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Toxicokinetic Half-Life (t½)  for PFAS

 Per- and polyfluoro-alkyl substances (PFAS) are a large and diverse class of organic chemicals in which
all (per-) or some (poly-) carbon–hydrogen bonds have been replaced with carbon–fluorine bonds
(DeWitt, 2015)

 Since carbon–fluorine bonds are stronger, they help make PFAS resistant to metabolism and
degradation (Buck et al., 2012)

 PFAS are commonly found in human tissues (DeWitt, 2015)

 Toxicokinetic (TK) half-life (t½) is the amount of time needed for 50% of the chemical to be eliminated
from the body.

 t½ is used to extrapolate from toxicological effects observed in animal species (Wambaugh et al., 2013)
and to understand human exposure (Egeghy et al., 2011; Chiu et al., 2022)

 Some PFAS have been noted as having long t½ (several years in humans)
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Issues with PFAS TK Half-Lives

 Typical extrapolation methods for TK parameters of PFAS are unreliable between species and chemicals 
(Wambaugh et al., 2013; Pizzurro et al., 2019)

 PFAS have both hydrophobic and lipophobic properties (Rao et al., 1994)
 For non-PFAS many TK properties are scaled by octanol:water ratio – may not work here
 Only a dozen PFAS with human measured half-life

 The t½ of perfluorohexanoic acid (PFHxA), for example, appears to scale allometrically (proportional to 
species weight) across mice, rats, monkeys, and humans (Russell et al., 2013)

 In contrast, the t½ of the perfluorooctanoic acid (PFOA) spans:
a few hours in female rats
days in male rats
30–130 days in mice and monkeys
2–4 years in humans

 This large variation for PFOA occurs despite its structural similarity to PFHxA.
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Half-Lives and Exposure

Dose-Response
(Toxicokinetics)

 Knowledge of chemical-specific t½ is necessary for relating environmental concentrations of PFAS with 
concentrations in the body tissues

 Using t½ and an estimate of how the chemical distributes within the body can:
1) Predict blood PFAS levels from known external exposures, or
2) Estimate external exposures from known blood PFAS levels
(This is an empirical one compartment TK model)

 Widespread PFAS exposure from the environment and long half-lives result in the potential for 
bioaccumulation, as rates of uptake may exceed rates of excretion (Arnot et al., 2008)

 Given the failure of typical approaches for the inter-species or inter-chemical extrapolation of 
PFAS t½, and the importance of this parameter for understanding the impact of these chemicals in the 
environment, a new approach is needed.
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Machine Learning:  A Subset of 
Artificial Intelligence

“…machine 
learning can be 
thought of as 
inferring plausible 
models to explain 
observed data.”

At the EPA we are applying publicly available machine learning algorithms to 
bridge data gaps and draw inferences from complex data sets.
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 Machine learning may be more easy to use for categorical predictions

Machine Learning Overview

Machine learning image generator prompted for:
“young people at party”
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 Machine learning may be more easy to use for categorical predictions

Machine Learning Overview

How many fingers do these 
generated people have?

Machine learning image generator prompted for:
“young people at party”
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 Machine learning may be more easy to use for categorical predictions

Machine Learning Overview

Advertisements that show up browsing web 
after searching for 

“brown plaid dress jacket”

Machine learning image generator prompted for:
“young people at party”
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 There are many different machine learning technologies, most require some 
sort of training set

 In supervised machine learning, there is labeled training data:  examples 
annotated with descriptors

Machine Learning Overview

Shirts

Pants

Training Set
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 Let’s focus on supervised machine learning, where there is labeled training data
 labeled examples are annotated with descriptors

Shirts

Pants

Training Set

Examples are labeled

Example Class

1 Shirt

2 Shirt

3 Shirt

4 Shirt

5 Pants

6 Pants

7 Pants

8 Pants

Overview of Supervised Machine Learning
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 Let’s focus on supervised machine learning, where there is labeled training data
 labeled examples are annotated with descriptors

