

Using Cheminformatics Approaches to Develop a Structure Searchable Database of Analytical Methods

Antony Williams, Greg Janesch, Sakuntala Sivasupramaniam, Tyler Carr and Nancy Baker

Center for Computational Toxicology & Exposure, U.S. Environmental Protection Agency

August 2023: ACS Fall Meeting, San Francisco, CA

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

 The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

 This presentation is on a proof-of-concept tool in development – NOT yet publicly available

- Simple Vision: I want to find the best method(s) associated with a chemical and/or class of chemicals
- Answer the question "I cannot find a method for my chemical" HELP
- The Approach:
 - Aggregate MS method documents (and adjust the definition of "what is a useful method")
 - Extract chemistry (mostly CASRN and Names)
 - Map CASRN and Names to structures
 - Deliver a proof-of-concept application to search a database by names, CASRNs, InChIKeys and ultimately structure

• People have many places to search for methods, and there is no one integration hub, except for search engines

 Search engines can return so many hits – then you filter by analytes, matrix, analytical methodology, so many synonyms and abbreviations for so many chemicals

Synonyms, Abbreviations and Chemicals

Open Access Published: 12 August 2015

Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry

	0.5% aniso	le in toluer	e (dopant A)
			Accuracy a
Compound	Linear Range (ng/mL)	R ²	10 ng/mL
ACPY	50–500	0.9978	98.8ª (7.6)
ACP	5–200	0.9998	98.0(3.6)
FLU	20–500	0.9954	103 ^b (2.5)
PHEN	2–500	0.997	101(6.0)
ANTHR	2–500	0.9976	101(5.1)
FL	2–200	0.9978	107(4.1)
PYR	2–200	0.9994	105(3.8)
BNT	2–500	0.9982	98.2(7.4)
CPP	2–500	0.9996	98.6(6.5)
BAA	2–500	0.9996	99.9(7.6)
CHRY	2–500	0.9994	98.9(5.3)
DET	2, 200	0.0074	

Food Control Volume 62, April 2016, Pages 322-329

Simultaneous analysis of twenty-six mycotoxins in durum wheat grain from Italy

The certified standards of AFB1, AFB2, AFG1, AFG2, <u>OTA</u>, STG, ZEN, NIV, DON, 3-AcDON, 15-AcDON, DAS, NEO, T-2 and HT-2 toxin, FB1, FB2, FB3, BEA, ENNs (A, A1, B, B1), AOH, AME, and TEN were purchased from Sigma Aldrich (Madrid, Spain).

The individual stock solutions of AFB1, AFB2, AFG1, AFG2, OTA, STG, ENs (A, A1, B, B1), BEA, AOH, AME, and TEN at 500µg/mL were prepared in acetonitrile, whereas ZEN, FB1, FB2, FB3, NIV, DAS, NEO, DON, 3-AcDON, 15-AcDON, T-2 and HT-2 toxin were prepared at 1000µg/mL in methanol. A working mixed standard solution at 5 and

 CAS Numbers, Names and Abbreviations can limit what's possible...

Might this be a better view?

Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects

Author: Laura Campo, Federica Rossella, Silvia Fustinoni Focus/Analyte: PAHs and their degradates

Synopsis: Determination of pAHs and their degradates in by GC/MS with a LOQ of 0.1-1.4ppb.

Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects

Laura Campo*, Federica Rossella, Silvia Fustinoni

Department of Occupational and Environmental Health, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy

Might this be a better view?

Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects

Author: Laura Campo, Federica Rossella, Silvia Fustinoni

Focus/Analyte: PAHs and their degradates

Synopsis: Determination of pAHs and their degradates in by GC/MS with a LOQ of 0.1-1.4ppb.

≡	1 / 10 - + 🕄 🔊	± 🖶 :
		A
	Journal of Chromatography B, 875 (2008) 531-540	
	Contents lists available at ScienceDirect	
	Journal of Chromatography B	50
ELSEVIER	journal homepage: www.elsevier.com/locate/chromb	- Checker

Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects

Laura Campo*, Federica Rossella, Silvia Fustinoni

Department of Occupational and Environmental Health, University of Milan and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy

Г				
	<u>Compounds (1</u>	<u>2) (grid)</u>	<u>Compounds (12) (table)</u>	
Download (Compound Info			
Structure	DTXSID	Links	CASRN Compound Name	
	DTXSID1038298	<u>Search</u>	5315-79-7 1-Hydroxypyrene	^
())-CH	DTXSID2047569	<u>Search</u>	2443-58-5 2-Hydroxyfluorene	
	DTXSID30227324	<u>Search</u>	7651-86-7 4-Hydroxyphenanthrene	
	DTXSID3052723	<u>Search</u>	605-87-8 3-Hydroxyphenanthrene	
	DTXSID4052683	<u>Search</u>	1689-64-1 Fluoren-9-ol	
ССС	DTXSID5027061	<u>Search</u>	135-19-3 2-Naphthalenol	
OH	DTXSID6021793	<u>Search</u>	90-15-3 1-Naphthol	•

When methods are mapped to chemistry...

