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PFAS-Map OECD structure
categories® did not reveal any clear
trends in DNT NAMs bioactivity.
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Introduction

= Thousands of PFAS exist in commerce however only a small number have been evaluated for
adverse human health potential. Epidemiology and animal studies report conflicting evidence
that PFOS or PFOA exposure may be associated with neurodevelopmental impairment.

Out of 116 PFAS screened in multi-concentration MEA NFA, 24 PFAS The carbon: fluorine ratio and logP were

increased in active PFAS.

demonstrate moderate or low selective activity.
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= Endpoints measuring decreased ‘general activity’ in the MEA NFA were the most sensitive.
= Endpoints measuring apoptosis and proliferation (no actives) were the least sensitive.
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A preliminary set of 34 PFAS-specific ToxPrints3 were constructed from combinations of the public set of 729 ToxPrints.
A more expansive set of PFAS-specific ToxPrints is currently under development and will be made publicly available.
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This poster does not reflect US EPA policy.

Summary and Future Directions
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= A subset of 160 PFAS, representing distinct PFAS-Map OECD structural categories, were largely inactive in the
DNT NAMs and a subset of PFAS demonstrated relatively high potency and low efficacy.

= The majority of DNT NAMs-active PFAS were also active in other NAMs and the DNT NAM potencies were
decreased relative to other NAMs, which may be explained by longer exposure durations or repeated dosing in

the DNT NAMs.

= PFAS containing =8 perfluorinated carbons and/or functional groups such as sulfonamides or acrylates may be

associated with elevated DNT potential.

Conclusion: This analysis demonstrates the power of using NAMs and computational approaches to
evaluate trends in DNT bioactivity and PFAS chemical and structure feature descriptors. The current
findings will help EPA prioritize which PFAS characteristics are of the highest concern for DNT potential.

Future Direction: Additional screening including PFAS containing ToxPrints that are currently
underrepresented will be important for improving the interpretation of the DNT potential posed by specific

structure feature descriptors.
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