Shirts

Pants

Training Set

Examples are labeled

Example Class

1 Shirt

2 Shirt

3 Shirt

4 Shirt

5 Pants

6 Pants

7 Pants

8 Pants

Overview of Supervised Machine Learning
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Shirts

Pants

Training Set

Descriptors

Example Class Color Buttons Stripes

1 Shirt Blue 1 0

2 Shirt Red 8 0

3 Shirt Blue 8 1

4 Shirt Green 0 0

5 Pants Khaki 1 0

6 Pants Blue 1 0

7 Pants Black 1 0

8 Pants Blue 4 0

 Let’s focus on supervised machine learning, where there is labeled training data
 labeled examples are annotated with descriptors

Overview of Supervised Machine Learning
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 To train a machine learning model we make choices about what descriptors to include
 Sometimes the descriptors we want are unavailable
 Further, it is possible that some (or all!) of the available descriptors are not relevant

Shirts

Pants

Training Set

Example Class Color Buttons Stripes

1 Shirt Blue 1 0

2 Shirt Red 8 0

3 Shirt Blue 8 1

4 Shirt Green 0 0

5 Pants Khaki 1 0

6 Pants Blue 1 0

7 Pants Black 1 0

8 Pants Blue 4 0

Descriptors

Overview of Supervised Machine Learning
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Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

6 Pants Blue 1 0 3 2

7 Pants Black 1 0 3 2

8 Pants Blue 4 0 3 2

Descriptors

 It is possible that some (or all!) of the available descriptors are not relevant
 Machine learning methods identify the descriptors and values that help make the best predictions

Overview of Supervised Machine Learning
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 It is possible that some (or all!) of the available descriptors are not relevant
 Machine learning methods identify the descriptors and values that help make the best predictions

These descriptors both 
distinguish pants from shirts

Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

6 Pants Blue 1 0 3 2

7 Pants Black 1 0 3 2

8 Pants Blue 4 0 3 2

Descriptors

Overview of Supervised Machine Learning
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Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

6 Pants Blue 1 0 3 2

7 Pants Black 1 0 3 2

8 Pants Blue 4 0 3 2

Descriptors

 Machine learning methods identify the descriptors and values that help make the best predictions
 However, models may be overfit to their training set – so it’s important to check with external data

Overview of Supervised Machine Learning
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Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

Descriptors

 Finally, sometimes (often), we do not have enough examples of one category or another to build a 
training set

 Hard to tell a helpful descriptor from an irrelevant descriptor

Overview of Supervised Machine Learning
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Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

Overview of Supervised Machine Learning

Descriptors

 Might end up with a model that always picks dominant category 
(everything is a shirt would be 80% accurate)*

*The “no information rate” is an effective “null hypothesis” – it is the accuracy 
for a model that predicts all chemicals to be in the most common bin.
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5-fold cross validation 

Y-randomization

 QSAR/Machine learning best-practices include an 
emphasis on model validation and the need to 
define model applicability domain (AD) in the 
chemistry space (Tropsha et al. 2007)

 Evaluation approaches:
 5-fold cross validation (build the model 5 

times withholding a different subset of the 
data each time for testing) 

 Y-randomization (build the model using 
randomized target assignment to descriptors -
does the true model outperform the 
randomized version?)

 Evaluation with true external training sets

Figure from Katherine Phillips

Model Evaluation and Applicability Domain
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Bounding Box

Convex Polygon

Distance Method

Training Set
External Set – Inside AD
External Set – Outside AD

 Knowledge of the applicability domain (AD) is 
required for assessing confidence in predictions 
for a new chemicals and quantifying the utility of 
additional data

 We estimate AD of the model using the 
methodology of Roy et al. (2015)

 Chemical space is defined by the values of the 
descriptors included in the model – the closer the 
values of the descriptors for a new chemical are to 
the training set, the more likely it is to be in 
domain