- The advantages of mapping chemicals directly to methods
 - When chemicals are mapped it opens access to many other tools
 - Chemical structures allow for QSAR modeling

```
Transparency in Modeling through Careful Application of OECD's
                               QSAR/QSPR Principles via a Curated Water Solubility Data Set
                               Charles N. Lowe*, Nathaniel Charest*, Christian Ramsland, Daniel T. Chang, Todd M. Martin, and Antony J. Williams
                               ✓ Cite this: Chem. Res. Toxicol. 2023, 36, 3, 465–478
                                                                        Article Views
                                                                                     Altmetric
                                                                                                Citations
                                                                                                                    Share
                                                                                                                         Add
                                                                       OPERA models for predicting physicochemical
Predicting compound amenability with liquid
                                                                       properties and environmental fate endpoints
chromatography-mass spectrometry to improve non-
                                                                        Kamel Mansouri 🖾, Chris M. Grulke, Richard S. Judson & Antony J. Williams
Charles N. Lowe 🖾, Kristin K. Isaacs, Andrew McEachran, Christopher M. Grulke, Jon R. Sobus, Elin M.
Ulrich, Ann Richard, Alex Chao, John Wambaugh & Antony J. Williams
                                                                       Journal of Cheminformatics 10, Article number: 10 (2018) Cite this article
```

17k Accesses 221 Citations 25 Altmetric Metrics

```
Analytical and Bioanalytical Chemistry 413, 7495–7508 (2021) Cite this article
```

targeted analysis

...and what if we could then profile toxicity?

...and what if we could then profile toxicity?

Cheminformatics Moc version: PRD, build: 2023-03-0	cheminformatics Modules ersion: PRD, build: 2023-03-09 06:08:29 UTC																			
Human Health Effects																Ecoto	oxicity		Fate	
Skipped (0)	Acute M	lammaliar	n Toxicity		nicit				Neuro	toxicity	Systemi	c Toxicity				>	city			
Unlikely (0)				icity	/ Mutagei	Jisruption	e	ntal	osure	sure	osure	sure	zation	Ę	F	tic Toxicit	latic Toxic		ation	
Sorting (1)	_	lation	nal	cinogen	otoxicity	ocrine [roductiv	elopmei	eat Exp	gle Expo	eat Exp	gle Expo	ı Sensiti	Irritatio	Irritatio	te Aqua	onic Aqu	sistence	accumul	osure
Name	Oral	Inha	Den	Caro	Gen	End	Rep	Dev	Rep	Sing	Rep	Sing	Skin	Skin	Eye	Acu	Chre	Pers	Bioa	Exp
484-17-3 ^{MMM}	М			Н	н	Н		н					Н			VH			L	Н
9-Phenanthrol																				
135-19-3 GBTMM	м	м	L	I	L	н	Т	I.	н	н	н	н	н	L	н	VH	VH	М	L	Н
2-Naphthalenol																				
90-15-3 HGBTM	м	T	м	I	T	н	Т	н	Т		н	м	н	н	νн	VH	L	М	L	М
1-Naphthol				And the second	A														-	

...or simply harvest data from the CompTox Chemicals Dashboard

What data would you like???

Presence in Lists

Cher	nical Identifiers
	DTXSID
	Chemical Name
	DTXCID
	CAS-RN
	InChIKey
	IUPAC Name
Strue	ctures
	Mol File
	SMILES
	InChl String
	MS-Ready SMILES
	QSAR-Ready SMILES
Intrir	nsic and Predicted Properties
	Molecular Formula

Molecular Formula	
Average Mass	
Monoisotopic Mass	
TEST Model Predictions	
OPERA Model Predictions	
ToxPrint fingerprints (Chemo	oTyper)
ToxPrint single fingerprints	

Metadata

Curation Level Details Safety Data NHANES/Predicted Exposure Data Sources

Include ToxVal Data Availability

Assay Hit Count

Number of PubMed Articles

PubChem Data Sources

CPDat Product Occurrence Count

IRIS

PPRTV

Wikipedia Article

QC Notes

Include links to ACToR reports

Enhanced Data Sheets

MetFrag Input File (Beta)

