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ORD Facility in
Research Triangle Park, NC

 The Office of Research and Development is the scientific research arm of EPA
 530 peer-reviewed journal articles in 2019

 Research is conducted by Office of Research and Development ’s 
four national centers:
 Computational toxicology and exposure, public health and 

environmental assessment; environmental measurement and 
modeling; and environmental solutions and emergency 
response

 13 facilities across the United States

US EPA Office of Research and 
Development

 Research is conducted by a combination of 
Federal scientists (including uniformed members 
of the Public Health Service); contract 
researchers; and postdoctoral, graduate student, 
and post-baccalaureate trainees



3 of 42 Office of Research and Development

 Q: This year the ACS Fall meeting is being held virtually. 
Where was the meeting originally planned to be held?

Trivia Time!
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Chemical Regulation in the 
United States

 Park et al. (2012): At least 3221 chemical 
signatures in pooled human blood samples, many 
appear to be exogenous

 A tapestry of laws covers the chemicals people 
are exposed to in the United States (Breyer, 2009)

 Chemical safety testing is primarily for food 
additives, pharmaceuticals, and pesticide active 
ingredients (NRC, 2007)

 Level of testing (human, rodent, in vitro,        
in silico) depends on how chemical is used

November 29, 2014
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New Approach Methodologies for 
Chemical Risk Identification

 There are at least 10,000 chemicals 
produced, used in commerce, and 
potentially present in the environment

 Traditional methods are too resource-
intensive to address all of these

 New Approach Methodologies (NAMs,  
Kavlock et al. 2018) include:

 High throughput screening (ToxCast)
 High throughput exposure estimates 

(ExpoCast)
 High throughput toxicokinetics (HTTK)

Potential 
Exposure Rate
From Models

mg/kg BW/day

Potential Hazard 
from in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk
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“The Parallelogram Approach” (Sobels, 1982)

NRC (1998)Normalization of dose 
PBPK models

Comparative testing

Extrapolation 
using PD and 
PBPK models

Testable predictions

In Vitro - In Vivo Extrapolation 
(IVIVE)

 IVIVE is the use of in vitro data to predict 
phenomena in vivo
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“The Parallelogram Approach” (Sobels, 1982)

NRC (1998)Normalization of dose 
PBPK models

Comparative testing

Extrapolation 
using PD and 
PBPK models

Testable predictions

 IVIVE-PK/TK 
(Pharmacokinetics/Toxicokinetics): 
 Fate of molecules/chemicals in 

body
 Considers absorption, distribution, 

metabolism, excretion (ADME)
 Can use empirical PK or  

physiologically-based (PBPK)

 IVIVE is the use of in vitro data to predict 
phenomena in vivo

 IVIVE can be broken down into two components:

In Vitro - In Vivo Extrapolation 
(IVIVE)
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“The Parallelogram Approach” (Sobels, 1982)

NRC (1998)Normalization of dose 
PBPK models

Comparative testing

Extrapolation 
using PD and 
PBPK models

Testable predictions

 IVIVE-PK/TK 
(Pharmacokinetics/Toxicokinetics): 
 Fate of molecules/chemicals in 

body
 Considers absorption, distribution, 

metabolism, excretion (ADME)
 Can use empirical PK or  

physiologically-based (PBPK)

 IVIVE is the use of in vitro data to predict 
phenomena in vivo

 IVIVE can be broken down into two components:

 IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics):
 Effect of molecules/chemicals at biological target in vivo
 Perturbation as adverse/therapeutic effect, reversible/ irreversible effects

In Vitro - In Vivo Extrapolation 
(IVIVE)
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 Q: This year the ACS Fall meeting is being held virtually. 
Where was the meeting originally planned to be held?

 A: San Francisco

Trivia Time!

 Q: The 1968 hit “"(Sittin' On) The Dock 
of the Bay“ was composed in Sausalito 
adjacent to the San Francisco bay. 
Who co-wrote and sang it?
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High-Throughput

Risk
Toxicokinetics Exposure

Hazard

“Recent advances in high-throughput toxicity 
assessment, notably the ToxCast and Tox21 
programs, and in high-throughput computational 
exposure assessment have enabled 
first-tier based rankings of chemicals on the basis 
of margins of exposure—the ratio of 
exposures that cause effects (or 
bioactivity) to measured or 
estimated human exposures”

U.S. National Academies of 
Science, Engineering, and 
Medicine (2017)

Providing the Pieces for 
Prioritization
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IVIVE:
high

throughput 
screening + 

toxicokinetics

High-Throughput

Risk
Toxicokinetics Exposure

Hazard

ToxCast

HTTK 
Oral 

Route

Dermal 
Route 

Needed

Consumers

Evaluation Data:
NHANES

Many Exposure 
Predictors

SEEM: General 
Population

Consumer

Exposure 
Forecasting

Providing the Pieces for 
Prioritization

ToxCast: EPA’s Toxicity Forecast high throughput in vitro screening battery
HTTK: High Throughput Toxicokinetics
NHANES: CDC’s National Health and Nutrition Examination Survey
SEEM: EPA’s Systematic Empirical Evaluation of Models (consensus model)
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High-Throughput