Methods for Assessing AD in 
Chemical Space

As in Sahigara et al., Molecules (2012)

Model Evaluation and Applicability Domain

Figure from Katherine Phillips
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Dawson et al. (2023)

Citation: Dawson, D.E.; Lau, C.; Pradeep, 
P.; Sayre, R.R.; Judson, R.S.; Tornero-
Velez, R.; Wambaugh, J.F. A Machine 
Learning Model to Estimate 
Toxicokinetic Half-Lives of Per- and 
Polyfluoro-Alkyl Substances (PFAS) in 
Multiple Species. Toxics 2023, 11, 98. 
https://doi.org/10.3390/toxics11020098

1000’s of PFAS

Structural 
similarity to:

Hexanoic acid

Similarity to 
Endogenous Ligands for
“Transporter Affinity”

Proximal Tubule 
Geometry

Physiological
Parameters for

“Transporter Expression”

Machine Learning for PFAS 
Toxicokinetic Half-Life

De
sc

rip
to

rs

https://doi.org/10.3390/toxics11020098
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Humans
(Homo sapiens)

Chemical Sex Value Unit Ref.
PFBS (C4)
375-73-5

DTXSID5030030

F 35 Days {Olsen, 2009; Xu, 2020}
M 36

PFHxS (C6)
355-46-4

DTXSID7040150

F 13 Yrs {Zhang, 2013; Worley, 2017; 
Li, 2018; Xu, 2020}M 14

PFOS (C8)
1763-23-1

DTXSID3031864

F 3.4
Yrs

{Zhang, 2013; Xu, 2020; 
Worley, 2017; Olsen, 2007; Li, 

2018}M 3.7
PFBA (C4)
375-22-4

DTXSID4059916

F
3 Days {Chang, 2008}M

PFHxA (C6)
307-24-4

DTXSID3031862

F
32 Days {Russell, 2013}M

PFHpA (C7)
375-85-9

DTXSID1037303

F 140 Days {Zhang, 2013; Xu, 2020}
M 130

PFOA (C8)
335-67-1

DTXSID8031865

F
3.5 Yrs {Zhang, 2013; Xu, 2020; 

Worley, 2017; Bartell, 2010}M
PFNA (C9)
375-95-1

DTXSID8031863

F 1.7 Yrs
{Zhang, 2013}

M 3.2
PFDA (C10)

335-76-2
DTXSID3031860

F 4 Yrs {Zhang, 2013}
M 7.1

F-53B
756426-58-1

DTXSID80892506

F
18 Yrs {Shi, 2016}M

GenX
13252-13-6

DTXSID70880215

F
3.4 Days {ECHA, 2021}M

 Human half-lives for PFAS range from 
days to years

 Only slight sex differences observed

 11 chemicals -- not enough data to build a 
machine learning model

 What if we include data for other 
species?

PFAS Half-Life Training Set
Data compiled by Lau et al. (2007, 2012, 2015, 2021) and updated for Dawson et al. (2023)
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Rat Mouse Monkey Humans

(Rattus rattus) (Mus musculus) (Macaca fascicularis) (Homo sapiens)

Chemical Sex Value Unit Ref. Value Unit Ref. Value Unit Ref. Value Unit Ref.
PFBS (C4)
375-73-5

DTXSID5030030

F 1.5-7.4
Hrs {Olsen, 2009; Chengelis, 

2009; Huang, 2019}

4.5
Hrs {Lau, 2020}

1.1
Days {Olsen, 2009; Chengelis, 

2009}

35
Days {Olsen, 2009; Xu, 2020}

M 3.6-5.0 5.8 1.6 36

PFHxS (C6)
355-46-4

DTXSID7040150

F 1.3-1.4
Days {Sundstrom, 2012; Kim, 

2016; Huang, 2019}

27
Days {Sundstrom, 2012}

87
Days {Sundstrom, 2012}

13
Yrs {Zhang, 2013; Worley, 

2017; Li, 2018; Xu, 2020}M 26-27 28 140 14

PFOS (C8)
1763-23-1

DTXSID3031864

F 28-43
Days {Kim, 2016; Huang, 2019; 