Abstract Sifter Input File

Synonyms and Identifiers

Related Substance relationships

Associated ToxCast Assays

ToxVaIDB Details

Physicochemical Property Values

Title	$\equiv \mid$ Description \equiv	
□ 40CFR1164 🗹	40 CFR 116.4 Designation of Hazardous Substa nces (Above Ground Storage Janks) 🕕	
40CFR355 🗹	40CER355 Extremely Hazardous Substance List and Threshold Planning Quantities 1	
ACSREAG 🗹	LIST: ACS_Reagent_Chemicals_	
AEGLVALUES 🗹	AEGLS: Acute Exposure Guideline Levels 📑	
AGCHEMWEAPONS 🗗	WEAPONS: Australia Group 🛛 🕕	
ALGALTOX 🗹	LIST: Algal_Toxins_6	
ALLSURFACTANTS 🗹	CATEGORY: Surfactants 1	
AMINOACIDS 🗹	CATEGORY: Amino acids 🔳	
AMPHIBOLES 🗹	Amphibole minerals _ 🕄	
ANITMICROB2 🗹	Antimicrobial Ingredients in Building Materials	
ANTIBIOTICS 🗗	CATEGORY PHARMACEUTICALS: Antibiotics _	
ANTIMICROBIALS 🗹	CATEGORY WIKILIST ANTIMICROBIALS: Antimi crobials from Wikipedia _0	
□ AOPSTRESSORS 🗗	List of Adverse Outcome Pathway, Stressors _	•
<	▶	

Rows: 424

Introducing AMOS Analytical Methods and Spectra Database

SEPA

- Three types of data in the database:
 - Methods (regulatory, lab manuals and SOPs, publications, tech notes)
 - Spectra (from public domain and our own laboratories)
 - Monographs (harvested from SWGDRUG and other sites)
- Some methods have associated spectra
- Some data are just *externally* linked
- Currently contains around 195,000 spectra, 700,000 external links, 800 "Fact Sheets" and ~3500 methods
- ALL data are growing in number

Where are there methods?

- Agency-based methods
 - EPA, USGS, USDA, CDC, FDA, OSHA, DEA, ...
- ASTM and ISO methods
- Vendor application notes Thermo, Waters, Agilent, Sciex, Shimadzu, LECO,
- Peer-reviewed articles
- Laboratory Documents lab manuals, SOPs

A view of the methods list

Method #	Name	Year	Methodology	Source $\downarrow \equiv$	Analyte	Chemical Class	Matrix	# Compounds
□ ∇	∇	∇	∇	□ ▼				
10.1155/2015/592763	Development and V	2015	GC/ECD	Hindawi	Metamitron		Soil	1
JAMC-8838219	Development and A	2020	LC/MS	Hindawi	Antituberculosis Dr		Serum (human)	4
PMC-AL-2074-2088	Quantitation of Phe	2021	LC/MS	HHS	Phenolic benzotriaz		Plasma (rat)	9
10.1016/j.foodcont.2023.109772	Determination of 63	2023	HPLC/MS	Food Control	Mycotoxins		Grain products	62
10.1016/j.foodchem.2016.05.151	<u>QuEChERS-based p</u>	2016	HPLC/MS	Food Chemi	Quaternary ammoni	Surfactant	Dairy products	7
C-010.02	Determination of 16	2021	LC/MS	FDA	PFAS		Processed food	16
C-011.01	Determination of Ch	2019	LC/MS	FDA	Chloramphenicol an		Cobia, croaker, and shrimp	2
T-PFAS-WI14355	Polyfluorinated alkyl	2018	LC/MS	Eurofins	PFAS		Aqueous samples	22
10.1186/s12302-021-00556-1	Method developme	2021	HPLC/MS	Environment	Microcystins	Cyanotoxin	Water (surface)	8
10.1039/C9EM00554D	Comprehensive scre	2020	LC/MS	Environment	Quaternary ammoni	Surfactant	Sediment, water (waste)	28
Method 545	Method 545: Deter	2015	LC/MS	EPA-OW	Anatoxin-a, Cylindro	Cyanotoxin	Water (finished)	2
GRM-91.10	<u>2018-06-44045101-</u>	1995	Immunoassay	EPA-ECM	Spinosad		Water	15
GRM-94.21	<u>2018-06-44045102-</u>	1995	Immunoassay	EPA-ECM	Spinosad		Sediment	15
GRM-94.20	<u>2018-06-44045103-</u>	1995	HPLC/UV	EPA-ECM	Spinosad and its de		Soil/sediment	5
GRM-94.12	<u>2018-06-44045105-</u>	1995	HPLC/UV	EPA-ECM	Spinosad and its de		Water	5
D9513	<u>2018-06-44084504-</u>	1995	LC/MS	EPA-ECM	Quinclorac and its d		Soil (sand, sandy loam)	3
D9513	<u>2018-06-44086601-</u>	1996	LC/MS	EPA-ECM	Quinclorac and its d		Soil (sand, sandy loam)	3
RAM-278/01	<u>2018-06-44104807-</u>	1996	LC/MS	EPA-ECM	Tralkoxydim		Soil	3

Filtering the list for interests...

