.

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the authors' institutions

Office of Research and Development