Full Record Display for the EPA National Library Catalog

RECORD NUMBER: 392 OF 1236

Main Title DNA Methylation and Cancer Therapy [electronic resource] /
Type EBOOK
Author Szyf, Moshe.
Publisher Springer US,
Year Published 2005
Call Number RC261-271
ISBN 9780387274430
Subjects Medicine ; Oncology ; Biotechnology ; Biochemistry
Internet Access
Description Access URL
http://dx.doi.org/10.1007/b139080
Collation XV, 239 p. online resource.
Notes Due to license restrictions, this resource is available to EPA employees and authorized contractors only
Contents Notes DNA Methylation -- Epigenetic Mechanisms of Gene Regulation -- DNA Hypo- vs. Hypermethylation in Cancer -- DNA Methylation in Urological Cancers -- DNA Methylation in Colorectal Cancer -- CpG Island Hypermethylation of Tumor Suppressor Genes in Human Cancer -- The Loss of Methyl Groups in DNA of Tumor Cells and Tissues -- Identifying Clinicopathological Association of DNA Hypermethylation in Cancers Using CpG Island Microarrays -- Methylation Analysis in Cancer -- Regulation of DNA Methyltransferases in Cancer -- Inhibition of Poly(ADP-Ribosyl)ation Allows DNA Hypermethylation -- The Role of Active Demethylation in Cancer and Its Therapeutic Potential -- Purine Analogues and Their Role in Methylation and Cancer Chemotherapy -- DNA Methyltransferase Inhibitors -- Preclinical and Clinical Studies on 5-Aza-2?-Deoxycytidine, a Potent Inhibitor of DNA Methylation, in Cancer Therapy -- Anticancer Gene Therapy by in Vivo DNA Electrotransfer of MBD2 Antisense -- Epilogue. NA methylation has bewildered molecular biologists since Hotchkiss discovered it almost six decades ago (Hotchkiss RDJ. Biol Cem 1948; 175:315-332). The fact that the chemical structure of our D genome consists of two components that are covalently bound, the genetic information that is replicated by the DNA replication machinery ana DNA methylation that is maintainea by independent enzymatic machinery, has redictably stimulated the imagination and curiosity of generations of moEdular biologists. An obvious question was whether DNA methylation was a bearer of additional information to the genetic information and what was the nature of this information? It was tempting to speculate that DNA methylation applied some form of control over programming of the genome s expression profile. Once techniques to probe the methylation profile of whole genomes as well as specific genes became available, it became clear that DNA methylation patterns are gene and tissue specific and that patterns of gene expression correlate with patterns of methylation. DNA methylation patterns emerged as the only component of the chemical structure of DNA that exhibited tissue and cell specificity. This data seemingly provided an attractively simple explanation for the longstanding dilemma of how could one identical genome manifest itself in so many different forms in multicellular organisms? The DNA methylation pattern has thus become the only known factor to confer upon DNA a unique cellular identity.
Place Published Boston, MA
Corporate Au Added Ent SpringerLink (Online service)
Title Ser Add Ent Medical Intelligence Unit
Host Item Entry Springer eBooks
PUB Date Free Form 2005
Series Title Untraced Medical Intelligence Unit
BIB Level m
Medium computer
Content text
Carrier online resource
Cataloging Source OCLC/T
OCLC Time Stamp 20140518153114
Language eng
Origin SPRINGER
Type EBOOK
OCLC Rec Leader 03916nam a22004815i 45