• Look for pesticides studied in water, by GC/MS, after 1990

Method #	Name	Year 🖓	Method ∇	Source		Analyte	Chemical Class 🖓	Matrix 🗸	# Compounds
Σ		1990	7		∇	∇	pesticides $ abla$	water	
EPA-1656a	Method 1656, Revision A:	2020	Greater than	~		Organohalide pesticides	Pesticides	Wastewater, soil, sludge, sedimen	31
EPA-1657a	Method 1657, Revision A:	2020	1990			Organophosphorus Pestici	Pesticides	Wastewater, soil, sludge, sedimen	47
EPA-608.1	Organochlorine Pesticides i	1993		2		Organochlorine pesticides	Pesticides	Water (municipal waste, industrial	7
EPA-608.2	Certain Organochlorine Pes	1993	Equals	~		Organochlorine pesticides	Pesticides	Water (municipal waste, industrial	6
EPA-614	Organophosphorus Pestici	1992	Filter			Organophosphorus pestici	Pesticides	Water (municipal waste, industrial	8
EPA-614.1	Organophosphorus Pestici	1992	GC	USEPA		Organophosphorus pestici	Pesticides	Water (municipal waste, industrial	4
EPA-617	Organohalide Pesticides an	1992	GC	USEPA		Organohalide pesticides an	Pesticides	Water (municipal waste, industrial	25
EPA-619	Triazine Pesticides in Munic	1992	GC/MS	USEPA		Triazine pesticides	Pesticides	Water (municipal waste, industrial	11
EPA-622	Organophosphorus Pestici	1992	GC	USEPA		Organophosphorus pestici	Pesticides	Water (municipal waste, industrial	20
EPA-622.1	Thiophosphate Pesticides i	1992	GC/AFD	USEPA		Thiophosphate pesticides	Pesticides	Water (municipal waste, industrial	7
Method-507	Determination of nitrogen	1995	GC/NPD	USEPA		Nitrogen and phosphorus	Pesticides	Water (ground, finished)	46
AOAC-990.06	Organochlorine Pesticides i	1002	GC/ECD	NEMI		Organochlorine nesticides	Desticides	Water (finished)	29

Where are there methods?

900 method documents from the EPA harvested

Related Topics: Pesticide Analytical Methods

CONTACT US

Environmental Chemistry Methods (ECM) Index - 0-9

 $\mathbf{0-9} \ | \ \underline{A} \ | \ \underline{B} \ | \ \underline{C} \ | \ \underline{D} \ | \ \underline{E} \ | \ \underline{F} \ | \ \underline{G} \ | \ \underline{H} \ | \ \underline{I} \ | \ \underline{K} \ | \ \underline{L} \ | \ \underline{M} \ | \ \underline{N} \ | \ \underline{O} \ | \ \underline{P} \ | \ \underline{Q} \ | \ \underline{R} \ | \ \underline{S} \ | \ \underline{I} \ | \ \underline{V} \ | \ \underline{Z}$

Analyte(s) by Pesticide	ECM MRID	Matrix	Method Date
<u>1,2,4-triazole</u>	49762553	Water	2/19/13
<u>1,3-dichloropropene & 1,2-dichloropropane</u>	44536511	Soil	3/27/98
<u>1,3-dichloropropene & 1,2-dichloropropane</u>	44536511	Water	3/27/98
<u>1,3-dichloropropene Degradate 3-chloroallyl Alcohol</u>	44536505	Water	12/12/97

Many Scanned Documents!!!

- Methods generally developed by the agrochemical companies
- Include parents *plus* degradation products
- Lots of scanned, old, documents but the historical records are still of significant use
- Electronic document forms of old documents still of benefit

GRM.: 94.13 EFFECTIVE: July 26, 1995 SUPERSEDES: New

Determination of Residues of 1,2-Dichloropropane and *cis*- and *trans*-1,3-Dichloropropene in Soil by Purge and Trap Extraction, Capillary Gas Chromatography and Mass Selective Detection

S. C. Dolder, C. E. Kubitschek and H. E. Dixon-White North American Environmental Chemistry Laboratory DowElanco Indianapolis, Indiana 46268 - 1053

A. Scope

This method is applicable for the quantitative determination of residues of 1,2dichloropropane (1,2-D) and *cis*- and *trans*-1,3-dichloropropene (1,3-D) in soil over the concentration range of 0.200-160,000 μ g/kg with a validated limit of quantitation of 0.200 μ g/kg for each compound.

