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High Throughput Exposure (HTE) Models

 Various HTE models provide the predictions for different 
aspects (pathways, chemistries) of exposure
 Each model incorporates different assumptions
 No one predictor is expected to the whole picture

 Monitoring data can indicate “reference” exposures

 At EPA we build a probabilistic, consensus prediction of 
daily intake rate (mg/kg BW/day) using multiple HTE 
models and other predictors
 Properly combining the models relies on prediction 

of chemical use from structure 

Different HTE models characterize 
different aspects of exposure
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 To be considered an HTE model, a model must:
1. Be applicable to and capable of handling many chemicals with minimal descriptive information
2. Cover one or more relevant exposure routes (for example, inhalation, food ingestion, mouthing, 

and dermal contact) and sources (for example, industrial and residential use), accounting for the 
influential parameters relevant for the considered pathways

3. Allow for integration with models for other pathways
4. Be scientifically plausible, respecting mass-balance principles and accounting for competing 

processes (for example, volatilization versus dermal uptake)
5. Allow for the assessment of interindividual and intraindividual variation in exposure and impact of 

such variation on acute and chronic doses as the required input data become available 
6. Be amenable to integration within statistical frameworks that quantify uncertainty for propagation 

into risk evaluations
7. Remain parsimonious, that is, no more complicated than necessary to describe the data

Huang and Jolliet, 2016 and Wambaugh et al., 2019

High Throughput Exposure (HTE) Models
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Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models

“…The assumption 
that 100% of [quantity 

emitted, applied, or 
ingested] is being 
applied to each 

individual use scenario 
is a very conservative 
assumption for many 

compound / use 
scenario pairs.”

Environ. Sci. Technol. 2015, 49, 11, 6760–6771
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Consensus Exposure Predictions with the 
SEEM Framework

 Different exposure models incorporate knowledge, assumptions, and data

 We incorporate multiple models into consensus predictions for 1000s of chemicals within the Systematic 
Empirical Evaluation of Models (SEEM) (Wambaugh et al., 2013, 2014)

Hurricane Path 
Prediction is an 

Example of 
Integrating 

Multiple Models

• Evaluation is similar to a sensitivity analysis: What 
models are working? What data are most needed? 

Wambaugh et al., 2019
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Evaluating Exposure Models with 
the SEEM Framework

 We use Bayesian 
methods to 
incorporate multiple 
models into 
consensus predictions 
for 1000s of chemicals 
within the Systematic 
Empirical Evaluation 
of Models (SEEM)
(Wambaugh et al., 2013, 
2014; Ring et al., 2018)
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Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + ε

Multiple regression models:

ε ~ N(0, σ2)
Residual error, 
unexplained by 
the regression 
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SEEM is a Linear Regression
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Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + ε

Multiple regression models:

In
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Available Exposure Predictors

Not all models have predictions 
for all chemicals
 We can run SHEDS-HT 

(Isaacs et al., 2014) for 
~2500 chemicals

What do we do for the rest?
 Assign the average value?
 Zero?

SEEM is a Linear Regression
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Collaboration on High Throughput Exposure Predictions
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, 

Hyeong-Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathways

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and 
Pesticide

EPA Pesticide Reregistration Eligibility Documents (REDs) 
Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) Near-Field Direct (2017)

Isaacs (2017) 7511 Far-Field Industrial and 
Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential

RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential

USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016,2017) 615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 
Ernstoff et al. (2017)

8167 Dietary

Ring et al., 2019



13 of 33 Office of Research and Development

Total Chemical 
Intake Rate

(mg/ kg BW/ day)

Consumer 

Dietary

Far-Field
Pesticides

Far-Field
Industrial

Pathway
Yes/No

Chemical-Specific 
Pathway Relevancy (δij) 

Yes/No

Yes/No

Yes/No

Unknown Average Unexplained 
(a0, the grand mean)

Average Unexplained (aconsumer)
SHEDS-HT
FINE
RAIDAR-ICE
USEtox
Production Volume
Average Unexplained (adietary)
SHEDS-HT Dietary
Production Volume
USEtox
RAIDAR
Food Contact Substance Migration

Average Unexplained (aFFpesticide)
Pesticide REDs
USEtox
RAIDAR
Stockholm Convention
Production Volume

Average Unexplained (aFFindustrial)
USEtox
RAIDAR
Stockholm Convention
Production Volume