Chang, 2012}

38
Days {Chang, 2012}

110
Days {Chang, 2012}

3.4
Yrs

{Zhang, 2013; Xu, 2020; 
Worley, 2017; Olsen, 

2007; Li, 2018}M 34-36 43 130 3.7

PFBA (C4)
375-22-4

DTXSID4059916

F 1.8
Hrs {Chang, 2008}

6.2
Hrs {Chang, 2008} 1.7 Days {Chang, 2008} 3 Days {Chang, 2008}

M 9.2 12

PFHxA (C6)
307-24-4

DTXSID3031862

F 0.5-7.3
Hrs

{kabadi, 2018; 
Dzierlenga, 2020; 

Gannon, 2011; Chengelis, 
2009}

2.4
Hours {Chengelis, 2009} 32 Days {Russell, 2013}

M 1.3-11 5.3

PFHpA (C7)
375-85-9

DTXSID1037303

F 1.2-2.1
Hrs {Ohmori, 2003; Kabadi, 

2018}

140
Days {Zhang, 2013; Xu, 2020}

M 1.5-.24 130

PFOA (C8)
335-67-1

DTXSID8031865

F 1.7-4.8 Hrs {Vanden Heuvel, 1991; 
Ohmori, 2003; Kim, 2016; 

Dzierlenga, 2020} 

16
Days {Lou, 2009}

33
Days {Butenhoff, 2004} 3.5 Yrs

{Zhang, 2013; Xu, 2020; 
Worley, 2017; Bartell, 

2010}M 8.1-8.5 Days 22 20-21

PFNA (C9)
375-95-1

DTXSID8031863

F 6.4
Days {Kim, 2019; Tatum, 2011; 

Ohmori, 2003}

42
Days {Tatum, 2011}

1.7 Yrs
{Zhang, 2013}

M 3.3-5.5 87 3.2

PFDA (C10)
335-76-2

DTXSID3031860

F 45-59
Days {Ohmori, 2003; Kim, 

2019; Dzierlenga, 2020}

4
Yrs {Zhang, 2013}

M 55-83 7.1

F-53B
756426-58-1

DTXSID80892506

F
18 Yrs {Shi, 2016}

M

GenX
13252-13-6

DTXSID70880215

F 0.9-2.8
Days {Gannon, 2016}

1.0
Days {Gannon, 2016}

3.3
Days {Gannon, 2016} 3.4 Days {ECHA, 2021}

M 3.0-3.7 1.5 2.7

PFAS Half-Life Training Set
Data compiled by Lau et al. (2007, 2012, 2015, 2021) and updated for Dawson et al. (2023)
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Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

6 Pants Blue 1 0 3 2

7 Pants Black 1 0 3 2

8 Pants Blue 4 0 3 2

Descriptors

 Machine learning methods identify the descriptors that make the best predictions

Supervised Machine Learning Model
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Example PFAS Species Half-Life
Chemical 
Structure Physiology Categorical

1 PFHxA Human Slow # # #

2 PFOA Human Very 
Slow

# # #

Descriptors

We only have half-life measurements for ~dozen PFAS

 Machine learning methods identify the descriptors that make the best predictions

Supervised Machine Learning Model
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Example PFAS Species Half-Life
Chemical 
Structure Physiology Categorical

1 PFHxA Human Slow # # #

2 PFOA Human Very 
Slow

# # #

3 PFBS Mouse Very Fast # # #

4 PFOS Mouse Slow # # #

5 PFHxA Rat Very Fast # # #

6 PFOA Rat Fast # # #

7 PFBS Monkey Fast # # #

8 PFOS Monkey Very 
Slow

# # #

Descriptors

Supervised Machine Learning Model

Let’s use huge interspecies variability to our advantage

 Machine learning methods identify the descriptors that make the best predictions
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Descriptors
A - Chemical Structure Descriptors