Embedding the old Method PDFs

Search Results for "Imazapyr"

(Preferred) Name: Imazapyr DTXSID: <u>DTXSID8034665</u> CASRN: 81334-34-1 InChIKey: CLQMBPJKHLGMQK-UHFFFAOYNA-N Molecular Formula: C13H15N3O3 Mass: 261.281

Imazapyr

MRID: 41891501 Date: 10/1/89 Matrix: Water Registrant: American Cyanamide Co Analysis: HPLC/UV Limit of Quantitation: 5.0 µg/L

Spectrum Type 1	Source	Record Type	View
	Environmental Chemistry Methods	Method	PDF
	Environmental Chemistry Methods	Method	PDF
LC-MS+	MoNA	Spectrum	Spectrum
LC-MS+	MassBank EU	Spectrum	Spectrum
LC-MS+	MassBank EU	Spectrum	Spectrum
LC-MS+	MassBank EU	Spectrum	Spectrum
LC-MS+	MassBank EU	Spectrum	Spectrum
LC-MS+	MassBank EU	Spectrum	Spectrum

Embedding New Method PDFs

SEPA United Sta Environmy Agency	lates lental Protection							Search EPA.gov Q
			Environmental Topics	Laws & Regulations	About EPA			
Search Term	Search					Home	<u>Monograph List</u>	About this App Toggle Header/Footer
Search Resu	ults for "Retin (Prefer DTXSI CASRI InChIH Molecu Mass: 2	ol'' red) Name: Retinol D: <u>DTXSID3023556</u> N: 68-26-8 Xey: FPIPGXGPPPQFI lar Formula: C20H30 286.459	EQ-OVSJKPMPSA-N O	Determination Extraction wit Author: Hui Zha Focus/Analyte: Synopsis: This a (retinol), vitamin matrices, includia extracted using A were then simult detector (DAD) a workstation softw	ao Reliable sample pplication note of D3 (cholecalcifing infant formul Agilent Chem Ehaneously identifiand Agilent 6470 ware.	luble Vitamins in) and LC/MS/MS preparation and identificat describes a method for the of ferol), vitamin D2 (ergocald a, egg, canned tuna, and mu ut S (Supported Liquid Ext ied and quantified by an Ag 0 triple quadrupole LC/MS	Foods Using Triple-Qua on/quantitation in v letermination of fat iferol), and vitamin ishroom. Samples v action (SLE)) 12 m ilent 1290 Infinity in series. Data were	g Agilent Chem Elut S drupole various food matrices -soluble vitamins, including vitamin A $t \in (\alpha$ -tocopherol) in complex food were saponified as sample pretreatment, t L cartridges, and fat-soluble vitamins II LC coupled to an Agilent diode array e analyzed using Agilent MassHunter
Spectrum Type ▽ ↑	Source	Record Type	View	PDF Viewe	er	Compounds (g	rid)	Compounds (table)
GC-MS	Spectrabase	Spectrum	External Link					
GC-MS	Spectrabase	Spectrum	External Link	Determination	of Fat-Solubl	1 / 13 - 100%	+ 🗄 🕎	± 🖶 :
GC-MS	Spectrabase	Spectrum	External Link					
GC-MS	Spectrabase	Spectrum	External Link					
GC-MS	Spectrabase	Spectrum	External Link					
GC-MS	Spectrabase	Spectrum	External Link	Application N	lote			Agilent
GC-MS	<u>Spectrabase</u>	Spectrum	External Link	Food Testing	&			
GC-MS	Spectrabase	Spectrum	External Link	Agriculture				Indstell Allsweis
LC-MS	<u>Agilent</u>	Method	PDF					
LC-MS+	MoNA	Spectrum	Spectrum					

When Methods are OPEN Access

Optimization of Analytical Conditions to Determine Steroids and Pharmaceuticals Drugs in Water Samples Using Solid Phase-Extraction and HPLC

Author: Ramiro Vallejo-Rodríguez, Alberto Lopez-Lopez, Hugo Saldarriaga-Noreña, Mario Murillo-Tovar, Leonel Hernández-Mena

Focus/Analyte: 17beta-Estradiol, 17-epi-Ethynylestradiol, Naproxen, Ibuprofen

Synopsis: Optimization of Analytical Conditions to Determine Steroids and Pharmaceuticals Drugs in Water Samples Using Solid Phase-Extraction and HPLC

```
≡ 1 / 8 | − + | 🗄 🕎 👱 👼
```

American Journal of Analytical Chemistry, 2011, 2, 863-870 doi:10.4236/ajac.2011.28099 Published Online December 2011 (http://www.SciRP.org/journal/ajac)

Optimization of Analytical Conditions to Determine Steroids and Pharmaceuticals Drugs in Water Samples Using Solid Phase-Extraction and HPLC

Ramiro Vallejo-Rodríguez¹, Alberto Lopez-Lopez¹, Hugo Saldarriaga-Noreña², Mario Murillo-Tovar¹, Leonel Hernández-Mena¹ ¹Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ); Normalistas 800, Colinas de la Normal, Guadalajara, México ²Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, República Ote., Saltillo, México E-mail: alope=103@yahoo.com; allope=@ciatej.net.mx Received August 22, 2011; revised October 4, 2011; accepted October 18, 2011

When Methods are PubMed OPEN Access

Quantitation of Phenolic Benzotriazole Class Compounds in Plasma by Liquid Chromatography– Tandem Mass Spectrometry

Author: Ersa Mutlu, Natalie South, Jessica Pierfelice, Alison Djonabaye, Mindy Pauff, Brian Burback, Suramya Waidyanatha

Focus/Analyte: Phenolic benzotriazole compounds

Synopsis: Determination of phenolic benzotriazole compounds in plasma (rat) by LC/MS with a LOQ of 5.0-10.0ppb.

