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Quantitative AOPs

“Quantitative understanding of the relationships underlying 
transition from one KE to the next, as well as critical factors 
that can modulate those relationships, are sufficiently well-
defined to allow quantitative prediction of the probability or 
severity of the AO occurring for a given activation of the MIE”

Conolly et al. 2017 – Quantitative adverse outcome pathways and their application to predictive 
toxicology. Environ. Sci. Technol. 51: 4661-4672.
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Our First Quantitative AOP
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coupled together multiple physiologically-based and/or statistical models

Conolly et al. 2017 – Quantitative adverse outcome pathways and their application to predictive toxicology. Environ. Sci. Technol. 51: 4661-4672.
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Model-derived response-
response relationships for 
major KERs along the AOP.
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For a simplified, 
continuous exposure 
scenario, could 
simplify to a series of 
regression equations.

Response-response  
relationships

y= -8e-7x2 – 7e-5x + 0.016

Our First Quantitative AOP - Application

y = 24.7714
1+𝑒𝑒𝑒𝑒𝑒𝑒(64.4184−𝑥𝑥

24.7923 )
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Testing our Quantitative AOP
Compare outcomes predicted via our qAOP construct to those measured empirically

Novel aromatase inhibitor identified via ToxCast (NVS and Tox21 assays)
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Assumptions:
1) Identical toxicokinetics
2) Identical toxicodynamics
3) Single mode of action

All are likely incorrect assumptions

Simulated dose-response
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• Simulations generally 
underestimated 
concentrations of E2 and 
Vtgs.

• Underestimated the 
magnitude of effect, 
particularly at higher 
concentrations.

• Possibly due to imazalil’s
effects on additional 
steroidogenic enzymes



Vitellogenin 
accumulation into 
oocytes, reduced

Cumulative 
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Simulated with stochastic OGDM model

• Simulations did a reasonable job of 
predicting effects on cumulative 
fecundity

• 10 d LOEC was about 10-fold greater 
than simulated EC50

• 21 d LOEC was just 4-fold greater than 
simulated EC50.
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Adjustment for intrinsic susceptibility to aromatase 
inhibition – allows for cross-species application of the R-R 
regression equations. 

Doering et al.. Environ Sci Technol. 2019 53(17):10470-
10478. doi: 10.1021/acs.est.9b02606.

Doering et al. Toxicol Sci. 2019 170(2):394-403. doi: 10.1093/toxsci/kfz115.
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Limitations to our previous approach

• Very resource intensive to develop 
the models

• 10-15 years of research
• Novel experimentation

• Not practical to replicate for many 
AOPs
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Foran, C., Rycroft, T., Keisler, J., Perkins, E., Linkov, I. and Garcia-Reyero, N. (2019) “A modular approach for assembly of quantitative adverse 
outcome pathways”, ALTEX - Alternatives to animal experimentation, 36(3), pp. 353-362. doi: 10.14573/altex.1810181.

Modular, KER-driven approach to qAOP development



Alternative
• Can we take a more empirically-

based approach

• Leverages the kinds of data we tend 
to have available (dose-response)

• R-R-R can be derived from 
concentration response information 
for two different KEs, as long the 
stressor is the same.
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Prototypical Stressor - Defined
Prototypical stressor:  A stressor that is known to trigger the molecular 
initiating event (MIE) (or the earliest key event in the pathway) and for 
which there is an extensive database with respect to its impacts on the 
downstream key events (KEs) such that experimental evidence related to 
that stressor’s effects provided considerable support for key event 
relationships (KERs) along the pathway and the AOP as a whole.
• Prototypical stressors often serve as a focal point for literature searches 

and other assembly of empirical support
• Prototypical stressors are not necessarily chemicals (e.g., radiation)



Prototypical Stressor Approach
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• Document concentration-response for prototypical stressor across as many KEs as possible

• For any new stressor
• Define relative potency at any one (or more) KEs along the pathway
• Calculate “equivalent” concentration of prototypical stressor
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Toxic Equivalency Approach

Prototypical stressor

PS fit

TEQ =∑ n (Ci ×TEFi ) 

• Widely used for risk assessment of 
mixtures of dioxin-like compounds.

• 2,3,7,8-TCDD as index chemical

• Potency of other congeners 
expressed relative to dioxin.



Assumptions implicit in the TEF approach include: 
• The individual compounds all act through the same biological or 

toxic pathway; 
• The effects of individual chemicals in a mixture are essentially 

additive at submaximal levels of exposure; 
• The dose-response curves for different congeners should be 

parallel
• Target organ(s) in terms of fate/distribution for all congeners is 

the same over the relevant range of doses

Safe, Stephen H., Lea Pallaroni, Kyungsil Yoon, Kevin Gaido, Susan Ross, and Donald McDonnell. "Problems for risk assessment of endocrine-active 
estrogenic compounds." Environmental Health Perspectives 110, no. suppl 6 (2002): 925-929.

Assumptions

OK

Possibly

Unlikely*

Stressor-
dependent

*Uncertainty associated with violating can be estimated



Prospects
• Deviations from assumptions of TEF approach will yield inaccuracies

o Quite likely
o Uncertainty can be estimated to at least some extent

• The generalizability of response-response relationships for different 
species, stressors, etc. is also relatively uncertain. 

o qAOP-based predictions may not be any better

• Assembly of data to support a “prototypical stressor” approach is likely 
more achievable in the near terms than robust and generalizable R-R-Rs.

• Same limitations apply to the computational model-based approaches 
we’ve employed previously.



Summary

• qAOP allows one to estimate the probability or severity of an AO based on the 
magnitude/duration of perturbation of one or more KEs

• qAOP must be coupled with chemical-specific information (e.g., potency; ADME) 
for use in predictive risk assessment

• Once envisioned as the “most advanced” stage of AOP development, qAOP now 
viewed through lens of “fit-for-purpose”

• Variety of qAOP development approaches and strategies have been employed, 
based on the available data and intended application. (fit-for-purpose)

• Quantitative understanding of the KERs provides an effective, modular, foundation 
for qAOP development. 
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Prototypical Stressors and Mixtures

Known/measured 
components

Unknown/unmeasured 
components

Index Stressor Complex Mixture

Dilution/Enrichment 
Factor

Concentration

Biological response equivalence at same KE

• Calculate Equivalency factor
• Extrapolate along AOP assuming same 

behavior as index stressor

Chemical Mixture
(individual exposome)
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