Parameter Type Descriptor Chemical 
Coverage (%)

Training Set 
Median*

Training Set 
Min

Training Set 
Max

Protein binding Albumin binding affinity 
constant (Mol-1) 45.45 2.84E+05 2800 1.10E+06

Physico-chemical

Average Mass (g/mol)

100

400.1 214 532
Log Vapor Pressure 

(mmHg) -2.07 -8.09 1.53

Log Octanol:Air 4.16 3.46 6.33
Log Octanol:Water 3.11 1.43 5.61

Log Water Solubility (Mol/L 
at 25°C) -2.68 -4.9 -0.5

Ether bond present 0.13* 0 1

Endogenous Ligand 
Similarity

CAS 142-62-1
100

0.18*
0 1CAS 107-92-6 0.088*

CAS 111-16-0 0.066*
B - Physiological Descriptors

Species Proximal tubule diameter (mm) Body Weight 
(kg)

Kidney Weight 
/ Body Weight 

(g/kg)

Glomerular          
Surface Area

/ Proximal 
Tubule 
Volume

Glomerular          
Surface Area

/ Kidney 
Weight

Human 0.072 70 2.23 3.16 1.65
Monkey 0.062 5 2.5 2.13 2.04
Mouse 0.054 0.02 8 2.05 2.28

Rat 0.058 0.24 2.92 2.31 3.26
C - Categorical Descriptors

Sex Female / Male
Dosing intravenous, oral, other (epidemiological, via metabolite extrapolation)

 We assembled a set of 119 chemical 
and physiological (species) descriptors 
as potential predictors of t½ in ML 
models

Chemical Structure Descriptors:
 Protein Binding (4 descriptors):

serum albumin and liver fatty acid 
binding protein

 Physico-chemical descriptors
(22 descriptors

 Transport/re-uptake analogs:
 Similarity of “Defluorinated” PFAS 

to Endogenous ligands as 
surrogates for transporter affinity 
(67 descriptors)
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Descriptors
A - Chemical Structure Descriptors

Parameter Type Descriptor Chemical 
Coverage (%)

Training Set 
Median*

Training Set 
Min

Training Set 
Max

Protein binding Albumin binding affinity 
constant (Mol-1) 45.45 2.84E+05 2800 1.10E+06

Physico-chemical

Average Mass (g/mol)

100

400.1 214 532
Log Vapor Pressure 

(mmHg) -2.07 -8.09 1.53

Log Octanol:Air 4.16 3.46 6.33
Log Octanol:Water 3.11 1.43 5.61

Log Water Solubility (Mol/L 
at 25°C) -2.68 -4.9 -0.5

Ether bond present 0.13* 0 1

Endogenous Ligand 
Similarity

CAS 142-62-1
100

0.18*
0 1CAS 107-92-6 0.088*

CAS 111-16-0 0.066*
B - Physiological Descriptors

Species Proximal tubule diameter (mm) Body Weight 
(kg)

Kidney Weight 
/ Body Weight 

(g/kg)

Glomerular          
Surface Area

/ Proximal 
Tubule 
Volume

Glomerular          
Surface Area

/ Kidney 
Weight

Human 0.072 70 2.23 3.16 1.65
Monkey 0.062 5 2.5 2.13 2.04
Mouse 0.054 0.02 8 2.05 2.28

Rat 0.058 0.24 2.92 2.31 3.26
C - Categorical Descriptors

Sex Female / Male
Dosing intravenous, oral, other (epidemiological, via metabolite extrapolation)

 We assembled a set of 119 chemical 
and physiological (species) descriptors 
as potential predictors of t½ in ML 
models

Physiological Descriptors:
 Transport/re-uptake analogs:
 Physiological descriptors 

including kidney structural 
features as surrogates for renal 
transporter expression (21 
descriptors)