Proprietary Methods for INTERNAL Access

Standard Test Method for Determination of Polyfluorinated Compounds in Soil by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)

Author: ASTM International Focus/Analyte: PFAS Synopsis: Determination of PFAS in soil (clay, sand, silt) by LC/MS.

≡	1 / 24 —	+ 🕄	গ	±ē	:
This internat	tional standard was developed in accordance with internationally recognize	ed principles on standardizatio	on established in the Decision o	on Principles for the	A
Develop	pment of International Standards, Guides and Recommendations issued by t	he World Trade Organization	Technical Barriers to Trade (TB	T) Committee.	- 15
	Designation: D7968 - 17a				
	Standard Test Method for Determination of Polyfluorinated Liquid Chromatography Tandem MS/MS) ¹	d Compounds n Mass Spectro	in Soil by ometry (LC/		
	This standard is issued under the fixed designation D7968; the numb original adoption or, in the case of revision, the year of last revision. superscript epsilon (ϵ) indicates an editorial change since the last revi	per immediately following the A number in parentheses indica ision or reapproval.	designation indicates the year of tes the year of last reapproval.	of A	
1. Scope 1.1 Thi polyfluori solvent ex phy (LC)	is procedure covers the determination of selected inated compounds (PFCs) in a soil matrix using straction, filtration, followed by liquid chromatogra- and detection with tandem mass spectrometry (MS/	calibration standard as s compounds after taking a final extract volume o 0.1 % acetic acid. The 10 mL because 10 mL a	shown in Table 2 for the g into account a 2-g sam f 10 mL, 50 % water/50 final extract volume is of 50 % water/50 % Me	polyfluorinated pple weight and % MeOH with assumed to be OH with 0.1 %	1

If there is no method for your chemical

- Use "Chemical Similarity Searching" so that you can find chemicals that are similar in structure space
- Use the "Tanimoto Similarity Search"

dronmental Protection

Searching for a chemical – CASRN, Name Direct structure searching coming

Compound Identifier Diclobutrazol

Method Search

The table below lists methods for compounds that are similar to "DTXSID2058178".

Select a row in the table to view the method on the right half of the screen. Bolded rows refer to methods which contain the chemical being searched.

Hover over a method name to see the full text of it. The number in parentheses at the end is the number of similar compounds found in the method (not necessarily the number of compounds present in the method).

Columns can be hidden by clicking on the menu icon seen when hovering over a column name -- this brings up a menu where column visibility can be toggled.

Method 1656, Revision A: Organo-Halide Pesticides in Wastewater, Soil, Sludge, Sediment, and Tissue by GC/HSD

Author: EPA-OW

Focus/Analyte: Organohalide pesticides

Synopsis: Determination of organohalide pesticides in wastewater, soil, sludge, sediment, and fish tissue by GC/HSD with a MDL of 300-2000000ppb.

Method Name (# compounds) Source Methodolog	y Year Simi ↓ Similar DTXSID Compou	PDF Viewer Compounds (31) (grid)	<u>Compounds (31) (table)</u>		
> Method 1656, Revision A: Organ USEPA GC/HSD	2020 > 0.94				
> Methods of analysis-Determinat USGS GC/MS	2012 > 0.85	\blacksquare Method 1 1 / 59 $-$ 72% $+$ $[$	* * = :		
> Analysis of Endocrine Disrupting	> 0.85		\checkmark \rightarrow \mathbf{P}		
> Determination of pesticides and USGS LC/MS	2015 > 0.85		^		
> A method for the analysis of 121	> 0.85				
> Analysis of Pesticides in Food Sa	> 0.85	Environmental Protection			
> 2021-09-der-tebuconazole-soil- EPA-ECM	2018 > 0.85	Agency			
> 2021-09-der-tebuconazole-wate EPA-ECM	2018 > 0.85	Office of Water			
> 2021-09-ecm-tebuconazole-soil EPA-ECM	2018 > 0.85				
> 2021-09-ecm-tebuconazole-wat EPA-ECM	2018 > 0.85	www.epa.gov September 2000			
> 2021-09-ilv-tebuconazole-soil-n EPA-ECM	2018 > 0.85				

When Methods are Not Enough

- EPA is highly active in the field of non-targeted analysis
- We have been applying lots of cheminformatics approaches

"MS-Ready" structures for non-targeted highresolution mass spectrometry screening studies

Andrew D. McEachran ^[], <u>Kamel Mansouri</u>, <u>Chris Grulke</u>, <u>Emma L. Schymanski</u>, <u>Christoph Ruttkies</u> & <u>Antony J. Williams</u> ^[]