Predictors SEEM3
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 Median chemical intake rates (mg / kg 
body weight /day) were inferred from:

 NHANES urine (Wambaugh et al, 
2014, Ring et al. 2017)
 ORD provides its Bayesian 

tool for inferring exposure 
from biomonitoring (Stanfield 
et al., 2022) publicly via R 
package “bayesmarker” 
available on GitHub

 NHANES serum/blood either using 
either HTTK-predicted clearance 
(Pearce et al., 2017) or literature 
clearance estimates for chemicals 
not suited to HTTK 

Total Chemical 
Intake Rate

(mg/ kg BW/ day)

Evaluation Data

10-13 10-9 10-5

Intake Rates Inferred from NHANES

Ring et al., 2019
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Reverse Dosimetry (Tan et al., 2006)
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Total Chemical 
Intake Rate

(mg/ kg BW/ day)
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Chemical-Specific 
Pathway Relevancy (δij) 

Yes/No

Yes/No
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Unknown

 Likelihood of exposure via 
various source-based pathways 
is predicted from production 
volume, OPERA physico-
chemical properties and 
ToxPrint structure descriptors

 Machine learning (Random 
Forest) – generates a chemical 
specific probability of exposure 
by that pathway (which is then 
used as a Bayesian prior)

SEEM3
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R2 ≈ 0.14

First Generation SEEM
Wambaugh et al., 2013

 Those chemicals with 
“near-field” – proximate, 
in the home, sources of 
exposure – had much 
higher rates of exposure 
than those with sources 
outside the home 
(Wallace et al.,  1986)

 The only available high 
throughput exposure 
models in 2013 were for 
far-field sources
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Total Chemical 
Intake Rate

(mg/ kg BW/ day)

Consumer 

Dietary

Far-Field
Pesticides

Far-Field
Industrial

Pathway
Yes

Chemical-Specific 
Pathway Relevancy (δij) 

No

Yes

Yes

Unknown Average Unexplained 
(a0, the grand mean)

Average Unexplained (aconsumer)

Average Unexplained (aFFpesticide)
USEtox
RAIDAR
Production Volume

Average Unexplained (aFFindustrial)
USEtox
RAIDAR
Production Volume

Predictors 

The 3rd Gen. SEEM 
framework incorporates 

the previous models

We were unfair to USEtox and 
RAIDAR in that we judged them 
on all chemicals, not just those 

that with far-field sources.

SEEM1
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Heuristics of Exposure

Wambaugh et al. (2014) R2 ≈ 0.5 indicates that we can predict 
50% of the chemical to chemical 
variability in median NHANES 
exposure rates

Same five predictors work for all 
NHANES demographic groups 
analyzed – stratified by age, sex, and 
body-mass index:

• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer 

use
• Production Volume
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Total Chemical 
Intake Rate

(mg/ kg BW/ day)

Consumer 

Far-Field
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Predictors 

The 3rd Gen. SEEM 
framework incorporates 

the previous models

ACToR UseDB gave us chemical pathway 
predictions (Yes/No) and we estimated the 

average exposure for each pathway

SEEM2
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Average Unexplained 
(a0, the grand mean)

Average Unexplained (aconsumer)
SHEDS-HT
FINE
RAIDAR-ICE
USEtox
Production Volume
Average Unexplained (adietary)
SHEDS-HT Dietary
Production Volume
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USEtox
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Production Volume

Average Unexplained (aFFindustrial)
USEtox
RAIDAR
Stockholm Convention
Production Volume

Predictors SEEM3

 We have many models/predictors, but we have many more chemicals 
(CompTox Chemicals Dashboard has > 1,000,000 as of November 2022)
 What do we do for chemicals without model predictions?

 One trick from quantitative structure-activity relationship (QSAR) 
modeling is to use the average value when a prediction is missing
 But should every chemical be treated as an average consumer 

product chemical AND average pesticide AND average industrial 
compound?

 This is the Shin et al. (2015) problem!