Risk
Toxicokinetics Exposure
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Figure from Ring et al. (2017)

ToxCast + HTTK can estimate doses 
needed to cause bioactivity
(Wetmore et al., 2015)

Exposure intake 
rates can be inferred 

from biomarkers
(Wambaugh et al., 2014)

Providing the Pieces for 
Prioritization
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Figure from Ring et al. (2017)

Higher priority chemicals

Providing the Pieces for 
Prioritization
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High-Throughput

Risk
Toxicokinetics Exposure

Hazard

Pathways
Covered

Target
Population

ToxCast
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Route
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Many Exposure 
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Evaluation Data:
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Many Exposure 
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Ambient

Providing the Pieces for 
Prioritization
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Highly 
Exposed 

and 
Sensitive 

Populations

High-Throughput

Risk
Toxicokinetics Exposure

Hazard
Providing the Pieces for 

Prioritization
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Most chemicals do not have TK Data

0
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ToxCast Phase I (Wetmore et al. 2012) ToxCast Phase II (Wetmore et al. 2015)

ToxCast Chemicals
Examined

Chemicals with
Traditional in vivo TK

Chemicals with High
Throughput TK

Bell et al. (2018)
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NAMs for Toxicokinetics

 To provide toxicokinetic data for larger numbers of chemicals collect in vitro, high 
throughput toxicokinetic (HTTK) data (for example, Rotroff et al., 2010, Wetmore et al., 
2012, 2015)

 HTTK methods have been used by the pharmaceutical industry to determine range of 
efficacious doses and to prospectively evaluate success of planned clinical trials (Jamei, 
et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive in vitro 
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) (for example, 
Wetmore et al., 2015)

 A secondary goal is to provide open source data and models for evaluation and use by 
the broader scientific community (Pearce et al, 2017)
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 Q: What device did Stanford professor Patrick Brown help 
invent in the 1990’s?

Trivia Time!

 Q: The 1968 hit “(Sittin' On) The Dock 
of the Bay“ was composed in Sausalito 
adjacent to the San Francisco bay. 
Who co-wrote and sang that song?

 A: Otis Redding
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In vitro toxicokinetic data

High Throughput Toxicokinetics (HTTK)
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Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

In vitro toxicokinetic data

High Throughput Toxicokinetics (HTTK)
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

httk
Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

Wambaugh et al. (2015)
Pearce et al. (2017)

Ring et al. (2017)
Linakis et al. (2020)
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The “httk” General Physiologically-based 
Toxicokinetic (PBTK) Model
 Tissues are modeled by compartments:

 Some tissues (for example, arterial blood) are simple                       
compartments 

 Others (for example, kidney) are compound compartments consisting of 
separate blood and tissue sections with constant partitioning (that is, tissue 
specific tissue:plasma partition coefficients)

 Remaining tissues (for example, fat, brain, bones) are lumped into the “Rest 
of Body” compartment

 Clearance from the body depends on two processes:
 Metabolism in the liver (estimated from in vitro clearance and binding)
 Excretion by glomerular filtration in the kidney (estimated from in vitro 

binding)
 Model parameters are either:

 Physiological: determined by species and potentially varied via Monte Carlo 
(including HTTK-pop, Ring et al. 2017)

 Chemical-specific: physico-chemical properties (Mansouri et al., 2018) and 
equilibrium partition coefficients plus plasma binding and metabolism rates 
that are determined from in vitro measurements or potentially predicted 
from structure

Inhaled Gas
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-reviewed 

tools and data for high throughput 
toxicokinetics (httk)

• Available publicly for free statistical software R
• Allows in vitro-in vivo extrapolation (IVIVE) and 

physiologically-based toxicokinetics (PBTK)
• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017)

https://CRAN.R-project.org/package=httk

25 of 38

https://cran.r-project.org/package=httk
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Verifying 
PBTK Models

Process for the Evaluation of PBPK Models
1. Assessment of Model Purpose
2. Assessment of Model Structure and 

Biological Characterizations
3. Assessment of Mathematical 

Descriptions
4. Assessment of Computer 

Implementation
5. Parameter Analysis and Assessment 

of Model Fitness
6. Assessment of any Specialized 

Analyses

McLanahan et al. (2012)

Clark et al. (2004)
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 Q: What device did Stanford professor Patrick Brown help 
invent in the 1990’s?

 A: The DNA microarray (also PLoS and Impossible Foods!)

Trivia Time!

 Q: What standard was established in 
2001 for the reporting of microarray 
data?