 Body weight initially considered 
but eliminated for being too 
correlated with other descriptors



29 of 43 Office of Research and Development

Descriptors
A - Chemical Structure Descriptors

Parameter Type Descriptor Chemical 
Coverage (%)

Training Set 
Median*

Training Set 
Min

Training Set 
Max

Protein binding Albumin binding affinity 
constant (Mol-1) 45.45 2.84E+05 2800 1.10E+06

Physico-chemical

Average Mass (g/mol)

100

400.1 214 532
Log Vapor Pressure 

(mmHg) -2.07 -8.09 1.53

Log Octanol:Air 4.16 3.46 6.33
Log Octanol:Water 3.11 1.43 5.61

Log Water Solubility (Mol/L 
at 25°C) -2.68 -4.9 -0.5

Ether bond present 0.13* 0 1

Endogenous Ligand 
Similarity

CAS 142-62-1
100

0.18*
0 1CAS 107-92-6 0.088*

CAS 111-16-0 0.066*
B - Physiological Descriptors

Species Proximal tubule diameter (mm) Body Weight 
(kg)

Kidney Weight 
/ Body Weight 

(g/kg)

Glomerular          
Surface Area

/ Proximal 
Tubule 
Volume

Glomerular          
Surface Area

/ Kidney 
Weight

Human 0.072 70 2.23 3.16 1.65
Monkey 0.062 5 2.5 2.13 2.04
Mouse 0.054 0.02 8 2.05 2.28

Rat 0.058 0.24 2.92 2.31 3.26
C - Categorical Descriptors

Sex Female / Male
Dosing intravenous, oral, other (epidemiological, via metabolite extrapolation)

 We assembled a set of 119 chemical 
and physiological (species) descriptors 
as potential predictors of t½ in ML 
models

Categorical Descriptors:
 Sex and route of dose administration
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Kidney Physiology (Wikipedia)

 After glomerular filtration from plasma into the lumen of the 
proximal tubule, chemicals are subject to active secretion to and 
absorption from the lumen by the cells that make up the surface 
of the proximal tubule

 Kudo et al. (2002) hypothesized that some PFAS are substrates for 
reabsorption by the kidney tubules, perhaps because of their 
similarity to nutrient rich fatty acids (PFOA for example is caprylic 
acid with hydrogens replaced by fluorines).

 Expression of some fatty acid transporters is modulated by sex 
hormones

 Different PFAS may variously have greater affinity for different 
transporters

 Different species may have varying expression levels
 Generally do not know affinity as a function of PFAS, transporter, 

and species

Proximal
Tubule

Why Might Transporter Surrogates Work for PFAS TK?
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Why Might Transporter Surrogates Work for PFAS TK?

Kidney Physiology (Wikipedia)

 Generally do not know affinity as a function of PFAS, 
transporter, and species

 As a surrogate for transporter expression:
 We do know how the geometry (shape, surface area, volume) 

of the proximal tubules varies between species (Oliver, 1968)
 As a surrogate for transporter affinity we can also calculate how 

similar each PFAS is to endogenous (naturally present) chemicals:
 We assume that transporters are more likely to act on 

endogenous chemicals
 Compared PFAS to 894 endogenous chemicals from 

Rappaport et al. (2014)
 Replaced all fluorines on each PFAS with hydrogens and then 

calculated structural similarity with Tanimoto (1958) scores

Proximal
Tubule
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Model Building

 We used method of random forests to construct a 
machine learning model

 We pared the original set of descriptors down to 15 
through elimination of correlated or unchanging 
descriptors

 We used recursive feature elimination to balance 
accuracy with subsets of these descriptors

 We used cross-validation to determine optimal 
number of half-life bins
 Cross-validated accuracies of 82.2%, 86.1%, and 

75.3% for three, four or five bins

5-fold cross validation 

Figure from Katherine Phillips
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Model Performance

 The four-bin model was selected – chemicals were grouped into half-life bins: 0–12 h, >12 h to 1 week, >1 
week to 60 days, and >60 days.