Journal of Cheminformatics10, Article number: 45 (2018)Cite this article6215Accesses45Citations14AltmetricMetrics

in metabolites

Article Revisiting Five Years of CASMI Contests with EPA Identification Tools

Andrew D. McEachran ^{1,*}, Alex Chao ¹, Hussein Al-Ghoul ¹, Charles Lowe ², Christopher Grulke ², Jon R. Sobus ² and Antony J. Williams ^{2,*}

Linking *in silico* MS/MS spectra with chemistry data to improve identification of unknowns

Andrew D. McEachran , Ilya Balabin, Tommy Cathey, Thomas R. Transue, Hussein Al-Ghoul, Chris Grulke, Jon R. Sobus & Antony J. Williams

Scientific Data6, Article number: 141 (2019)Cite this article5422Accesses23Citations11AltmetricMetrics

Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

Andrew D. McEachran [⊡], Jon R. Sobus & Antony J. Williams [⊡]

Analytical and Bioanalytical Chemistry **409**, 1729–1735 (2017) Cite this article

2748 Accesses | 76 Citations | 31 Altmetric | Metrics

Building a spectrum library to search against

whonmental Protection

haeney

Linking to actual spectra

33 Results for "aflatoxin B1"

(Preferred) Name: Aflatoxin B1 DTXSID: <u>DTXSID9020035</u> CASRN: 1162-65-8 InChIKey: OQIQSTLJSLGHID-WNWIJWBNSA-N Molecular Formula: C17H12O6 Mass: 312.0634

Download Results

Display Single Point Spectra

					1
<u>All Results (33)</u>		<u>Spectra (23)</u>		<u>Monographs (0)</u>	
/ethodology ↑	Source	Record Type	In	formation	
GC/MS	MoNA	Spectrum	EI	-B; Positive; # PEAKS=29	
.C-ESI-ITFT	MassBank EU	Spectrum	LC	C-ESI-ITFT; MS2; CE: 30; R=1750	0; [M+ŀ
LC-ESI-ITFT	MassBank EU	Spectrum	LC	C-ESI-ITFT; MS2; CE: 35; R=1750	0; [M+ŀ
LC-ESI-ITFT	MassBank EU	Spectrum	LC	C-ESI-ITFT; MS2; CE: 50; R=1750	0; [M+ŀ
LC-ESI-ITFT	MassBank EU	Spectrum	LC	C-ESI-ITFT; MS2; CE: 35; R=1750	1+M] ;0
LC-ESI-ITFT	MassBank EU	Spectrum	LC	C-ESI-ITFT; MS2; CE: 50; R=1750	0; [M+1]
LC-ESI-QTOF	MassBank EU	Spectrum	LC	C-ESI-QTOF; MS2; CE: 20 eV; R=	35000;
LC-ESI-QTOF	MassBank EU	Spectrum	LC	C-ESI-QTOF; MS2; CE: 30 eV; R=	35000;
LC-ESI-QTOF	MassBank EU	Spectrum	LC	C-ESI-QTOF; MS2; CE: 40 eV; R=	35000;
LC-ESI-QTOF	MassBank EU	Spectrum	LC	C-ESI-QTOF; MS2; CE: 50 eV; R=	35000;
LC/MS	<u>MoNA</u>	Spectrum	М	S2; Positive; # PEAKS=160	
LC/MS	MoNA	Spectrum	М	S2; Positive; # PEAKS=133	

Below is a plot of the spectrum as intensities versus mass-to-charge ratios (m/z). Click and drag over a section of the horizontal axis to zoom; double click to zoom back out. Intensities are scaled so that the highest peak has a value of 100.

Mass Spectrum 100 90 80 70 Relative Intensity 60 50 40 30 20 10 Ω 100 150 200 250 300 m/z

Information

Number of Points: 38 Spectral Entropy: 2.9499

Linking to actual spectra

28

There are errors EVERYWHERE: 110-75-8

METHOD 601—PURGEABLE HALOCARBONS

Scope and Application 1.

This method covers the determination of 29 purgeable halocarbons. 1.1

The following parameters may be determined by this method:

Parameter	STORET No.	CAS No.
Bromodichloromethane	32101	75-27-4
Bromoform	32104	75-25-2
Bromomethane	34413	74-83-9
Carbon tetrachloride	32102	56-23-5
Chlorobenzene	34301	108-90-7
Chloroethane	34311	75-00-3
2-Chloroethylvinyl ether	34576	100-75-8
Chloroform	32106	67-66-3
Chloromethane	34418	74-87-3
Dibromochloromethane	32105	124-48-1