28 of 42 Office of Research and Development

Predicted Concentrations
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

Building Confidence in TK Models
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

Building Confidence in TK Models
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can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties

Building Confidence in TK Models
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Building Confidence in TK Models

Predicted Concentrations
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 Can estimate bias
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 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
 Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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Trivia Time!

 Q: What standard was established in 
2001 for the reporting of microarray 
data?

 A: Minimum information about a 
microarray experiment (MIAME)
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In Vivo TK Database

 EPA has developed a public database of concentration 
vs. time data for building, calibrating, and evaluating TK 
models

 Curation and development is ongoing, but to date 
includes:
 198 analytes (EPA, National Toxicology Program, 

literature)
 Routes: Intravenous, dermal, oral, sub-cutaneous, 

and inhalation exposure

 Standardized, open source curve fitting software 
invivoPKfit used to calibrate models to all data:

34Sayre et al. (2020)

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

https://github.com/USEPA/CompTox-PK-CvTdb

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
https://github.com/USEPA/CompTox-PK-CvTdb
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CvTdb Team

 Started by Risa Sayre and Chris Grulke
 Ongoing curation of journal articles by:

 Mike Hughes
 Anna Kreutz
 Nancy Hanley
 Karen Herbin-Davis
 Tirumala-Devi Kodavanti
 Evgenia Korol-Bexell
 Mark Sfeir
 Lucas Albrecht

and others

35Sayre et al. (2020)

https://github.com/USEPA/CompTox-PK-CvTdb

 Currently advertising a master-level position to manage curation and development of CvTdb. See 
advertisement EPA-ORD-CCTE-CCED-2020-02  for “EPA Toxicokinetic Database Engineering Internship” on 
Zintellect: 

https://www.zintellect.com/Opportunity/Details/EPA-ORD-CCTE-CCED-2020-02

https://github.com/USEPA/CompTox-PK-CvTdb
https://www.zintellect.com/Opportunity/Details/EPA-ORD-CCTE-CCED-2020-02
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Generic Gas Inhalation Model
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 Inhalation is an important route of 
exposure, particularly for occupational 
settings

 “Development and Evaluation of a High Throughput 
Inhalation Model for Organic Chemicals” by Linakis et al. was 
just published at Journal of Exposure Science and 
Environmental Epidemiology

 The structure of the inhalation model was developed from 
two previously published physiologically-based models from 
Jongeneelen et al. (2011) and Clewell et al. (2001) 

 The model can be parameterized with chemical-specific in 
vitro data from the HTTK package for 917 chemicals in human 
and 181 chemicals in rat

 Model was made publicly available with the release of httk 
v2.0.0 in February 2020
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 Access to in vivo concentration vs. time data 
made it easier to identify coding and other 
modeling errors

 142 exposure scenarios across 41 volatile 
organic chemicals were modeled and compared 
to published in vivo data for humans and rat

Linakis et al. (2020)

Overall
Human
Rat

1:1 Perfect Prediction

Developing Models with the CvT Database
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Units on axis in 
paper figure caption 

were wrong Access to in vivo concentration vs. time data 
made it easier to identify coding and other 
modeling errors

 Access to in vivo concentration vs. time data 
also made it easier to find fault with specific 
data sets

Linakis et al. (2020)

1:1 Perfect Prediction

Developing Models with the CvT Database
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 Access to in vivo concentration vs. time data 
made it easier to identify coding and other 
modeling errors

 Overall RMSE was 0.69 and R2 was 0.54 for full 
concentration time-course across all chemicals 
and both species

 R2 was 0.67 for predicting peak concentration

Linakis et al. (2020)

Overall
Human
Rat

1:1 Perfect Prediction

Developing Models with the CvT Database
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Developing Models with the CvT Database

 Access to in vivo concentration vs. time data 
made it easier to identify coding and other 
modeling errors

 Overall RMSE was 0.69 and R2 was 0.54 for full 
concentration time-course across all chemicals 
and both species

 R2 was 0.67 for predicting peak concentration
 R2 was 0.79 for predicting time integrated 

plasma concentration (Area Under the Curve, 
AUC)

Linakis et al. (2020)

Overall
Human
Rat

1:1 Perfect Prediction
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Testing Predictions 
with CvTdb

IVIVE for
Risk Prioritization

Conclusions

 The inhalation route is important for both 
occupational and general population chemical 
exposures. 

 HTTK combines relatively rapid in 
vitro measurements of toxicokinetics with 
generic mathematical models that make use of 
the in vitro data and physico-chemical 
properties.

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA

 The inhalation models have been statistically evaluated using EPA’s Concentration vs. Time toxicokinetics 
database (CvTdb). 

 HTTK inhalation models allow for in vitro-in vivo extrapolation of volatile compounds, enabling comparison 
of estimates of bioactive in vivo doses with estimates of chemical exposures. 

 These approaches have the potential to integrate in vitro toxicity data for air pollutants into chemical risk 
evaluations.
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