Full Record Display for the EPA National Library Catalog

RECORD NUMBER: 723 OF 1242

OLS Field Name OLS Field Data
Main Title Molecular Genetics of Recombination [electronic resource] /
Type EBOOK
Author Aguilera, Andrés.
Other Authors
Author Title of a Work
Rothstein, Rodney.
Publisher Springer Berlin Heidelberg : Imprint: Springer,
Year Published 2007
Call Number QH573-671
ISBN 9783540710219
Subjects Life sciences. ; Biochemistry. ; Cytology. ; Microbial genetics. ; Plant breeding. ; Animal genetics.
Internet Access
Description Access URL
http://dx.doi.org/10.1007/978-3-540-71021-9
Collation XXIV, 524 p. online resource.
Notes Due to license restrictions, this resource is available to EPA employees and authorized contractors only
Contents Notes Genetics of Recombination in the Model Bacterium Escherichia Coli -- Homologous Recombination in Low dC + dG Gram-Positive Bacteria -- The Bacterial RecA Protein: Structure, Function, and Regulation -- Biochemistry of Eukaryotic Homologous Recombination -- DNA helicases in recombination -- Holliday Junction Resolution -- Replication forks and replication checkpoints in repair -- Sister chromatid recombination -- Mating-Type Switching in S. Pombe -- Multiple Mechanisms of Repairing Meganuclease-Induced Double-Strand DNA Breaks in Budding Yeast -- The Cell Biology of Mitotic Recombination in Saccharomyces Cerevisiae -- The cell biology of homologous recombination -- BRCA2: safeguarding the genome through homologous recombination -- Meiotic recombination -- Site-specific recombination -- V(D)J Recombination: Mechanism and Consequences -- Nonhomologous End-Joining: Mechanisms, Conservation and Relationship to Illegitimate Recombination -- Analytical methods from the perspective of method standardization. Genetic recombination is an important process involved in shaping the genetic make up of progeny. Increasingly, it has become evident that recombination is a DNA repair pathway crucial during DNA replication in vegetatively growing cells. It plays a critical role in preserving the integrity of the genome by mediating the repair of DNA damage, which can occur during normal cellular metabolism as a result of oxidative stress, transcription, replication fork stalling or breakdown, or after the exposure to DNA damaging agents. Until recently, much of our knowledge on the mechanisms of genetic recombination has come from studies of prokaryotic and simple eukaryotic fungal systems. However, these studies have now been significantly extended to mammals, such that a comparative picture of the general factors and mechanisms of genetic recombination is beginning to emerge. Detailed genetic and biochemical studies have led to the isolation and characterization of many of the recombination-repair proteins in E. coli and S. cerevisiae, which in turn has led to the identification of homologues in human cells. The link between recombination defects and recombination proteins in a number of tumors as well as in human hereditary syndromes makes genetic recombination a cellular process of key importance not only in basic biology but also in biomedical studies.
Place Published Berlin, Heidelberg
Corporate Au Added Ent SpringerLink (Online service)
Title Ser Add Ent Topics in Current Genetics, 17
Host Item Entry Springer eBooks
PUB Date Free Form 2007
Series Title Untraced Topics in Current Genetics, 17
BIB Level m
Medium computer
Content text
Carrier online resource
Cataloging Source OCLC/T
OCLC Time Stamp 20140606103047
Language eng
Origin SPRINGER
Type EBOOK
OCLC Rec Leader 04145nam a22005295i 45