OLS : Record

RECORD NUMBER: 45 OF 1772

Main Title Anaerobic Biodegradation of Nitrogen-Substituted and Sulfonated Benzene Aquifer Contaminants.
Author Kuhn, E. P.; Suflita., J. M.;
CORP Author Oklahoma Univ., Norman. Dept. of Botany and Microbiology.;Robert S. Kerr Environmental Research Lab., Ada, OK.
Publisher c1989
Year Published 1989
Report Number EPA/600/J-89/190;
Stock Number PB90-140708
Subjects Anaerobic processes; Biodeterioration; Aquifers; Hazardous materials; Water pollution control; Benzenes; Ground water; Waste treatment; Nitrogen organic compounds; Sulfur organic compounds; Microorganisms; Sulfate reducing bacteria; Reprints; Biological industrial waste treatment; Methane bacteria; Biologically stable substances
Holdings
Library   Call Number Additional Info Location Date Modified
NTIS PB90-140708 Most EPA libraries have a fiche copy filed under the call number shown. Check with individual libraries about paper copy. NTIS 06/15/1990
Collation 14p
Abstract A literature survey of ground water contaminants indicated that aquifers are repositories for hazardous wastes, including N- and S-substituted benzene derivatives. The susceptibility of several anilines, benzamides, benzenesulfonic acids and benzenesulfonamides to anaerobic metabolism by aquifer microorganisms was examined. Under sulfate-reducing and methanogenic conditions the carboxylated anilines were biotransformed within 1 to 3 months while unsubstituted or methylated anilines required longer incubation times. Benzamide as well as an aryl methyl and an N-methyl derivative were biodegraded under both redox conditions. The anerobic degradation of the N-methylated benzamide was favored in sulfate-reducing rather than methanogenic incubations. However, the addition of a second N-alkyl group rendered the resulting compounds resistant to anaerobic decay. Only 1 of 7 benzenesulfonates and 2 of 5 benzene-sulfonamides proved amenable to anaerobic metabolism. The authors found 37-75% of the theoretically expected amount of methane from aquifer slurries amended with the aminobenzoic acids, benzamide, and p-toluamide. In the sulfate-reducing aquifer slurries 89-100% of the oxidized benzamide, p-toluamide and N-methylbenzamide could be accounted for by sulfate reduction. These results help indicate which hazardous waste constituents will likely persist in anoxic aquifers and the types of chemical substitution patterns that favor anaerobic biotransformation.
Supplementary Notes Pub. in Hazardous Waste and Hazardous Materials, v6 n2 p121-133 1989. Sponsored by Robert S. Kerr Environmental Research Lab., Ada, OK.
NTIS Title Notes Journal article.
Title Annotations Reprint: Anaerobic Biodegradation of Nitrogen-Substituted and Sulfonated Benzene Aquifer Contaminants.
Category Codes 68D; 68C; 57K; 48G
NTIS Prices PC A03/MF A01
Primary Description 600/15
Document Type NT
Control Number 005320262
Cataloging Source NTIS/MT
Origin NTIS
Type CAT