	~	U	0		L
	INPUT	FOUND_BY	DTXSID	PREFERRE	D_NAME
	75-27-4	CAS-RN	DTXSID102	Bromodichlo	romethane
	75-25-2	CAS-RN	DTXSID102	Bromoform	
	74-83-9	CAS-RN	DTXSID802	Methyl brom	nide
	56-23-5	CAS-RN	DTXSID802	Carbon tetra	achloride
	108-90-7	CAS-RN	DTXSID402	Chlorobenze	ene
	75-00-3	CAS-RN	DTXSID102	Chloroethan	e
	100-75-8	Checksum F	-	-	
	67-66-3	CAS-RN	DTXSID102	Chloroform	
0	74-87-3	CAS-RN	DTXSID002	Chlorometha	ane
1	124-48-1	CAS-RN	DTXSID102	Chlorodibror	momethane
2	95-50-1	CAS-RN	DTXSID602	1,2-Dichloro	benzene
3	541-73-1	CAS-RN	DTXSID602	1,3-Dichloro	benzene
	400 40 7	010 DU	DTVOID (00	4.4.851.11	

It can be challenging 9/365 chemicals...

Office of Water EPA 821-R-16-007

December 2016

www.epa.gov

Method 625.1: Base/Neutrals and Acids by GC/MS

витупате	2008-41-3
n-C10 (n-decane)	124-18-5
<i>n</i> -C12 (<i>n</i> -undecane)	112-40-2
<i>n</i> -C14 (<i>n</i> -tetradecane)	629-59-4
<i>n</i> -C16 (<i>n</i> -hexadecane)	544-76-3
<i>n</i> -C18 (<i>n</i> -octadecane)	593-45-3
<i>n</i> -C20 (<i>n</i> -eicosane)	112-95-8
<i>n</i> -C22 (<i>n</i> -docosane)	629-97-0
<i>n</i> -C24 (<i>n</i> -tetracosane)	646-31-1
<i>n</i> -C26 (<i>n</i> -hexacosane)	630-01-3
n-C28 (n-octacosane)	630-02-4
<i>n</i> -C30 (<i>n</i> -triacontane)	638-68-6

	CASRN	INPUT	FOUND_BY	DTXSID	PREFERRED	NAME
100-75-5	100-75-5	100-75-5	CAS number fails checksum.			
108-39-2	108-39-2	108-39-2	CAS number fails checksum.			
11098-82-	11098-82-	11098-82-5	CAS number fails checksum.			
112-40-2	112-40-2	112-40-2	CAS number fails checksum.			
2310-18-0	2310-18-0	2310-18-0	CAS number fails checksum.			
291-29-4	291-29-4	291-29-4	CAS number fails checksum.			
5218-45-2	5218-45-2	5218-45-2	CAS number fails checksum.			
58-89-8	58-89-8	58-89-8	CAS number fails checksum.			
65-50-0	65-50-0	65-50-0	CAS number fails checksum.			
6/1/2425	2425-06-1	2425-06-1	CASRN	DTXSID4020242	Captafol	
6/5/2497	2497-06-5	2497-06-5	CASRN	DTXSID8041901	Disulfoton s	sulfone
7/6/2497	2497-07-6	2497-07-6	CASRN	DTXSID4037536	Oxydisulfot	on
100-01-6	100-01-6	100-01-6	CASRN	DTXSID8020961	4-Nitrobenz	enamine
100-02-7	100-02-7	100-02-7	CASRN	DTXSID0021834	4-Nitropher	nol
100-25-4	100-25-4	100-25-4	CASRN	DTXSID0021836	1,4-Dinitrok	enzene
100 42 5	100 42 5	100 42 F	CACON	DTVCID2024204	C+	

■ Atrazine-Desisopropyl 4 s	bectra	173.04683
■ Atrazine-desisopropyl 16 s	bectra C5H8CIN5	173.04680
■ Atrazine-Desisopropyl 4 s	bectra	173.04683
■ Atrazine-desisopropyl 16 s	bectra	173.04680

Atrazine-Desisopropyl 4 spectra	C5H8CIN5	173.04683	
Atrazine-desisopropyl 16 spectra	C5H8CIN5	173.04680	
Atrazine-Desisopropyl 4 spectra	C5H8CIN5	173.04683	
Atrazine-desisopropyl 16 spectra	C5H8CIN5	173.04680	

Atrazine-Desisopropyl 4 spectra	C5H8CIN5	173.04683
Atrazine-desisopropyl 16 spectra	C5H8CIN5	173.04680
Atrazine-Desisopropyl 4 spectra	C5H8CIN5	173.04683
Atrazine-desisopropyl 16 spectra	C5H8CIN5	173.04680

- Chemical structure representations would ideally be standardized...consider tautomeric forms
- Not all substances are explicit and can be ambiguous representations

- We have built (I think) the first chemical structure indexed open database of "methods"
- Methods are not just "approved methods" but also standard operating procedures, application notes, lab manuals, regulatory methods, etc.
- Integrating methods to experimental spectral data will serve our non-targeted analysis efforts
- Work is underway to make it public

- Send information regarding analytical methods and method articles to <u>williams.antony@epa.gov</u>
- If you want to add spectral data please contact me