 The four-bin model has an accuracy of 86.4% compared to the no information rate of 27%.

 The non-randomized ML model accuracy (86.4%) was better than any of the models constructed with 
y-randomized data:
 A model using t½ values randomized across all species-by-PFAS combinations had low predictive value 

(accuracy of 32.2 ± 13.3%)
 The models for t½ with training data randomized within species but not chemicals (that is, the 

chemicals were correct) had an accuracy of 36.8 ± 13.4%.
 The models where training data chemical identities were randomized, but not species, had an 

accuracy of 50.2 ± 15.6%..
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Descriptors

 We found surrogates for 
active transport among the 
predictors. 

 The kidney physiology 
predictors are proxies for 
both physical differences 
and species variation in the 
expression of transporters

 PFAS similarity to 
endogenous hexanoic, 
butanoic, and heptanedioic 
acids were considered as 
surrogates for transporter 
affinity
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Descriptors

 Values of t½ of the training 
data (y-axis) vs. 
classification predictions 
by the RF Classification 
model using 15 predictors

 Accuracy of 86.4% 
compared to the 
no information rate of 27% 
and y-randomization 
accuracy of 32.2 ± 13.3%
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Descriptors

 Values of t½ of the training 
data (y-axis) vs. 
classification predictions 
by the RF Classification 
model using 15 predictors. 

 Note that observations 
have been jittered (that is, 
a small amount of random 
variation has been added) 
along the x-axis to increase 
readability.
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Predictions for PFAS in Model Domain
Out of 8163 PFAS on list https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster

https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster
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Domain of Applicability
 We calculated domain of applicability using method of Roy et al. (2015) based on descriptor 

properties
 However, the training set only included three classes: alkyl halides (9 chemicals), 

carboxylic acids and derivatives (GenX), and organic and sulfonic acids and derivatives (F-53B) 
(ClassyFire , Djoumbou Feunang, 2016)

alkyl halides 

GenX

F-53B
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Predictions for PFAS in Model Domain
Out of 8163 PFAS on list https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster

4136 PFAS in Roy et al. (2015) Applicability Domain (Without Consideration of Chemical Class)

https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster
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Predictions for PFAS Matching 
Training Set Classes

921 PFAS both in Roy et al. (2015) Applicability Domain and Also Matching Chemical Classes from Training Set
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Limitations

 Model development (the training set) included most of the data available 
 Methods were cross-validated, but new data are needed for evaluation

 The training set consisted of only four species and 11 chemicals, and was dominated by alkyl halides

 The chemicals in need of half-life predictions were from classes that were much more diverse than the 
training set
 TK behavior of other classes of PFAS could be influenced by factors not captured by the included 

predictors
 Uncertainties can only be disentangled with additional data to evaluate this or similar models
 Future in vivo TK studies in rodents might investigate PFAS that are predicted to have different half-lives
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Implications

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA

 A machine learning (ML) model for PFAS half-life means that toxicokinetic (TK) predictions 
can now be made for ~900-4000 PFAS with no other data
 We are relying on a empirical, one compartment TK model
 ML predicts the half-life bin (very slow/slow/fast/very fast) based on species and PFAS, and we then use 

the median training data in each bin as the predicted half-life
 Because an ML could not be built for volume of distribution (Vd), we choose to use rhe median dataset 

value of Vd = 0.201 L/kg for all PFAS and species
 Model building scripts and predictions available at: https://github.com/USEPA/CompTox-PFASHalfLife
 Upcoming version of R package “httk” will include Dawson et al. (2023) predictions

 Chemicals with longer t½ may bioaccumulate and thus may warrant closer scrutiny

 The majority (56%) of PFAS were predicted to be in the longest t½ category in humans 

https://github.com/USEPA/CompTox-PFASHalfLife
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