 “Pathway models” for chemical use scenario:
 Predict whether a chemical gets used for a certain exposure scenario
 Only assign average values for the models relevant to that pathway 
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QSUR’s for Exposure Pathway
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Sources of Positives Sources of Negatives
Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, CPDat (Food, 

Food Additive, Food Contact), 
NHANES Curation

Pharmapendium, CPDat (non-
food), NHANES Curation

Near-Field 49 1622 567 26 24 74 CPDat (consumer_use, 
building_material), ExpoCast, 
NHANES Curation

CPDat (Agricultural, Industrial), 
FDA CEDI, NHANES Curation

Far-Field 
Pesticide

94 1480 6522 21 36 80 REDs, Swiss Pesticides, Stockholm 
Convention, CPDat (Pesticide), 
NHANES Curation

Pharmapendium, Industrial 
Positives, NHANES Curation

Far Field 
Industrial

42 5089 2913 19 16 81 CDR HPV, USGS Water Occurrence, 
NORMAN PFAS, Stockholm 
Convention, CPDat (Industrial, 
Industrial_Fluid), NHANES Curation

Pharmapendium, Pesticide 
Positives, NHANES Curation

Ring et al. (2019) used the method of Random Forests to relate chemical structure and properties to exposure pathway

Ring et al., 2019
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Total Chemical 
Intake Rate

(mg/ kg BW/ day)

Consumer 
Pathway

Yes/No

Chemical-Specific 
Pathway Relevancy (δij) 

Average Unexplained (aconsumer)
SHEDS-HT
FINE
RAIDAR-ICE
USEtox
Production Volume

Predictors 

Bayesian analysis via 
Markov Chain Monte 

Carlo assigns each 
chemical either a “Yes” or 

“No” according to 
predicted probability

If the pathway is no for a 
chemical, nothing is 

added to the intake rate

Linear regression is used to 
estimate the average 
unexplained exposure 
(intercept) and loadings 
(slopes, or predictive ability) 
for each model 

Model predictions are 
centered at zero – if there is 
no prediction for a 
chemical, the average value 
“zero” is added

SEEM3
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 Machine learning models 
were built for each of four 
exposure pathways

 Pathway predictions can be 
used for large chemical 
libraries

 Use prediction (and accuracy 
of prediction) as a prior for 
Bayesian analysis

 Each chemical may have 
exposure by multiple 
pathways

Pathway-Based Consensus Modeling of NHANES

Intake Rate (mg/kg BW/day) Inferred from 
NHANES Serum and Urine

Co
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Ring et al., 2019
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Consensus Modeling of Median Chemical Intake 

 We extrapolate to predict relevant 
pathway(s), median intake rate, and credible 
interval for each of 479,926  chemicals

 Of 687,359 chemicals evaluated, 30% have 
less than a 50% probability for exposure via 
any of the four pathways and are considered 
outside the “domain of applicability”

 This approach identifies 1,880 chemicals for 
which the median population intake rates 
may exceed 0.1 mg/kg bodyweight/day.

Ring et al., 2019
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Consensus Modeling of Median Chemical Intake 

 We extrapolate to predict relevant 
pathway(s), median intake rate, and credible 
interval for each of 479,926  chemicals

 Of 687,359 chemicals evaluated, 30% have 
less than a 50% probability for exposure via 
any of the four pathways and are considered 
outside the “domain of applicability”

 This approach identifies 1,880 chemicals for 
which the median population intake rates 
may exceed 0.1 mg/kg bodyweight/day.

 There is 95% confidence that the median 
intake rate is below 1 µg/kg BW/day for 
474,572 compounds.

Ring et al., 2019
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Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Propagating Uncertainty Into 
Chemical Risk Prioritization

Bioactivity : Exposure Ratio (Risk)
For example, Wetmore et al. (2015)

Figure from Wambaugh et al., 2019

 When compared with ranges 
of potentially adverse dose 
rates (for example, ToxCast 
in vitro bioactivities converted 
via reverse dosimetry) it is 
possible to identify the margin 
between “hazard” and 
“exposure“ even with the 
presence of uncertainty

 Carefully quantifying 
uncertainty is key and requires 
appropriate evaluation data 
and relevant models
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Conclusions

 SEEM is a probabilistic, consensus prediction using 
multiple HTE models and other predictors 
 Various HTE models provide the predictions for 

different aspects of exposure
 Monitoring data provides our “reference” exposures

 QSUR “pathway models” provide exposure model 
“domain of applicability”
 Allow us to know which model to use and when
 Of 687,359 chemicals evaluated, 30% have less than 

a 50% probability for exposure via any of the four 
pathways and are considered outside the domain of 
applicability

Different HTE models characterize 
different aspects of exposure

Please send questions to:
wambaugh.john@epa.gov

mailto:wambaugh.john@epa.gov
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